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1 | INTRODUCTION

Adult mammalian cardiomyocytes (CMs) were considered differ-
entiated cells and unable to proliferate. Foetal CMs proliferate
during development but lose this ability rapidly after birth. The
myocardium undergoes a transition from hyperplastic to hypertro-
phic growth shortly after birth. Following this transition, the main
growth pattern is an increase in cell size and myofibril density,
rather than in cell number.! Recently, researchers retroactively an-

alysed the integration of “C isotopes into human cardiomyocytes

Cardiovascular diseases are associated with high incidence and mortality, contribute
to disability and place a heavy economic burden on countries worldwide. Stimulating
endogenous cardiomyocyte proliferation and regeneration has been considering as
a key to repair the injured heart caused by ischaemia. Emerging evidence has proved
that non-coding RNAs participate in cardiac proliferation and regeneration. In this
review, we focus on the observation and mechanism that microRNAs (or miRNAS),
long non-coding RNAs (or IncRNAs) and circular RNA (or circRNAs) regulate cardio-
myocyte proliferation and regeneration to repair a damaged heart. Furthermore, we
highlight the potential therapeutic role of some non-coding RNAs used in stimulat-
ing CMs proliferation. Finally, perspective on the development of non-coding RNAs

therapy in cardiac regeneration is presented.

cardiomyocyte proliferation, gene therapy, non-coding RNAs

who lived during the atmospheric nuclear bomb testing conducted
from the early 1950s to 1963.2 Using carbon dating techniques and
mathematical modelling, the estimated renewal rate of human CMs
after birth is nearly 1% per year.? However, as one grows older,
the renewal rate decreases to 0.3%.2 Another study showed that
CM proliferation contributes to developmental heart growth in
young humans, indicating children and adolescents may be able to
regenerate in heart diseases.® More importantly, increasing studies
reached the consensus that the regenerated adult CMs are from

proliferation of pre-existing CMs but not endogenous progenitor
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cells.** Although adult CMs can divide into two cells, these events
naturally occur at a very low rate, which is not sufficient to restore
the heart function after injury. Because of the dramatic decline in
CMs cycle re-entry activity and the loss of regeneration potential
in adult hearts, there has been increasing research interest to un-
derstand the cellular mechanism of CMs division. Numerous stud-
ies have reported that in CMs, signals from growth factors, internal
signalling pathways, microRNAs and cell cycle regulators can pro-
mote the cell cycle re-entry in injured hearts.®™

Protein-coding RNAs account for less than 2% of all of the tran-
scribed RNAs.'° A large body of evidence has shown that non-cod-
ing RNAs play important roles in biological processes and diseases.
Based on the lengths, non-coding RNAs can be subdivided into 2
major groups: (a) small non-coding RNAs (<200 nucleotides) includ-
ing rRNA, tRNA, microRNAs, PIWI-interacting RNAs and endoge-
nous short interfering RNAs, etc and (b) long non-coding RNAs that
have transcripts larger than 200 nucleotides in length and have
no known protein-coding function.***2 In this review, we focus on
non-coding RNAs’ regulatory and therapeutic roles in CMs prolif-
eration and cardiac regeneration (Figure 1). Besides, the general
mechanism of ncRNAs in CM proliferation and heart regeneration

is depicted in Figure 2.

miR-590a-3p

2 | NON-CODING RNAS REGULATE CMS
PROLIFERATION

2.1 | miRNAs regulate CMs proliferation

In the cardiovascular system, miRNAs perform their physiological
and pathological function in cardiac development,**!> diseases!®!’
and regeneration.’®*? Here, we discuss the roles of miRNAs on CMs
proliferation and the associated mechanism, which are summarized

in Table 1.

2.1.1 | miRNAs promote CMs proliferation

miRNAs targeting Hippo-Yap signal pathway

Microscopy-based high-content screening functionally identified
that hsa-miR-590 and hsa-miR-199a effectively increased both DNA
synthesis and cytokinesis in neonatal mice and rat CMs.?° After
myocardial infarction, these miRNAs strongly stimulated cardiac re-
generation and significantly recovered cardiac function.?° The deep-
sequencing analysis revealed that Homer1, Hopx and Clic5 are targets

of these miRNAs.?° Their effects on stimulating CMs proliferation is
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FIGURE 1 miRNAs, IncRNAs and circRNAs regulate cardiomyocyte proliferation to promote heart regeneration after injury. MicroRNAs,
IncRNAs and circRNA are represented by red, blue and green boxes, respectively. The arrow indicates the promoting effect and the blunt

end arrow indicates the inhibiting effect. (Created with BioRender.com)
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CircRNAs exert their biological function as regulators of splicing and transcription and modifiers of parental gene expression. These
different kinds of non-coding RNAs regulate CM proliferation through their downstream targets to form complex signal pathways. (Created

with BioRender.com)

based on cumulative results on multiple targets. Hippo signal trans-
duction pathway is considered a critical approach to regulate prolif-
eration.?! A recent study has shown that a series of miRNAs promote
CMs proliferation, including hsa-miR-590 and hsa-miR-199a, by ac-
tivating nuclear translocation of YAP and inducing the expression
of YAP-responsive genes.?!?? In addition, several miRNAs (including
miR-199a-3p) also inhibit filamentous actin depolymerization by tar-
geting Cofilin2 and activating YAP nuclear translocation.??

The deletion of the miR-302-367 cluster using the Cre-LoxP
system expressed during embryonic development confirmed that
this cluster is essential for CMs proliferation.?® Intracardiac in-
jection of Gel-miR-302 stimulates both the wild-type and Myhé-
MerCreMer:R26R-Confetti transgenic mice CMs to proliferate.24
Furthermore, miR-302-367 cluster, hsa-miR-590 and hsa-miR-199a,
exert their pro-proliferative effects on CMs by targeting compo-

nents (Lats2, Mob1 and Mst1) of the Hippo signalling pathway.?®

miRNAs regulate the cell cycle to promote CMs proliferation

The regulation of cyclin, cyclin-dependent kinase and regulators
highly expressed in the foetal stage, significantly stimulate adult CMs
to re-enter cell cycle.?> The majority of these proteins are targets
of miRNAs. miR-1825 is one of the miRNAs screened by the above

approach?® and a master regulator of miR-199a.2° Transfecting with

miR-1825 mimics markedly increases the proliferation of adult mice
CMs.%% MiR-1825 has been reported to reduce the mitochondrial
numbers and destroy their function by direct inhibition of NDUFA10
and cell cycle genes.?®

miR-204 stimulates human CM progenitor cells to proliferate
and differentiate.?’ Transgenic mice with highly cardiac expression
of miR-204 exhibit a thicker ventricular wall, which is associated
with CMs proliferation rather than hypertrophy during heart devel-
opment by directly targeting Jarid2,?® while Jarid2 binds to the pro-
moter of cyclin D1 and represses its expression.29

MiR-210, up-regulated in many cardiac diseases, exerts its ben-
eficial effects against ischaemic injury when injected into the myo-
cardium.*® Transfection adult rat CMs with miR-210 significantly
increases the amount of CMs and inhibits apoptosis as well.3!
Overexpression of miR-210 in transgenic mice results in recovery
against injury and also promotes CMs proliferation and angiogen-
esis.®! In silico analysis indicates that APC (adenomatous polyposis
coli)-cell cycle inhibitor is involved in the canonical Wnt signalling
pathway, which is a target of miR-210.3!

miR-294 is highly expressed during embryonic cardiac develop-
ment and rapidly declines after maturation, which has been found
to promote both neonatal rat ventricular myocytes (NRVMs) and

feline adult CMs to enter the cell cycle.®? In another study, miR-294
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mechanically blunted the Weel, a negative regulator of the cell
cycle,? to increase the activity of the cyclin B1/CDK1 complex and
improve CMs proliferation.%?

MEF2A-regulated Gtl2-Dio3 non-coding RNAs plays an im-
portant role in CMs differentiation and maturation.®® miR-410 and
miR-495, the subsets of Gtl2-Dio3 miRNA mega-cluster, promote
NRVMs to proliferate by directly inhibiting CITED2.3® CITED2 is a
transcriptional coactivator that promotes the expression of the cell
cycle inhibitor Cdkn1c/p57/Kip2.32

miR-499, a cardiac abundant miRNA, promotes mouse P19CL6
cells to differentiate to CMs and inhibits apoptosis in NRVMs during
late stage of differentiation.®* miR-499 functions through direct tar-
geting of 3' UTR of SOX6, which negatively regulates the transcrip-
tion of the cyclin D1%* and plays a critical role in CMs development.®®

Exercise-induced miRNAs regulate CMs proliferation

Exercise induces physiological cardiac growth evidenced by in-
creased proliferation markers and protection of the heart against
pathological remodelling. miR-17-3p is induced by exercise and
protects the heart against ventricular remodelling.3® Inhibition of
miR-17-3p can attenuate CMs hypertrophy and inhibit their pro-
liferation.3® Besides, miR-17-3p directly targets tissue inhibitor of
metalloproteinase-3 (TIMP3) to induce CMs proliferation via EGFR/
INK/SP-1 signalling®” and indirectly regulates PTEN to promote
CMs hypertrophy.36 The expression level of miR-222 is also up-reg-
ulated in exercise models.*® Overexpression of miR-222 is sufficient
to induce neonatal CMs physiological growth, cellular hypertrophy
and proliferation by reducing the expression of p27, negatively regu-
lating the cell cycle and transcription factor HIPK1%? and inhibiting
apoptosis.a8 Cardiac-specific expression of miR-222 protects against
cardiac remodelling and dysfunction after ischaemic injury.*® The
negative function of miR-222 was further demonstrated by multi-
isotope imaging mass spectrometry (MIMS) to identify newly formed
CMs in the exercise model, which could be completely blocked by
inhibition of miR-222.4°

Other mechanisms
miR-17-92 cluster, known as OncomiR-1, is required for CMs
proliferation in the embryonic and postnatal mouse hearts.*!
Overexpression of miR-17-92 induces CMs proliferation in embry-
onic, postnatal and adult heart and protects the adult heart from
myocardial infarction through targeting Pten.*! MiR-19a/19b, family
members of miR-17-92 cluster, are highly expressed in heart failure
patients.*? Overexpression of miR-19a/19b promotes CMs prolifera-
tion, reduces apoptosis and blocks inflammation through targeting
Pten, Bim1 and SOCX1/3. MiR-19a/19b protect the adult heart in two
distinctive phases after myocardial infarction: early-phase and long-
term protection.42 Furthermore, miR-25 also belongs to an oncogene
named MCM?7, it promotes CMs growth and migration by targeting
Bim.*?

miR-31-5p is up-regulated in P10 CMs compared to PO, but it
promotes NRCMs proliferation through targeting RhoBTB1,** a sub-
family of the Rho small GTPases.*® This up-regulation of miR-31-5p

WILEY- 2%

is probably a compensatory mechanism of the CMs in response to
exiting the cell cycle.

Unbiased miRNA-sequencing indicated that miR-486 was en-
riched in striated muscle and was up-regulated in neonatal patients
with hypoplastic left heart syndrome which was confirmed by sheep
dilated right ventricle.*® The ventricle of neonatal mice treated with
miR-486 mimics exhibited increased growth of the ventricles with-
out changes in wall thickness and CMs proliferation.*® Previously,
iTRAQ-based mass spectrometry proteomics studies indicated that
Stat1 was one of the most up-regulated proteins after miR-486 mimic

treatment.*¢

miR-486 indirectly decreased FoxO1 and Smad signal-
ling and increased the Stat1 expression level associated with Gata4

and Serum Response Factor (Srf) to stimulate CMs proliferation.*

2.1.2 | miRNAs inhibit CMs proliferation

The role of miR-1-2/miR-133a-1 and miR-1-1/miR-133a-2
The cardiac- and skeletal muscle-specific miRNA genes miR-1-1 and
miR-1-2 are specifically expressed in ventricle during cardiogen-
esis and activated during differentiation.*’” Transgenic mice with
B-myosin heavy chain (MHC) promoter highly express miR-1 at E9.0
resulting in the thinner ventricular wall and less CMs proliferation
via targeting Hand2,*” which is required for the expansion of the
embryonic cardiac ventricles.*®

Targeted deletion of miR-1-2 without affecting the resident gene
Mib1 showed ventricular septal defect at E15.5 and some (~15%)
mice survived to 2-3 months would suddenly die due to electrophys-
iologic defects as a consequence of direct inhibition of Irx5 by miR-
1-2.% Besides, most adult miR-1-2 mutants have a thicker ventricular
wall due to the increased proliferation of CMs. The effect on ven-
tricular wall is consistent with overexpressed miR-1 in the heart.*’
miR-133a-1 and miR-133a-2 have identical sequences and are

t.°% The two miRNAs are transcribed

highly expressed in the hear
as bicistronic transcripts with miR-1-2 and miR-1-1, respectively, in
skeletal and cardiac muscle.”® Mice deleting single gene were nor-
mal, whereas double knockout mice died during late embryonic or
neonatal stage due to ventricular septal defect, along with enhance-
ment of CMs proliferation, apoptosis and aberrant expression of

smooth muscle genes in the heart.”®

Cyclin-D2, a positive regulator
of cell cycle, is a target of miR-133a-1 and miR-133a-2.%° Microarray
data indicated that miR-133 was reduced during regeneration after
resection of the ventricular apex in zebrafish.>* Transgenic overex-
pression of miR-133 by heating shock single time after resection in
short-term or daily in the long-term inhibited cardiac regeneration
due to decreased CMs proliferation.51 However, the deletion of miR-
133 significantly increased the proliferation index of CMs and re-
stored the myocardium through persistent inhibition of miR-133.%*
Besides the regulators of the cell cycle, pharmacological inhibition
and EGFP sensor interaction studies indicated that cx43, a com-
ponent of the cell junction, was a miR-133 target.’ Another study

on sheep showed miR-133 expression in heart enhanced while it's
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FIGURE 3 The mechanisms of IncRNAs in CM proliferation. The pink boxes indicate the IncRNAs that promotes the proliferation of
CM, and the green boxes indicate the IncRNAs that inhibits proliferation. The round boxes represent the protein targets they regulate. The

specific mechanisms are shown in Table 2. (Created with BioRender.com)

direct target gene IGF1R's expression decreased with age.’? The
expression profile of other targets of miR-133 such as CCND2, SRF,
PGAM1 and GJA1(Cx43) did not show the reverse tendency of miR-
133; hence, the regulatory effect of miR-133 could be through an
indirect signalling pathway.>?

Cell cycle regulators

miR-195 is one of the miR-15 families with 6 miRNAs sharing a simi-
lar seed region and is the most up-regulated miRNA in P1 and P10
mice.>® Transgenic mice overexpressed miR-195 during embryonic
would partly die on the consequences of the large apical ventricular
septal defect and ventricular hypoplasia.53 Though the survival parts
had a normal cardiac function, they showed fewer proliferating CMs
and depressed cardiac function.”®* However, neonatal mice receiv-
ing LNA (locked nucleic acid)-modified miR-15b and miR-16 showed
more CMs mitosis re-entry and progression without cytokinesis.>®
Furthermore, LNA-modified miRNA injection from neonatal to adult
improved heart function and stimulated CMs proliferation after Ml
injury.>* RISC-seq confirmed that the miR-15 family negatively reg-
ulated cell cycle by directly targeting Chek1 (checkpoint kinase 1), a
conserved target between humans and mice, and was required for
G,/M DNA damage checkpoint.>®°

Global gene profiling of injured mouse and zebrafish hearts has
revealed that miR-26a is down-regulated in the injured zebrafish
hearts while keeping constant in the injured mouse hearts.’® LNA-
mediated inhibition of miR-26a promotes neonatal CMs proliferation
by targeting Ezh2, a component of polycomb repressive complex 2
(PRC2), which exerts suppressive functions on negative regulators
of the cell cycle.>®

miR-29a was found to be highly up-regulated in postnatal-4-week
rat CMs compared to neonatal. Inhibitors of miR-29a could stimulate
H9c2 and NRVMs to proliferate through targeting CCND2, a posi-
tive regulator of cell cycle.57 In addition, CCND2 was also a target
of an anti-proliferating miRNA Iet-7i-5p.58 Another study found
that miR-29a was up-regulated in purified adult rats CMs compared
with neonatal and postnatal as well as miR-30a and miR-141 fami-
lies.>? Anti-miR of miR-29a, miR-30a and miR-141 enhanced the cell
cycle re-entry of NRVMs and the predicted targets were Ccna2 and
CDK6.>*

miR-34ais a regulator of age-associated physiology and prevents
heart from regenerating in Ml injury and its negative effect on cell
proliferation is by direct targeting Bcl2, Cyclin D1 and Sirt1.°
RNA-sequencing analysis of P1, P7 and P28 mice cardiac ven-

tricles indicated that miR-128 expression was increased upon
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TABLE 2

In Vivo

In Vitro

Ref

Administration Stage Mechanism

Operation

Animals

Transfection

Cells

LncRNAs

CircRNAs
CircNfix

78

circNfix is transcripted by Meis1' binding to

postnatal
adult

AAV9

Ml injury

WT mice

siRNA

NMVMs
HL-1 KD
AMVMs

DONG ET AL.

the superenhancer and then promote Ybx1

ubiquitination and degradation to repress
expression of cyclin A2/B1 to inhibit CM

proliferation.
Deletion of circNfix could increase the expression

Adenovirus

CRISPR-Cas9 knock in mice

of miR-214, which directly targeting Gsk3p
to promote angiogenesis to facilitate cardiac

regeneration
CircHipk3 could increase the stability of N1CID

79

postnatal
adult

AAV9

Ml injury

WT mice

siRNA

NMVMs
AMVMs

CircHipk3

by acetylation and prevent its degradation
to stimulate CMs proliferation. Meanwhile,

Adenovirus

CircHipk3 also acts as a sponge for miR-133a
to increase the expression level of CTGF, then

activates endothelial cells

Abbreviation: AR, apex resection.

growth.®! Cardiac-specific overexpression of miR-128 in early-stage
led to the enlargement of the ventricle, reduced function and de-
creased regeneration after apex resection due to decreased pro-
liferating of CMs.%* Conditional deletion of miR-128 in neonatal
mice showed similar heart size but smaller and more proliferating
CMs.%! Knockout of miR-128 in adult mouse hearts resulted in
more proliferating and differential CMs under basal conditions as
well as improved heart regeneration at injury conditions.®* miR-128
down-regulated the expression of chromatin modifier SUZ12, which
decreased p27 (cyclin-dependent kinase inhibitor) expression and
activates the positive cell cycle regulators Cyclin E and CDK2 to pro-

mote CM proliferation.(’1

Other mechanisms

miR-99/100 and let-7a/c expression was markedly down-regu-
lated during regeneration in zebrafish while their targets fntb and
smarca5, were found to be conserved in the mammalian genome.62
Intracardiac injection of miR-99/100 mimics reduced BrdU incor-
poration after heart amputation and inhibition of miR-99/100 led
to cardiac hypertrophy in adult zebrafish.®? Experimental down-
regulation of miR-99/100 and Let-7a/c or up-regulation by FNTf/
SMARCADS5 would lead mammalian CMs to a differentiation state and

then proliferate.®?

2.2 | LncRNAs regulate CMs proliferation

More recently, IncRNAs have come into the spotlight due to their
roles in regulating gene expression and biological processes.
LncRNAs are generated by RNA polymerase Il, 5’-capped, spliced
and 3’- polyadenylated (except some specific non-polyadenylated
INcRNAs®3¢%)-but they are not translated into proteins and are ex-
pressed at a relatively low level.®> Based on their gene location, they
are divided into six subgroups: sense, sense intronic, antisense, bidi-
rectional, enhancer or intergenic INncRNAs.%° However, this standard
of classification is not enough due to the abundant amount of IncR-
NAs.*® Therefore, based on their functions, nuclear-expressed IncR-
NAs are divided into signal, decoy, guide or scaffold and enhancer
IncRNAs.%¢ The rest of the cytosol-expressed IncRNAs support the
following functions: they can be integrated into a complex of ribo-
nucleoprotein (RNP) and trafficking, act as a sponge to sequester
miRNAs and combined with mRNAs to stabilizing or destabilizing
them.®® The specific definition of this classification has been re-
viewed in detail previously.®>%® Here, we discuss the role of INcRNAs
in regulating CMs proliferation and cardiac repair as well as their po-
tential therapeutic role. The specific regulating mechanism of each

IncRNA is depicted in Figure 3.

2.2.1 | LncRNAs promote CMs proliferation

Transcriptome analysis revealed that ECRAR was significantly up-

regulated and was more active in the chromatin state in the foetal
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human heart compared with adults.®’” Adenovirus- or AAV-mediated
overexpression of ECRAR was found to promote postnatal and adult
CMs to re-enter cell cycle without leading to hypertrophy at base-
line or subjected Ml injury.®” Besides, ECRAR knockdown in neona-
tal rat using shRNA showed decreased proliferation of CMs which
was further confirmed in human AC16 cells.®” E2F1 activates ECRAR
transcription which promotes the phosphorylation of ERK1/2, an
important regulator of G1/S transition.®” Phosphorylated ERK1/2
stimulates the expression of cyclin D1, cyclin E1 and E2F1 to form
positive feedback.®’

Sirt-1 antisense IncRNA is highly expressed in the embryonic
stage and rapidly decreases after birth.®® Adenovirus-mediated
gain-of-function promotes NRVMs to undergo mitosis, karyokine-
sis and sarcomere disassembly.®® LNA-mediated loss-of-function
approach in neonatal and AAV9-mediated overexpression of this
IncRNA in adult mice, both indicated that this IncRNA was required
and sufficient to induce CMs proliferation.®® Elevated expres-
sion of this IncRNA also enhances survival rate, improves cardiac
function, reduces infarct area and inhibits fibrosis after MI.%®
Complementary with 3'UTR of Sirtl mRNA, Sirt1 antisense IncRNA
interacts with Sirtl mRNA and augments its stability and pro-pro-
liferating ability.6®

NR-045363 is an antisense IncRNA to human CDK®é, which is
reported to be down-regulated in the embryo but up-regulated in
adults 7 days after apex resection and correlates with CMs prolifera-
tion.®? AAV-mediated overexpression improves cardiac function and
reduces scar size due to increased CMs proliferation.®” miR-216 is
sequestered by NR-045363 and proven to inhibit CMs proliferation
by inactivating the JAK/STAT3 signal pathway.®’

Cardiovascular diseases are another factor that changes the pro-
liferation status of CMs.”® In chronic heart failure (CHF) patients, the
expression level of LUCAT1 is decreased markedly.”® LUCAT1 has
been demonstrated to sponge miR-612 which targets HOXA13 in
AC16 cell lines to stimulate CMs proliferation.”®

2.2.2 | LncRNAs inhibits CMs proliferation

Contrary to LUCAT1, LncDACH1 is up-regulated in CHF patients and
postnatal hearts. Cardiac-specific overexpression of LncDACH1 im-
pedes cardiac repair after apical resection while loss-of-function in
the heart reactivates CMs entry into the cell cycle.”! LncDACH1 is
directly bound to the protein phosphatase 1 catalytic alpha (PP1A)
subunit to limit its activity in dephosphorylation while enhancing
YAP1 phosphorylation and reducing its translocation into the nu-
cleus to inhibit CMs proliferation.”*

Nuclear abundant CPR is highly expressed in adult ventricular
CMs compared to embryonic mice heart.”> CPR global knockout
mice showed normal morphology and heart function but increased
CMs proliferation in both postnatal and adult mice under physio-
logical status.”? Furthermore, the deletion of CPR promoted adult
heart regeneration after Ml injury.72 Cardiac-specific overexpres-

sion of CPR led to the hypertrophic phenotype under physiological

WILEY--2%

condition, increased scar and poor cardiac function after Ml injury,
which was further confirmed in the AAV9 overexpression system.”?
CPR acted as a guide to recruit DNMT3a to methylate the CpG island
which inhibited the expression of MCM3.72

Microarray analysis has shown that CAREL is up-regulated with
growth and development.73 Transgenic mice with cardiac-specific
overexpression of CAREL impede CMs proliferation and cardiac
regeneration after apex resection which has been confirmed in the
intracardiac injection of CAREL adenovirus.”® However, CAREL de-
letion mediated by adenovirus reduces the scar size, improves car-
diac function and enhances CMs cell cycle re-entry after Ml injury.”®
CAREL, expressed in the cytoplasm of CMs, acts as an endogenous
competitor of miR-296 and promotes CMs proliferation by directly
targeting Trp53inp1 or Itm2a.”®

RNA-seq data from human foetal and adult heart revealed that
the expression of AZIN2-sv and CRRL were correlated with cell
cycle-related protein-coding genes and increased with age.*”°
Adenovirus-mediated gene regulation of these IncRNA revealed
that they are negative regulators of CMs proliferation.”*” Loss-of-
function assays in adenovirus and AAV9 neonatal and adult rats,
respectively, revealed stimulated cardiac regeneration through re-
straining ventricular remodelling, improving heart function and ac-
tivating CMs proliferation against Ml injury.”*”> Both IncRNAs are
highly expressed in the cytoplasm and act as competing endoge-
nous RNAs to inhibit proliferation by sponging miRNAs. AZIN2-sv
sponged miR-214 to release phosphatase and tensin homolog
(PTEN) which blocked the activation of PI3K kinase/Akt pathway,
inhibited CMs proliferation and enhanced the stability of PTEN.”*
CRRL sponged miR-199a by targeting Hopx, a negative regulator of
the cell cycle.75

2.3 | CircRNAs regulate CMs proliferation

CircRNAs (circular RNAs) are circularized by connecting the 3’ end
to 5’ end to provide stability compared with non-circular RNAs
and thus play an important role in the regulatory pathway.”®””
Superenhancer associated circRNA circNfix is highly expressed in
adult hearts and also highly expressed in the cytoplasm of CMs.”®
SiRNA-mediated knockdown and adenovirus-mediated overex-
pression revealed that circNfix was a negative regulator of CMs
proliferation.78 The knockdown of circNfix by AAV9 packaging
shRNA significantly facilitates adult CMs proliferation and dedif-
ferentiation marked by increased RUNX1.”® CircNfix exerted its
anti-regenerating effect through two independent pathways- in-
hibiting CMs proliferation and angiogenesis.”® First, transcription
factor Meis1 binds to the superenhancer of CircNfix and promotes
transcription and cyclizing of Nfix.”® CircNfix then combines with
Ybx1-a positive regulator of CyclinA2/B1-and Nedd4l, to the con-
sequence of ubiquitination and degradation of Ybx1.”® Second,
circNfix acts as a sponge to absorb miR-214 which directly tar-
gets Gsk3p and promotes the expression of B-catenin to inhibit

angiogenesis.78
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- Highly expressed in foetal and neonatal heart, CircHipk3 can
() ™~ O o N
ey © N © 0 facilitate cardiomyogenesis and angiogenesis.”’ CircHipk3 could
o~ increase the stability of Notchl intracellular domain (N1CID) by
)
@ e = acetylation and prevent its degradation to stimulate CMs prolifer-
35 t ¢ . . . . .
o §_ s o ation.”? CircHipk3 also acts as a sponge for miR-133a to increase
[ < 3 ' ' y ' ' . L
g - - the expression level of connective tissue growth factor (CTGF), then
5 2 activates endothelial cells.”” The summary of LncRNA and CircRNA
iEh= 2 c . o in CMs proliferation are listed in Table 2.
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c © ° o
% ’; bt} °‘; Given the significance of non-coding RNA in regulation of CMs pro-
fé - § _&% E liferation, the therapeutic potential of non-coding RNAs has aroused
_;:'3 3 g 5 g extensive research interests. The first question is how to direct the
‘ ' , = o £ . . e e Lo .
N © non-coding RNAs into the specific tissue or cell to play their biologi-
.= s 2 cal roles? During the last two decades, viral particles were found to
° B F=Ee)
© § - _::C“ 3 N be effective tools to package plasmid containing therapeutic non-
= £ 9 . . . . .
- 2 5 '%o *g o8 coding RNAs. Besides, many oligonucleotides were also designed
o 0 o 2 S c e . .. -
e % ‘GEJ‘ E S ;g ° 2 and modified to enhance their affinity and stability and strengthen
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As a consequence, AAV9 is delivered through intracardiac injec-

tiOn.20'26'42'62'68’75’81 1'3)(1011

of AAV particles by a single dose were
employed in these articles.

The episomal circular form of recombinant AAV results in long
time expression ranging from days to months. AAV 9-mediated
cardiac-targeted delivery of miR-19a/19b soon after Ml injury pro-
vides long-term protection lasting from 7 days to 2-3 months after
injection.*? Intracardiac injection AAV9-anti-miR-99/100 or AAV9-
anti-Let-7a/c in the border of the infarcted area provides prolonged
cardiac protection for up to 90 days after Ml injury.62

Non-coding RNAs that inhibit CMs proliferation can also be
used as treatment through their shRNA packaged by AAV parti-
cles. Injection of AAV9-shcircNfix into the peri-infarct area of adult
mice resulted in significant improvement in the ejection fraction
pc»st-MI.78

In a previous study, adult mice subjected to Ml surgery were in-
jected with AAV9 vectors expressing hsa-miR-590 and hsa-miR-19%a
into peri-infarcted area. This resulted in improved cardiac function
from 12 days to 1-2 months after injection.20 However, in mammals,
this long-term expression of transgene may be cause detrimental
effects. Delivery of hsa-miR-199a through an AAV serotype 6 vec-
tor 1-month post-MlI, treated pigs showed marked improvements in
both global and regional contractility, increased muscle mass and
reduced scar size.8! It is worth noting that in pigs treated with the
miR-199a, although 30% showed a continuous improvement in car-
diac morphology and function with a recovery period lasting for two
months, 70% sudden died 7-8 weeks after MI.8! The electrocardio-
gram results revealed that the deaths were caused by accelerated
heart rate which led to ventricular fibrillation.' However, immune
response elicited by AAV injection may in human also hindering the

clinical use.®?

3.1.3 | Lentiviral-based gene delivery

Unlike adenovirus or AAV which possess DNA genome, lentivirus is
a kind of complex retrovirus. Compared to simple retroviruses, lenti-
virus genomes contain regulatory genes, auxillary genes and nuclear
location signal which help the lentivirus to enter the nuclear pore
and to integrate into host's genome.® Hence, lentivirus can be used
to transfect cells that do not undergo mitosis in vitro. However, ex-
pression of transgenes packaged in lentiviruses does not last long
in vivo. Single intracardiac injection of lentiviruses packaging anti-
miR-99/100 and anti-Let-7a/c into peri-infarcted region significantly
improved cardiac function 14 days after Ml but this beneficial effect

only lasted for short time.%?

3.2 | Oligonucleotides-based gene therapy

Although virus vectors are a powerful tool for expressing non-cod-
ing RNAs, several issues such as the short duration of expression,

risk of infecting other unintended organs and possibility of triggering

an immune response limit their clinical application. Because the ded-
ifferentiation of CMs is a prerequisite step determining the ability of
CM s to repair cardiac injuries, prolonged expression of pro-prolifer-

ating miRNAs may result in adverse effects.

3.2.1 | MIRNA mimics and lipid formulation

Synthetic oligonucleotides might be a more promising alternative.
This is because they produce prolonged proliferative effect without
long-term potential adverse effects.8 Up-regulation of some miR-
NAs that improve CMs proliferation using miRNA mimics maybe an
alternative approach to treat cardiovascular disease. MiRNA mim-
ics are double-strand, chemically modified oligonucleotides that
do not undergo natural miRNA biogenesis but have the same biol-
ogy function such as inhibiting the expression of target genes.8>8¢
Furthermore, 2' -O-methoxyethy of ribose, 5’ Cholesterol and phos-
phorothioates backbone modified miRNA agonist called agomir was
found to significantly improve the nuclease resistance and affinity
of mimics. Mice injected with miR-17-3p agomir through tail vein
were protected from adverse remodelling after cardiac I/R injury.3¢
Oligonucleotides are much smaller than biomacromolecules such as
proteins or ribonucleic acids, but they are bigger than some small
molecules (<500 Da) which can passively diffuse across cellular
membranes. Mimics or agomirs are larger than 14kDa and have nu-
merous charges. Therefore, to enhance their cellular uptake, they
should be packaged into some nanoparticles. Five kinds of lipid
formulations were used to deliver pro-proliferation miR-19%9a-3p
mimics. RNAIMAX was found to be the most effective (transfection
efficiency > 80%) and less toxic formulation.®* The expression level
of miRNA significantly increased 3 days after intracardiac injections
and the inhibition effect on their targets could maintain for 8-12
days.?4

Overexpression of miR302-367 cluster in adult mice heart re-
duced the scar formation following Ml injury but it did not improve
the heart function.?® This phenomenon may be caused by the per-
sistent expression of pro-proliferation miRNAs resulting in dediffer-
entiation of many CMs. Notably, transient expression of miR302b/c
achieved by tail-vein injection of mimics and RNALancerll neutral
lipid formulation for 7 consecutive days markedly reduced scar for-
mation, stimulated CMs proliferation, improved angiogenesis and
heart function 50 days after MmI.2

Intravenous tail-vein injection of miR-19a/19b mimics, embed-
ded in neutral lipid emulsion RNALancerll and RNAiMax, induced
CMs proliferation and stimulated cardiac regeneration following
M1.*2 miRNA mimics can enter CMs 12 hours after injection and the
expression level of miR-19a/b was detected 4 days after injection
but were undetectable at 1 month later.*?

Lipid nanoparticle delivery of miR-708 using RNALancerll in-
jected via tail vein protected against cardiac injury induced by iso-

proterenol.®”

The expression level of miR-708 was up-regulated for
16 days which is sufficient to inhibit hypertrophy and reduce fibrosis

for 5-10 days following 1SO treatment.®’



DONG ET AL.

3.2.2 | Locked nucleic acid

Locked nucleic acid (LNA) means the ribose sugar is locked in a C3’-
endo conformation by the introduction of a 2-O-, 4-C-methylene
bridge to form 2’ sugar modification.8® This modification improved
the affinity of complementary RNA. A previous study injected LNA-
miR-294-3p mimic formulated with RNALancerll into the heart once
soon after Ml injury.3? They found that expression level of miR-
294-3p significantly up-regulated two days after injection. This was
accompanied by increased CMs proliferation but the protective ef-
fect only lasted for 2-3 weeks as the infarct size was not reduced
8 weeks after Ml injury.®?

LNA can also be used to inhibit miRNAs. This is achieved by com-
plementary base pairing to form a DNA-RNA hybrid that activates
RNase H-dependent degradation of target RNA.%” Injection of LNA-
based anti-miR-34a through tail vain down-regulated the expression
level of miR-34a for more than 7 days and improved adult heart
function, delayed remodelling and reduced the formation of fibrosis
scars 7 days after Ml injury.®°

3.2.3 | Hydrogel-based delivery

Another approach to deliver cholesterol-modified miR-302 using
shear-thinning, injectable hydrogels based on the guest-host interac-
tion of modified hyaluronic acid (HA) by intracardiac injection after
MI could improve heart function for 4 weeks.?*

A biocompatible injectable gel composed of gelatin and silicate
was used to deliver viral particles.?® The gel prevented the viral parti-
cles from being rapidly metabolized by the beating heart and allowed
the slow release of the particles from the gel to enhance therapeutic
effects.?® Simultaneous injection of gel and AAV-miR-1825 resulted
in significant reduction in scar size, promoted peri-infarct region
adult CMs proliferation and improved overall cardiac function up to
28 days after MI.2° The detail of miRNAs therapy is listed in Table 3.

4 | CONCLUSION

The limited capacity of the adult CMs to regenerate after cardiac
injury is the major obstacle for heart repair. Recently, non-coding
RNAs are emerging as a promising player in boosting cardiac prolif-
eration and regeneration in heart diseases. In this review, we discuss
recent non-coding RNAs associated with cardiac proliferation and
potential therapeutic potential. Due to CM proliferation is transient
and rare, more precise and powerful tools, such as lineage tracing

strategy, 5,24

would be useful for dynamically capturing the CMs pro-
liferation events and better understanding the mechanism for the
regeneration field. In addition, the barrier between basic research
and clinical implication requires more effort to overcome. RNA-
based gene therapy works well, however, there are many barriers
and limitations, such as pharmacokinetics and pharmacodynamics,

hamper the progress. New delivery system, such as extracellular

WILEY--2Z

7192 and synthetic hydrogel, would improve

vesicles’® and exosomes,
RNA-based therapeutic potential. There are tremendous non-coding
RNAs that haven't been annotated, therefore, the perspective on
cardiac regeneration stimulated by non-coding RNAs, advances us
deeper understanding the world of non-coding RNA and novel clini-

cal therapeutic strategies for heart diseases.
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