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Circadian networks in human embryonic stem
cell-derived cardiomyocytes
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Abstract

Cell-autonomous circadian oscillations strongly influence tissue
physiology and pathophysiology of peripheral organs including the
heart, in which the circadian clock is known to determine cardiac
metabolism and the outcome of for instance ischemic stress.
Human pluripotent stem cells represent a powerful tool to study
developmental processes in vitro, but the extent to which human
embryonic stem (ES) cell-derived cardiomyocytes establish circa-
dian rhythmicity in the absence of a systemic context is unknown.
Here we demonstrate that while undifferentiated human ES cells
do not possess an intrinsic functional clock, oscillatory expression
of known core clock genes emerges spontaneously during directed
cardiac differentiation. We identify a set of clock-controlled output
genes that contain an oscillatory network of stress-related tran-
scripts. Furthermore, we demonstrate that this network results in
a time-dependent functional response to doxorubicin, a frequently
used anti-cancer drug with known cardiotoxic side effects. Taken
together, our data provide a framework from which the effect of
oscillatory gene expression on cardiomyocyte physiology can be
modeled in vitro, and demonstrate the influence of a functional
clock on experimental outcome.

Keywords cardiomyocytes; circadian rhythms; human embryonic stem cells

Subject Categories Development & Differentiation; Stem Cells

DOI 10.15252/embr.201743897 | Received 3 January 2017 | Revised 29 March

2017 | Accepted 10 April 2017 | Published online 23 May 2017

EMBO Reports (2017) 18: 1199–1212

Introduction

The circadian clock is a conserved time-keeping system that regu-

lates numerous body features such as behavior, metabolism, body

temperature, tissue regeneration, and organ homeostasis in a diur-

nal manner [1]. In the heart, the role of 24-h rhythmicity is illus-

trated by oscillations in heart rate, blood pressure, and cardiac

output [2–6]. The circadian clock comprises a central clock in the

brain (the suprachiasmatic nucleus (SCN)) and peripheral clocks

that are present in almost all organs. The SCN is mainly entrained

by light and subsequently synchronizes the peripheral clocks via

neural and humoral factors [7]. Interestingly, peripheral clocks func-

tion in a cell-autonomous manner. When ablating the SCN, these

clocks remain functional and even synchronized when subjected to

a restricted feeding regime [8,9]. Autonomous rhythmicity is under-

scored by the persistence of circadian rhythms in in vitro cultured

cells.

The molecular mechanism that underlies the core clock machin-

ery consists of a transcriptional/translational feedback loop in

which a heterodimer of BMAL1 and CLOCK drives rhythmic tran-

scription of downstream genes. These include other core clock

genes (period 1 (PER1), PER2, PER3, cryptochrome 1 (CRY1), CRY2,

RORa/b, REV-ERBa/b) as well as clock-controlled genes (CCGs) that

determine circadian organ physiology in a tissue-specific manner. In

the murine heart, ~6–12% of the expressed genes have a circadian

expression pattern [10–14]. Rhythmicity is essential for human

tissue homeostasis as well, as highlighted by the fact that genetic or

environmental (e.g., shift-work) perturbation of the circadian clock

results in a vast array of malignancies such as sleep disorders,

inflammation, cancer [15], impairment of regenerative capacity

[16,17], metabolic disorders [18–20], and cardiovascular diseases

[13,21–24]. In addition, the onset of multiple malicious cardiac

events is known to follow a diurnal pattern. Myocardial infarction

[25,26], arrhythmias [27,28], and sudden cardiac death [29,30]

show a higher incidence in the sleep-to-wake transition in humans.

The important role of circadian rhythmicity in cardiac injury and

regeneration is further solidified by genetic experiments in mice in

which a cardiomyocyte-specific mutation of the Clock gene has been

shown to blunt the heart’s response to induced ischemic damage

[31]. Accordingly, clinical studies revealed that infarcts were larger

and led to increased reduction in cardiac function when occurring in

the sleep-to-wake transition [32–34].

Human pluripotent stem cell-derived cardiomyocytes have

emerged as a potential cellular source for replacement therapies. In

1 Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
2 Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
3 Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
4 Netherlands Heart Institute, Utrecht, The Netherlands

*Corresponding author. Tel: +31 302121800; E-mail: p.dierickx@hubrecht.eu
**Corresponding author. Tel: +31 887555555; E-mail: l.w.vanlaake@umcutrecht.nl
†These authors contributed equally to this work

ª 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license EMBO reports Vol 18 | No 7 | 2017 1199

http://orcid.org/0000-0002-1709-1477
http://orcid.org/0000-0002-1709-1477
http://orcid.org/0000-0002-1709-1477
http://orcid.org/0000-0003-3592-4353
http://orcid.org/0000-0003-3592-4353
http://orcid.org/0000-0003-3592-4353
http://orcid.org/0000-0002-5027-0661
http://orcid.org/0000-0002-5027-0661
http://orcid.org/0000-0002-5027-0661


addition, human ES cell-derived as well as induced pluripotent stem

cell-derived cardiomyocytes are increasingly used for disease model-

ing and drug testing [35]. While circadian rhythms play an essential

role in cardiomyocyte function in vivo, nothing is known about

circadian control of gene expression in pluripotent stem cell-derived

cardiomyocytes, which are often used to model cardiac function and

disease.

Here we analyze temporal clock gene expression networks in

human ES cells and ES cell-derived cardiomyocytes. We demon-

strate that circadian rhythmicity is absent in human ES cells and is

established progressively during directed cardiac differentiation.

The identified oscillatory networks are shown to significantly influ-

ence the function of human ES cell-derived cardiomyocytes and

determine their response to externally applied stressors. Our find-

ings underscore that circadian rhythmicity can affect experimental

outcome, which may have important ramifications for processes

such as timed cell-based therapy.

Results

Human embryonic stem cells express clock genes in a
non-oscillatory manner

Nearly all cells in the human body possess a functional clock as

indicated by circadian rhythmicity of core clock gene expression.

However, whether human embryonic stem (ES) cells display a func-

tional circadian clock is unknown. Therefore, we compared global

expression levels of six core clock genes ARNTL (coding for and

henceforth referred to as BMAL1), PER2, CRY1, CRY2, CLOCK, and

NR1D1 between pluripotent human ES cells and differentiated

human osteosarcoma U2OS cells, a cell line known to possess a

functional clock as confirmed here by anti-phasic Bmal1-dLuc and

Per2-dLuc signal after transduction of promoter-based lentiviral luci-

ferase constructs [36,37] (Fig 1A and B). Transcripts of all genes

could be detected in both cell types, with five out of six core clock

genes having higher expression levels in U2OS cells compared to

human ES cells (Student’s t-test, P < 0.05; Fig 1C). Only CRY1

showed a trend toward higher expression in human ES cells (Stu-

dent’s t-test, P = 0.0506; Fig 1C), which is in line with previously

reported observations in mouse ES and NIH3T3 cells [38]. Protein

levels of BMAL1, CRY1, and CLOCK were detected by Western blot

(Fig 1D, left and Fig EV1) at corresponding levels to their mRNA

transcripts (Fig 1D, right). From this, we conclude that while core

clock genes are expressed and translated into proteins in human ES

cells, this occurs with a different stoichiometry in comparison with

U2OS cells and most likely also other differentiated cell types.

The presence of core clock proteins in human ES cells led us

to investigate their possible rhythmic expression over time. To

this end, human ES cells were synchronized with forskolin [39],

and BMAL1 and PER2 mRNA levels were measured every 4 h over

a period of 48 h using qRT–PCR. Significance of 24-h rhythmicity

was assessed using RAIN, a nonparametric method detecting arbi-

trary wave forms in biological data [40]. No apparent oscillatory

expression pattern could be identified over the course of 2 days

(RAIN, BMAL1, P > 0.99 and PER2, P = 0.97; Fig 1E). Additionally,

to assess BMAL1 and PER2 transcription over time in human

ES cells, we transduced human ES cells with Bmal1- and

Per2-promoter-based lentiviral luciferase constructs [36,37]. After

synchronization, no rhythmic bioluminescence was observed

(Fig 1F). Therefore, clock genes are expressed in human ES cells,

but in a non-circadian manner.

Human embryonic stem cell differentiation
toward cardiomyocytes

Multi-lineage differentiation of human ES cells has proven extremely

valuable to understand developmental processes as well as to

provide clinically relevant populations for cell-based therapy and

drug testing [41]. To assess the presence of a functional clock upon

differentiation, circadian rhythmicity was analyzed at two additional

stages (D15 and D30) during directed differentiation of human ES

cells toward cardiomyocytes (Fig 2A). To allow for the identification

of early cardiac cells, we made use of a NKX2-5-eGFP (Homeobox

protein NKX2-5-eGFP) reporter human ES cell line [42]. Cardiac dif-

ferentiation of human ES cells typically yields significant contribu-

tion of cardiomyocytes to the total population of cells [43–45],

which was also seen here with ~50% cardiomyocytes around D15

as defined by FACS for cTNNT2 (cardiac Troponin T) (Fig EV2A).

Different stages were characterized by clear changes in marker gene

expression (Fig 2A). At day 0 (D0), cells expressed the pluripotency

markers NANOG and POU5F1, both at the mRNA and protein level

(Figs 2A and B, and EV2B). Upon differentiation, pluripotency

factors quickly decreased and the expression of cardiac markers,

such as NKX2-5 and ACTC1 (actin alpha cardiac muscle 1), was

observed in both (D15 and D30) spontaneously beating cultures as

measured by qRT–PCR (Fig 2A). Immunostainings for a-sarcomeric

ACTIN and cTNNT2 confirmed sarcomeric structures at D15 and

D30 (Fig 2B). Additionally, staining for MEF2C (Myocyte Enhancer

Factor 2C) and GFP, to assess the presence of NKX2-5-eGFP-positive

cells, revealed the abundance of cardiomyocytes at D15 and D30.

While the early cardiomyocyte progenitor marker ISL1 (insulin gene

enhancer protein ISL-1) was highly expressed at D15, maturation

markers such as KCNJ2 (inward rectifier potassium channel 2) and

SERCA2A (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase)

[44,46] were the highest at D30 (Fig 2A). These results validate the

in vitro transcriptomic maturation of these cells between D15 and

D30, and confirm that the different stages represent distinct cardiac

states that can be used to assess the presence of a functional clock

across the transition from human ES cells to cardiomyocytes.

Rhythmic expression of clock genes emerges during
cardiac differentiation

Whether and when human ES cells develop a functional clock upon

differentiation, in the absence of systemic cues, is unknown. To

investigate the possibility of an emerging clock, we compared

mRNA levels of BMAL1, PER2, and CLOCK in D0 human ES cells

and D15 and D30 human ES cell-derived cardiac cells. Even though

BMAL1, PER2, and CLOCK were expressed at all stages, their expres-

sion increased significantly from D0 to D15 and/or D30 (ANOVA

with Bonferroni correction, P < 0.05; Fig 3A). This indicates that

core clock gene expression levels gradually increase during directed

cardiac differentiation.

To assess rhythmicity of clock gene expression at D15 and D30,

cells were synchronized using dexamethasone [47] and three
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independent RNA samples were collected every 4 h over a period of

48 h (Fig EV3). BMAL1 and PER2 levels were analyzed by qRT–PCR

to determine whether their expression oscillated in an anti-phasic

manner, a hallmark of a functional molecular circadian clock. Simi-

lar to undifferentiated human ES cells (Fig 1E), no clear circadian

pattern was observed in the early stage D15 human ES cell-derived

cardiomyocytes (D15; RAIN, P = 0.095, P = 0.68 for BMAL1 and

PER2, respectively; Fig 3B). Matured cardiac cells, however, showed

significant oscillations for PER2 but not BMAL1 (D30; RAIN,

P = 1.4E-8 and P = 0.81; Fig 3B). To further validate the emergence

of a functional clock, cultures were transduced with Bmal1-dLuc

and Per2-dLuc lentiviral reporters. At D15, after synchronization, a

12

8

4

0
0 12 24 36

BMAL1 - ns
PER2 - ns

48

Hours after synchronization

E

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n D0 Bmal1-dLuc D0 Per2-dLuc

Hours after synchronization

0

1

2

3

1

2

3

F

R
el

at
iv

e 
bi

ol
um

in
es

ce
nc

e

0 12 24 36 48 60 72 0 12 24 36 48 60 72

D

A
U2OS Bmal1-dLuc

0 12 24 36 48 60 72 84 96

0.0

0.5

1.0

1.5

12 24 36 48 60 72 84 960

0.5

1.0

1.5 U2OS Per2-dLuc

Hours after synchronization

R
el

at
iv

e 
bi

ol
um

in
es

ce
nc

e

Hours after synchronization

U2OS Bmal1-dLuc

U2OS Per2-dLuc

12 24 36 48 60 72 84 96

-1 .0

-0 .5

0.0

0.5

1.0

R
el

at
iv

e 
bi

ol
um

in
es

ce
nc

e

B

BMAL1 PER2 CRY1 CRY2 CLOCK NR1D1
0

1

2

3

4

* ** ns * *** *

hESCs
U2OS

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

C

25

50

75

100

R
el

at
iv

e 
pr

ot
ei

n 
le

v e
ls

0
BMAL1 CRY1 CLOCK

hESCs hESCs hESCsU2OS U2OS U2OS

BMAL1 CRY1 CLOCK

β -ACTIN42

kDa

70

100

Figure 1. Non-oscillatory expression of clock genes in human ES cells.

A Raw lentiviral promoter-based luciferase reporter bioluminescence in U2OS cells after dexamethasone synchronization. Bioluminescence was measured with a
LumiCycle32. Values are relative to T0.

B Detrended bioluminescent signals measured in (A).
C BMAL1, PER2, CRY1, CRY2, CLOCK, and NR1D1 expression levels in human ES cells compared to U2OS cells as determined by qRT–PCR. Expression levels were

normalized to PPIA and compared between cell types using an unpaired two-tailed Student’s t-test (ns: not significant, *P < 0.05, **P < 0.005, and ***P < 0.0005).
Data are represented as mean � s.e.m. of three independent replicates.

D Western blot for BMAL1, CRY1, and CLOCK. Protein levels were quantified and normalized to b-ACTIN.
E qRT–PCR analysis of BMAL1 and PER2 expression over 48 h at a 4-h interval in human ES cells. Circadian oscillations were analyzed using the RAIN algorithm, and

the significance of rhythmicity across 48 h is indicated (ns: not significant). Data are represented as mean � s.e.m. of three independent replicates.
F Bmal1-dLuc and Per2-dLuc values in synchronized human ES cells across 76 h measured by LumiCycle32. Representative tracks are shown. Values are relative to T0.
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small induction of oscillatory Per2-based luciferase signal could be

detected (Fig 3C), which is in line with previously described obser-

vations of Per2 as an early oscillator upon retinoic acid induced dif-

ferentiation in mouse ES cells [48]. In D30 synchronized

populations, typical anti-phasic oscillatory Per2- and Bmal1-driven

bioluminescence levels were observed, which confirms the presence

of a clock at D30 (Figs 3D and E, and EV4A and B).

In order to verify the contribution of cardiomyocytes to the

observed oscillatory pattern in our cardiac cultures, NKX2-5-eGFP+

cells were purified via FACS. After sorting, strong Bmal1-dLuc and

Per2-dLuc rhythmicity was detected in synchronized human ES cell-

derived cardiomyocytes (Figs 3F and EV4C and D). In addition to

these observations in a sorted population, circadian Per2-dLuc

patterns were also found in bioluminescence recordings of single

NKX2-5-eGFP+ human ES-derived cardiomyocytes (Figs 3G and H,

and EV4D), which further confirms the presence of a functional

clock in D30 cardiomyocytes. To question whether circadian rhyth-

micity would persist during culture, 45 days old cardiac cultures
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Figure 2. Characterization of distinct stages of cardiac differentiation.

A Schematic of the directed cardiac differentiation and the three different stages used in this study. hESCs: human embryonic stem cells. CM: cardiomyocyte. Below are
mRNA expression levels of pluripotency and cardiac markers as measured by qRT–PCR. Expression levels were normalized to a non-oscillatory housekeeping gene
(PPIA). Data are represented as mean � s.e.m. of three independent replicates.

B Immunostaining for pluripotency markers OCT4 and NANOG (yellow) in human ES cells. cTNNT2 and sarcomeric actin (red) stainings reveal clear sarcomeric
structures at all cardiac stages. Cardiomyocyte nuclei were stained for MEF2C (red), NKX2-5-eGFP-positive cells were stained with anti-GFP (green) and nuclei with
Hoechst (blue).
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were analyzed using real-time reporter-based luciferase measure-

ments. Significant Per2- and Bmal1-dLuc oscillations were observed

(Fig EV4E). These results indicate that human ES cells develop a

functional clock upon directed cardiac differentiation, with robust

oscillations at D30 that persist in older in vitro cultures.

Human ES cell-derived cardiomyocytes show a network of stress-
related clock output genes

A functional circadian clock translates into the oscillatory expres-

sion of clock-controlled genes (CCGs). Gene expression profiling in
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numerous cell types and tissues has shown that around 3–16% of

the transcriptome exhibits circadian rhythmicity [14]. Conform dif-

fering physiological demands of organs, oscillating output genes

vary per tissue. For the murine heart, ~6–12% of the expressed

genes were shown to oscillate in a 24-h manner [10–14]. To identify

CCGs during in vitro cardiomyocyte differentiation, genome-wide

mRNA levels were assessed by mRNA sequencing of purified RNA

using CEL-Seq, a previously described RNA profiling technique

based on sequencing the 30UTR of mRNAs, generating one read per

transcript [49]. We first compared the overall transcriptional profile

of matured cardiac cells (D30) to that of human ES cells and D15

cultures 48 h post-synchronization (Fig EV5A and Table EV1).

Lowly expressed genes are typically not picked up robustly when

analyzing highly multiplexed CEL-Seq data at relatively low

sequencing depth. To control for this, genes with an average of < 3

RPM (reads per million) across all time points were not used for

further analysis. Based on ~14,000 genes with an expression level of

more than 3 RPM at one of the stages, Spearman’s rank correlation

coefficients (q) showed that transcriptional programs were substan-

tially different between cardiac cells at D15 and D30 (q = 0.53;

Fig EV5A–C). Observed changes between states were consistent

between our qRT–PCR and CEL-Seq analyses, as indicated for

several marker genes, which highlights the reliability of our

sequencing datasets (Figs 2A and EV5D). Indeed, increased MYH7/

MYH6 levels and multiple other markers (e.g., MYL2, PLN, and

KCNJ2) confirm in vitro cardiomyocyte maturation as well as gener-

ally higher clock gene expression across differentiation (Fig EV5C

and D).

To assess the possible presence of oscillatory transcripts at D15

and the identity of CCGs in D30 cardiac cells, in which a functional

clock was found (Fig 3), three independent RNA samples were

collected every 4 h over a period of 48 h and sequenced using CEL-

Seq (Fig EV3 and Table EV1). Around 10,000 genes had an average

expression of more than 3 RPM in both D15 and D30 (Fig EV3) and

were screened for oscillatory expression over 48 h as determined by

JTK-cycle [50]. This revealed 643 and 757 oscillating transcripts

(P < 0.05) at D15 and D30, respectively (Fig 4A and Table EV2).

The oscillatory transcripts of D15 could result from a starting clock

as indicated by small circadian Per2-dLuc signals at this time point

(Fig 3C), but are mostly distinct from the CCGs that were found at

D30 (Fig 4B). This limited fraction of overlap might be an underrep-

resentation, as detecting oscillatory transcription of genes has been

shown to rely strongly on sequencing depth [51]. Relatively low

expression also explains the absence of core clock genes from the

rhythmic transcripts (Fig EV5D). Indeed, in our data for both D15

and D30, oscillatory genes had on average more coverage than non-

oscillatory transcripts (Fig EV5E) and shared oscillators between

D15 and D30 (n = 80) had higher expression levels than stage-

specific oscillators (Fig EV5F). A fraction of the oscillators (D15

only, D30 only and shared) was found to overlap known mouse

cardiac CCGs [14] (Fig 4C) including genes with a known important

role in cardiomyocytes (COL4A1, SPON2, SLC23A2, AQP1, and

STC1; Fig 4D) [52–55]. These data thus contain common rhythmi-

cally expressed clock-controlled genes between mouse hearts and

human ES cell-derived cardiomyocytes.

STRING protein–protein analysis [56] on D30 oscillators that

were also found to have circadian expression in mouse hearts

(n = 135; Table EV2) revealed a putative, highly interactive network

(Fig 5A). D15 rhythmic transcripts that overlap mouse heart oscilla-

tors (n = 98), however, did not show such interactions (Fig 5B).

Gene ontology (GO) analysis for these oscillators showed enrich-

ment for extracellular matrix formation terms at D15, while D30

oscillators were enriched for cardiac development and stress

response terms (Fig 5A and B). Interestingly, the D30 interaction

network was centered around UBC (ubiquitin C) (Fig 5A), one of

the four genes encoding for ubiquitin in mammals and one of the

most abundant proteins in eukaryotic cells [57]. Although Ubc is

expressed in multiple tissues in mice (http://biogps.org/) [58], it

has only been shown to oscillate in the murine heart [52] and

(skeletal) muscle [14] (JTK, P = 3.32E-6 and P = 5.97E-7, respec-

tively; Fig 5C). This suggests that Ubc is a heart- and muscle-specific

CCG in vivo, and concurs with our identification of UBC as a circa-

dian CCG in in vitro D30 human ES cell-derived cardiomyocytes

(D30, JTK, P = 0.0032; Fig 5D). Among the putative UBC interacting

partners, several genes were known oscillators in the murine heart

according to the CircaDB database (http://circadb.hogeneschlab.

org/) [11,14,59]. Interestingly, many of the oscillating UBC interac-

tion partners in D30 human ES cell-derived cardiomyocytes were

involved in cardiac function (PLN) [60], stress response (BNIP3,

RRAGA, DNAJA1 and HSPH1) [61], hypertrophy (RGS2) [62], and

even contained therapeutic targets such as TSPO (Translocator

protein) [63] (Fig 5D). This indicates that the oscillators that were

identified here possibly contribute to multiple molecular mecha-

nisms with a circadian clock dependency, but could also suggest a

▸Figure 3. Rhythmic clock gene expression emerges in (matured) cardiac cultures.

A BMAL1, PER2, and CLOCK expression levels at D0, D15, and D30 during directed cardiac differentiation as determined using qRT–PCR. Data are represented as
mean � s.e.m. of three independent replicates. Significant expression differences were tested by one-way ANOVA, followed by a Bonferroni post hoc test (ns: not
significant, *P < 0.05, **P < 0.005, ***P < 0.0005).

B qRT–PCR analysis of BMAL1 and PER2 expression over 48 h at a 4-h interval in cardiac cells at D15. Expression levels in (A) and (B) were normalized to PPIA. Data are
represented as mean � s.e.m. of three independent replicates. Significance of rhythmicity across 48 h was analyzed using the RAIN algorithm and is indicated (ns:
not significant, ***P < 0.0005).

C Promoter-based destabilized luciferase (dLuc) reporter assay of the Bmal1 and Per2 promoter in synchronized cardiac cells at D15. Values are relative to T0.
Measurements were performed using a LumiCycle32.

D Similar analysis as in (C) for D30.
E Detrended Bmal1-dLuc and Per2-dLuc luciferase signal measured in (D).
F Detrended Bmal1-dLuc and Per2-dLuc bioluminescence in NKX2-5-eGFP+ sorted and synchronized human ES cell-derived cardiomyocytes at D30.
G Single-cell analysis of Per2-dLuc bioluminescence in sorted eGFP-positive and synchronized D30 human ES cell-derived cardiomyocytes.
H Representative Per2-dLuc signal in five single D30 human ES cell-derived cardiomyocytes over the course of 48 h.

Data information: Measurements in (F–H) were performed with a LV200 microscope.

◀
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role for circadian processes in pathophysiological events such as

ischemic damage after myocardial infarction.

Human ES cell-derived cardiomyocytes show rhythmicity in
doxorubicin-induced apoptosis

Mouse hearts show circadian rhythmicity in their tolerance to

ischemia and reperfusion after myocardial infarction [31]. In

humans, a similar time of the day pattern in the onset and severity of

myocardial infarction has been described [25,32–34,64,65]. The

combination of time-dependent pathophysiology and the enrichment

of oscillating stress-associated genes (around UBC) in our CEL-Seq

datasets prompted us to assess whether in vitro derived cardiac cells

would show a functional circadian reaction to induced stress. The

anthracycline doxorubicin is a widely used anti-cancer drug that is

often administered in the clinic, but is also known to have severe
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Figure 4. Identification of oscillatory transcripts at D15 and D30.

A 643 and 757 oscillators for D15 and D30 cultures, as analyzed using JTK-cycle (adj. P < 0.05). Heatmaps represent z-normalized RPM values of the average of three
independent replicates. Oscillatory genes were ranked by their phase of expression and visualized using Java TreeView.

B Venn diagram of JTK-cycle detected oscillators for D15 and D30.
C Fraction of JTK-cycle detected oscillators that were previously found to be rhythmically expressed in mouse hearts [14].
D Examples of overlapping oscillators between D15, D30 cardiac cells and mouse hearts. Average log2 RPM read counts of three replicates, smoothened over 2 time

points � s.e.m., were plotted. Significance of rhythmicity across 48 h was analyzed using the JTK-cycle algorithm (* JTK P < 0.05, ** JTK P < 0.005, and *** JTK P < 0.0005).

◀ Figure 5. Circadian stress network results in time-dependent apoptotic response of human ES cell-derived cardiac cultures.

A STRING interaction network of overlapping oscillators between D30 cardiac cells and mouse hearts with corresponding GO analysis. Genes that oscillate at both D15
and D30 are depicted in pink. Mouse heart oscillators were deducted from Zhang et al [14].

B Same analysis as in (A) for D15 oscillators.
C Ubc mRNA oscillation in mouse hearts and skeletal muscle. Data were obtained from CircaDB (http://circadb.hogeneschlab.org/, deducted from [14,83]). Corresponding

CircaDB P-values are indicated.
D Expression levels of four D30 oscillatory genes (UBC, RGS2, PLN, and TSPO) across 48 h. Average log2 RPM CEL-Seq counts of three replicates were plotted for D15 and

D30 and smoothened over two time points � s.e.m. Significance of rhythmicity across 48 h was analyzed using the JTK-cycle algorithm (ns: not significant; * JTK
P < 0.05, ** JTK P < 0.005, and *** JTK P < 0.0005).

E Apoptosis, as measured by caspase 3/7 activity, after doxorubicin administration in D15 and D30 human ES cell-derived cardiac cells across all samples from (F) and
(G). Bottom and top of the boxes are the 25th and 75th percentiles. The line within the boxes represents the median and whiskers denote the minimum and maximum
values. The effect of doxorubicin versus DMSO was tested using a Mann–Whitney U-test (***P < 0.0005).

F Apoptosis measured with 6-h intervals in synchronized D15 cultures after administration of doxorubicin (orange) and DMSO as control (black) for 6 h. Data are represented
as the mean � s.e.m. of three independent replicates. Significance of rhythmicity across 48 h was analyzed using the RAIN algorithm and is indicated (ns: not significant).

G Same as in (F) for D30 cultures with the doxorubicin response depicted in red (RAIN, ns: not significant and *P < 0.05). Data are represented as the mean � s.e.m. of
three independent replicates.
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cardiotoxic side effects [66,67]. These effects are recapitulated in

in vitro human ES cell-derived cardiomyocytes in which doxorubicin

is known to induce apoptosis and has proven to be a good model for

induced cardiotoxicity [68,69]. To determine whether the sensitivity

of human ES cell-derived cardiac cells to doxorubicin-induced apop-

tosis displays an oscillatory response, we synchronized cultures at

D15 and D30 and administered doxorubicin (10 lM) every 6 h over

the course of 48 h (see Materials and Methods). A marked induction

of apoptosis was found at both stages, as indicated by elevated active

caspase 3/7 levels over control DMSO-treated samples (Mann–

Whitney U-test, P < 0.0005 for D15 and D30; Fig 5E), with matured

D30 cells being more sensitive to doxorubicin than D15 cultures

(P < 0.05). Interestingly, the strength of the apoptotic response

demonstrated a significant circadian pattern at D30, but not D15

(RAIN, P < 0.05 and P = 0.85 for D30 and D15, respectively; Fig 5F

and G), which reveals the functional consequences of a circadian

clock in cardiomyocytes. These results highlight the potential of

reducing cardiotoxic side effects by the use of time-based cancer

therapy, but also indicate that taking diurnal rhythmicity into

account could possibly improve other treatment strategies.

Discussion

Circadian rhythmicity is crucial to heart function, but also influ-

ences pathophysiology as indicated by, for instance, diurnal

rhythmicity of cardiac damage after infarction [25,31–34,64,65].

As human ES cell-derived cardiomyocytes are emerging as a

powerful tool to model developmental and disease processes as

well as being a potential cellular source for regenerative thera-

pies, we examined the presence and possible implications of a

functional clock in human ES cells and their cardiac derivatives.

While human ES cells do express core clock genes, no circadian

clock was observed. Upon differentiation toward cardiomyocytes

however, a functional core clock pathway was gradually

established (Fig 6) as determined by robust anti-phasic oscilla-

tions of BMAL1 and PER2. This work is the first demonstration of

a functional clock in human ES cell-derived (cardiac) cells and

may serve as a paradigm for the emergence of diurnal rhythms in

other human pluripotent stem cell-derived cell types. At D30, 757

CCGs were identified, 18% of which are known to oscillate in the

murine heart. Importantly, our data uncover additional transcripts

with specific oscillatory behavior in human ES cell-derived

cardiomyocytes. As some of these newly identified oscillators are

known to play an important role in human heart physiology

(PLN, KCNE4, TSPO, CAV1, RGS2), this stresses the importance of

using human cells for modeling cardiovascular processes and

disease.

Importantly, a defined set of the oscillators could clearly be

linked to stress response, which was confirmed by a time-

dependent response to doxorubicin administration. This highlights

the possible beneficial effects of drug administration at a specific

time of the day to decrease cardiotoxic side effects. Notably, next to

explicit clock synchronization steps, such as with forskolin or

dexamethasone, simple medium changes can also reset the internal

clock of cell cultures [70]. Our results demonstrate that circadian

mechanisms can influence cellular response to external stressors

and thus is an important factor to consider when interpreting exper-

imental results. Our data stress the importance of testing

compounds in a time-controlled manner when using in vitro

cultured cardiomyocytes, and may also extent to other ES cell-based

disease models.

Materials and Methods

ESC culture and cardiomyocyte differentiation

NKX2-5-eGFP human ES cells [42] (stable reporter line generated

from wild-type HES3 cells [71]) were cultured in Essential 8TM

medium (Gibco) on Matrigel (BD, Corning) without penicillin/

streptomycin. Cells were differentiated in a monolayer toward

cardiomyocytes as previously described [45]. In short, human ES

cells were cultured in E8 until 60% confluent. Cells were then

supplemented with 1% DMSO enriched E8 medium for 24 h. On

D0, cells were put on BPEL medium supplemented with Activin A

(20 ng/ml, R&D Systems), BMP4 (20 ng/ml, R&D Systems), and

CHIR99021 (1.5 lM, Axon Medchem). At D3, medium was changed

to BPEL with XAV939 (5 lM, Tocris), and on D6, BPEL without any

supplements was used. BPEL medium: IMDM, no phenol red

(Gibco) and F12 Ham’s F12 nutrient Mix (Gibco) in a 1:1 ratio

supplemented with 5% (v/v) PFHM-II (Gibco), 0.25% (w/v) BSA,

1% (v/v) Chemically Defined Lipid Concentrate (Gibco), 0.1%

ITS-X (Gibco), 450 lM a-MTG (Sigma), 2 mM GlutaMax, 50 lg/ml

L-ascorbic acid 2-phosphate (Sigma), and 0.25% penicillin/

streptomycin (10,000 U/ml, Gibco).

Lentiviral constructs and transduction

Lentiviral plasmids harboring luciferase reporters of the Per2 and

Bmal1 promoters were described previously and kindly provided by

Prof. Dr. Liu [36,37,72]. Viral particles were concentrated via ultra-

centrifugation after three harvests in HEK293T cells. Cells were

+ Doxorubicin

Oscillatory output genes

D0 hESCs D15 CMs D30 CMs

Oscillatory cardiac response

Functional clock

Directed cardiac differentiation

Figure 6. Schematic representation of the emergence and consequences
of circadian rhythmicity during directed cardiac differentiation of human
ES cells.

hESCs: human ES cells. CMs: cardiomyocytes.
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transduced with concentrated Bmal1-dLuc or Per2-dLuc lentivirus

2 days before circadian bioluminescent measurements.

Bioluminescent recording and data analysis

Human ES cell-derived cardiac cells were differentiated for up to

45 days and transduced with lentiviral reporters at described time

points after synchronization with 100 nM dexamethasone [47] for

2 h. Subsequently, medium was changed to recording medium

[BPEL, 10 mM HEPES, 100 lM D-Luciferin Potassium Salt

(Promega)]. Human ES cells were cultured in E8 medium and

synchronized for 2 h with forskolin [39]. Forskolin was chosen as a

synchronizing agent for human ES cells, since dexamethasone has

been implemented in multiple stem cell differentiation protocols and

might therefore induce premature differentiation [73–78]. Subse-

quently, medium was changed to ES recording medium (E8, 10 mM

HEPES, 100 lM D-Luciferin Potassium Salt (Promega)). Culture

dishes were sealed with high vacuum grease (Dow Corning) and

monitored via the use of a LumiCycle32 device (Actimetrics) at

37°C. Bioluminescence from each dish was continuously recorded

(integrated signal of 70 s with intervals of 10 min). Raw data

(counts/s) were baseline subtracted (polynomial order 3).

Microscopic real-time bioluminescence analysis

Human ES cells were differentiated for up to 30 days and trans-

duced with Bmal1-or Per2-dLuc lentivirus 2 days before recording.

Bioluminescence was assessed with an LV200 microscope (Olym-

pus) in a humidified chamber under 5% CO2, at 37°C. Biolumines-

cence was detected for multiple consecutive days, using an EM CCD

camera (Hamamatsu), with exposure times of 1 h. Image series

were analyzed in ImageJ. Cells were synchronized with 100 nM

dexamethasone for 2 h and changed to normal BPEL medium,

containing 100 lM D-Luciferin Potassium Salt (Promega). For pure

cardiomyocyte population experiments, human ES cell-derived

cardiac populations were sorted with a FACS Jazz flow cytometer

(BD Biosciences) based on GFP positivity, replated on Matrigel-

coated dishes, and bioluminescence was assessed 7 days later.

Immunostaining

Cells were fixed with 4% paraformaldehyde (PFA) for 15 min,

blocked for 1 h in blocking buffer (5% FBS, 0.25% Triton X-100 in

PBS), and stained for OCT4 (SantaCruz, #5279), NANOG (Cell

Signaling, #3580S), TNNT2 (ThermoFisher Scientific, #MA5-12960),

ACTN2 (Sigma, #A7811), MEF2C (Cell Signaling, #sc-13266), GFP

(Abcam, #ab6556) in staining buffer (1% BSA, 0.25% Triton X-100

in PBS). Nuclei were stained with Hoechst for 15 min. Images were

made using a spinning disk microscope (PerkinElmer).

RNA isolation and CEL-Seq

Cardiac cells were derived from human ES cells in 48-well plates.

After synchronization, biological triplicates (independent wells)

with comparable cardiac purity were collected every 4 h over the

course of 48 h (ZT4-ZT48) (Fig EV3). RNA was extracted using the

standard TRIzol (Invitrogen) protocol, and 10 ng of total RNA per

sample was used for library preparation and sequencing. RNA was

processed as described previously [49,79], and paired-end sequenc-

ing was performed on the Illumina Nextseq platform with a read

length of 75 base pairs. Read 1 was used to identify the sample

barcode and library index, while read 2 was aligned to the hg19

human RefSeq transcriptome (downloaded from the UCSC genome

browser) using BWA [80]. CEL-Seq only sequences the most 30 end
of a transcript, generating one read per transcript. Reads that

mapped equally well to multiple locations were discarded. Around

500,000 reads were sequenced per sample. Samples were reads per

million (RPM) normalized (Table EV1).

Quantitative RT–PCR

Purified RNA was treated with DNAse (Promega) and reversibly

transcribed with Superscript III reverse transcriptase (ThermoFisher

Scientific). qRT–PCR on biological triplicate samples was carried out

in triplicate (technical replicates) in CFX-384 TouchTM Real-time PCR

detection system (Bio-Rad). PPIA was used as housekeeping gene,

and fold changes were calculated to the lowest values among all

replicates. Primer sequences: PPIA (fw): ttctgctgtctttgggacct, PPIA

(rv): caccgtgttcttcgacattg, NANOG (fw): cagccctgattcttc, NANOG

(rv): tgcatctgctggaggctgag, POU5F1 (fw): ctgaagcagaagaggat,

POU5F1 (rv): gggccgcagcttacacat, ISL1 (fw): ctgcttttcagcaactggtca,

ISL1 (rv): ggactggctaccatgctgtt, NKX2-5 (fw): caagtgtgcgtctgcctttc,

NKX2-5 (rv): ctttcttttcggctctagggtcct, ACTC1 (fw): atgccatcatgcgtctg

gat, ACTC1 (rv): acgttcagcagtggtgacaa, KCNJ2 (fw):

tgggtcttgggaattctggttt, KCNJ2 (rv): gaacatgtcctgttgctggcg, SERCA2A

(fw): cgaacccttgccactcatct, SERCA2A (rv): ccagtattgcaggttccaggt,

BMAL1 (fw): ggctcatagatgcaaaaactgg, BMAL1 (rev): ctccagaacataatc

gagatgg, PER2 (fw): ggccatccacaaaaagatcctgc, PER2 (rv): gaaaccga

atgggagaatagtcg, CRY1 (fw): ctccatgggcactggtctcagtg, CRY1 (rv):

tccccaccaatttcagctgcaac, CRY2 (fw): ccaagagggaagggcagggtagag,

CRY2 (rv): aggatttgaggcactgttccgagg, CLOCK (fw): aagttagggctgaaag

acgacg, CLOCK (rv): gaactccgagaagaggcagaag, NR1D1 (fw): acagctga

caccacccagatc, NR1D1 (rv): catgggcataggtgaagatttct.

Western blotting

Cells were lysed in RIPA buffer, and protein concentration was

measured using a BCA assay (ThermoFisher Scientific). 12.5 lg
protein lysate was loaded, separated by 10% SDS–PAGE, and trans-

ferred to a nitrocellulose membrane. Membranes were blocked with

5% milk powder (Nestlé) in T-BST and probed with anti-BMAL1

(1:1,000, #ab3350, Abcam), anti-CRY1 (1:1,000, #13474-1-A, Protein-

tech), or anti-CLOCK (1:250, #PA1-520, ThermoFisher Scientific) anti-

bodies, followed by a peroxidase-conjugated antibody (1:5,000, #sc-

2004, Santa Cruz). ECL Plus Western blotting substrate (#32132,

ThermoFisher Scientific) was used for chemiluminescence detection

with an ImageQuantTM LAS 4000 imager (GE Healthcare). HRP-

coupled anti-b-ACTIN (1:5,000, #5125S, Cell Signaling) was used as a

loading control. Band intensities were calculated with ImageJ.

Apoptosis measurements

Human ES cells were differentiated in 96-well white walled plates

for the course of 15 and 30 days. Cardiac cells were synchronized

with 100 nM of dexamethasone for 2 h, and 10 lM of doxorubicin

HCl (Sigma D1515) was administered at 6-h intervals for a total time

EMBO reports Vol 18 | No 7 | 2017 ª 2017 The Authors

EMBO reports Circadian clock in differentiated cardiomyocytes Pieterjan Dierickx et al

1208



of 6 h. Apoptosis levels of three replicate wells (per condition),

represented by active caspase 3 and caspase 7 levels, were

measured using a CaspaseGlo 3/7 kit (Promega) following manufac-

turer’s instructions. Bioluminescence was read out with a Centro

microplate luminometer (Berthold Technologies).

JTK-cycle analysis

RPM-normalized read counts were obtained for each sample. As

lowly expressed genes are typically not picked up robustly using

CEL-Seq, genes with an average of > 3 RPM across all time points

(ZT4-ZT48) as well as the replicates were selected for JTK-cycle

analysis. Around 10,000 genes reached this threshold in both D15

and D30, and these form the list on which JTK-cycle was run

(Table EV2). The following settings were used: jtkdist (12,3), peri-

ods (6:6), jtk.init (periods, 4). Significant oscillators with an

adjusted P-value of < 0.05 were selected for further analyses. To

identify mouse heart oscillators, JTK was run with similar settings

on normalized GC-RMA intensity values of 24 samples (CT18-CT62,

sampled every 2 h) for 35,556 genes downloaded from the GEO-

database [81] (accession GSE54652) [14].

STRING and gene ontology analysis

STRING (Search Tool for the Retrieval of Interacting Genes/

Proteins) database (www.string-db.org) was used to investigate the

relationship between the overlap of known murine heart oscillators

and identified D15 and D30 oscillators [56]. Gene ontology terms

were retrieved via www.string-db.org.

CircaDB gene expression website

The circadian expression database (CircaDB, http://circadb.hogene

schlab.org/) is an open access online platform [59] compiling circa-

dian gene expression profiles from microarrays and RNA sequencing

experiments [11,14,18,82–88]. The embedded JTK-cycle algorithm

defines the significance of rhythmic gene expression.

Statistics

All data were shown as means � s.e.m. Student’s t-tests were

carried out to assess differences between qRT–PCR mean values

within the same experiments. One-way ANOVA, followed by a

Bonferroni post hoc test, was carried out to test increasing mRNA

levels of clock factors during directed cardiac differentiation. A dif-

ference of P < 0.05 was considered significant. To calculate general

induction of apoptosis upon doxorubicin, a Mann–Whitney U-test

was used. Differences in doxorubicin-effect sizes between D15 and

D30 cardiac cells were assessed via non-overlapping 95% effect

interval sizes. Statistical analyses to detect circadian oscillations in

RNA levels (qRT–PCR) as well as doxorubicin-based apoptosis were

performed by RAIN [40].

Data availability
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PA, van Oudenaarden A, Geijsen N, Van Laake LW (2017) Circadian

networks in human embryonic stem cell-derived cardiomyocytes.

Gene Expression Omnibus GSE97142.

Referenced data
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