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Abstract

Intracellular parasites of the genus Leishmania generate severe diseases in humans, which are associated with a failure of
the infected host to induce a protective interferon c (IFNc)-mediated immune response. We tested the role of the JAK/
STAT1 signaling pathway in Leishmania pathogenesis by utilizing knockout mice lacking the signal transducer and activator
of transcription 1 (Stat1) and derived macrophages. Unexpectedly, infection of Stat1-deficient macrophages in vitro with
promastigotes from Leishmania major and attenuated LPG1 knockout mutants (lpg2) specifically lacking lipophosphoglycan
(LPG) resulted in a twofold increased intracellular growth, which was independent of IFNc and associated with a substantial
increase in phagosomal pH. Phagosomes in Stat12/2 macrophages showed normal maturation as judged by the
accumulation of the lysosomal marker protein rab7, and provided normal vATPase activity, but were defective in the anion
conductive pathway required for full vesicular acidification. Our results suggest a role of acidic pH in the control of
intracellular Leishmania growth early during infection and identify for the first time an unexpected role of Stat1 in natural
anti-microbial resistance independent from its function as IFNc-induced signal transducer. This novel Stat1 function may
have important implications to studies of other pathogens, as the acidic phagolysosomal pH plays an important role in
antigen processing and the uncoating process of many viruses.
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Introduction

Protozoan parasites of the genus Leishmania generate a variety of

pathologies collectively termed leishmaniasis that afflict millions of

people worldwide [1]. Depending on parasite species and host

immune response, the pathologies range from mild cutaneous, self-

healing lesions generated by L. major, to the fatal visceral disease

caused by L. donovani. Leishmania is transmitted during blood

feeding of infected sand flies, which inoculate highly infective

metacyclic promastigotes into the mammalian host [2]. Following

uptake by host macrophages, metacyclics differentiate into the

amastigote form that replicates inside the fully acidified phago-

lysosome of the host cell. From this site the parasite modulates the

response of the host cell and immune system [3,4].

Release of IL-4 and IL-10 by infected macrophages and

accessory immune cells establishes a TH2 response permissive for

parasite growth and responsible for acute disease with fatal

outcome in immuno-compromised individuals and susceptible

BALB/c mice [5,6]. In contrast, immuno-competent individuals

and genetically resistant mouse strains, including C57BL/6, B10,

and SV129 [7], mount a Th1 response and are able to contain

parasite growth during later stages of the infection by the

production of IL-12 that entails development and expansion of

histocompatibility complex MHC class II-restricted Th1 cells

[8,9]. Interferon c (IFNc) secreted by these cells elicits a

pleiotropic anti-microbial response in macrophages that is

transduced by the inducible transcription factor Stat1 [10,11], a

cytosolic latent transcription factor that forms dimers and

translocates into the nucleus following tyrosine phosphorylation

by Janus family tyrosine kinases [12]. There, Stat1 induces

expression of iNOS and pro-inflammatory cytokines including IL-

12, TNFa, and IL1b, which are required for resistance to various

parasitic, bacterial and viral pathogens.

A role for Stat1 distinct from its function as inducible

transcription factor has been suggested [13]. Stat1-deficient

fibroblast cell lines showed reduced expression of the low

molecular mass proteins LMP-1 and LMP-2 [14,15], and the

caspases ICE, Cpp32 and Ich-1, associating constitutive Stat1

activity with antigen processing and apoptosis [14]. Here we

report evidence for a novel physiological function of Stat1 in

phagosomal acidification, which was independent from IFNc and

its activity through the well known roles of this important

transcription factor in immune function. The selective defect of

Stat12/2 cells allowed us for the first time to test the role of

phagosomal pH on Leishmania survival in situ.
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Results

Stat1 is required for anti-leishmanial resistance in mouse
and macrophage infection

Groups of Stat1-deficient mice and SV129 isogenic controls, or

susceptible BALB/c mice, were inoculated with 106 infective L.

major promastigotes, and the ability to resolve the infection was

assessed during 12 weeks post-infection. In resistant SV129 mice,

the parasites elicited a transient lesion, which was completely

resolved in all 11 animals 70 days after the infection (Figure 1A). In

contrast, SV129 Stat12/2 mice were unable to control the

infection and showed progressive lesion development similar to

susceptible BALB/c mice with ultimately fatal outcome , as

previously shown [16]. We further investigated this defect by in

vitro infection of peritoneal exudate macrophages (PEM).

Intracellular Leishmania growth was assessed in untreated and

LPS/IFNc-activated PEMs from wild-type and Stat1-deficient

mice by nuclear staining and fluorescence microscopy [17].

Parasites showed robust intracellular growth in untreated control

PEMs, which was completely abolished in activated cells

(Figure 1B, left panel). In contrast, Stat12/2 PEMs were highly

permissive for intracellular Leishmania growth, even in LPS/IFNc-

treated cells (Figure 1B, right panel).

In immunocompetent hosts, L. major infection is controlled by

the induction of leishmanicidal NO in response to IFNc-producing

Th1 cells, which in turn differentiate in an IL12-dependent

manner. IFNc/LPS-treated PEMs from Stat12/2 mice were

unable to produce IL12 or nitric oxide, while robust levels were

detected in the supernatants of treated controls (Figure 1C).

Together these data confirm the crucial role of IFNc in controlling

Leishmania infection through Stat1-mediated cytokine and NO

production, and further sustain the importance of macrophage

activation in anti-leishmanial resistance.

Increased Leishmania survival in Stat1-deficient PEMs
During the macrophage infection studies, we consistently

observed a trend towards increased intracellular parasite growth

in naı̈ve Stat12/2 PEMs when compared to wild-type controls.

We quantified this unexpected effect following infection with

promastigotes form wild-type L. major and mutant lacking the

abundant surface lipophosphoglycan through inactivation of the

LPG1 gene [17]. As expected from previous results [17], survival of

lpg2 promastigotes in SV129 PEM was reduced by 75%

(Figure 2A). A similar reduction was observed in Stat12/2

PEMs confirming our previous results that intracellular elimina-

tion of lpg2 is independent from IFNc-mediated effects [18].

Surprisingly, even though the infections were performed in the

absence of IFNc and thus under conditions where Stat1 should be

inactive, survival of both wild-type and lpg2 promastigotes was

increased in Stat12/2 PEMs by more than twofold (Figure 2A).

In contrast, lesion-derived wild-type amastigotes survived equally

well in Stat12/2 macrophages and controls regardless of host or

parasite phenotype (Figure 2A, right panel).

Figure 1. Stat1-deficient mice are susceptible to Leishmania
infection. (A) Footpad analysis. 106 L. major promastigotes from
stationary culture were inoculated subcutaneously into the hind
footpad of SV129 control (closed circles), SV129 Stat12/2 (open
circles), and susceptible BALB/c mice (gray circles), and lesion size was
followed for 90 days post-infection. The graph represents the footpad
swelling at day 70 post-infection after lesions resolved in the resistant
SV129 controls (number of infected animals per group is shown in
brackets). *, p = 2e-6. (B) Macrophage infection. Stat1-deficient (open
symbols) and SV129 wild-type PEMs (closed symbols) treated with
100 U/ml IFNc and 100 ng/ml LPS for 12 h (squares) and untreated
controls (circles) were infected with complement-opsonized stationary
promastigotes and the number of intracellular parasites per 100
macrophages was determined microscopically. Three independent
experiments were performed and one representative triplicate exper-
iment is shown. (C) Macrophage activation. 104 peritoneal exudate
macrophages (PEM) of SV129 control (closed circles) and Stat12/2
(open circles) were seeded into micro-titer plates and treated with
100 U/ml IFNc and 100 ng/ml LPS. Levels of IL-12p70 (left panel) and
nitrite (right panel) were determined in the supernatants at the time
points indicated. The bars represent the standard deviation of one
triplicate experiment.
doi:10.1371/journal.ppat.1000381.g001

Author Summary

Protozoan parasites of the genus Leishmania generate a
variety of pathologies, collectively termed leishmaniasis,
which afflict millions of people worldwide. Leishmania is
transmitted during the blood meal of infested sand flies
that inoculate highly infective metacyclic promastigotes
into the mammalian host. Following uptake by host
macrophages, metacyclics differentiate into the amasti-
gote form that replicates inside the acidified phago-
lysosome of the host cell. The cytokine interferon-c
activates infected macrophages to kill intracellular Leish-
mania through the production of nitric oxide. This process
is mediated through Stat 1, a cytosolic transcription factor
that translocates into the nucleus in response to the
cytokine, where it induces a pleiotropic anti-microbial
response. By utilizing Stat1-deficient macrophages we
found evidence for a novel interferon-c-independent
physiological function of Stat1 in acidification of the host
cell phago-lysosome. Stat1-deficient macrophages showed
higher phago-lysosomal pH and increased susceptibility to
Leishmania infection, which was linked to a defect in
cellular chloride channel function. Vesicular pH and
acidification are important factors affecting the infective
cycle of bacterial and protozoan pathogens, and the
uncoating process during viral entry. Thus, the role of
cytokine-independent Stat1 functions in innate anti-
microbial resistance may have a greater impact on host-
pathogen interactions than previously appreciated.

Role for Stat1 in Phagosome Acidification
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We first tested if increased promastigote survival in Stat12/2

cells resulted from their failure to produce leishmanicidal NO (see

Figure 1C, right panel). Stat12/2 PEMs and controls were

treated with the NO-inhibitor NMMA and intracellular parasite

survival was determined as described above and compared to

untreated controls. Again, Stat12/2 PEMs were more permissive

for intracellular Leishmania growth compared to the wild-type (WT)

control, even in the presence of NMMA (Figure 2B). Both control

and Stat12/2 PEMs produced similar amounts of superoxide

during phagocytosis, which was strongly reduced upon treatment

of the supernatants with superoxide dismutase (Figure 2C). These

data rule out a role for reactive nitrogen or oxygen radicals (or the

absence thereof) in increased Stat12/2 Leishmania survival.

A selective defect of Stat12/2 PEMs in phagosomal
acidification

We followed the maturation of phagosomes into acidic phago-

lysosomes by fluorescence ratio determination. Monolayers of

untreated or LPS/IFNc treated SV129 control and Stat12/2

PEMs were incubated with zymosan-FITC and intra-vesicular pH

was determined spectrophotometrically by establishing the ratio of

pH-independent to pH-dependent florescence at 450 and 495 nm

respectively. Following phagosome alkalinization in the presence

of 10 mM NH4Cl (open arrow head), equilibration and removal of

the base (closed arrow head), phagosomes of untreated control

PEMs equilibrated at an intra-vesicular pH of 5.3 consistent with

previous findings (Figure 3A) [19,20]. In contrast, phagosomes of

untreated Stat1-deficient cells failed to fully acidify and showed a

substantial increase of 0.6 units in intra-vesicular pH to pH 5.9

(Figure 3A, left panel). Treatment of the cells with LPS/IFNc
substantially inhibited acidification of WT and Stat1-deficient

phagosomes, which equilibrated at pH 5.9 and 6.3 respectively

(Figure 3A, right panel). Thus macrophage activation results in

increased phagolysosomal pH thereby ruling out the possibility

that residual IFNc production in WT PEMs may contribute to the

observed difference in phagosomal acidification. We analyzed

cytoplasmic and lysosomal pH in cells incubated for 12 h in

DMEM with 10 mM BCECF-AM and 2.5 mg/ml of dextran-

FITC respectively (Figure 3B). Both control and Stat1-deficient

cells provided a neutral cytoplasmic pH of 6.8 to 6.9 and an acidic

lysosomal pH of 5.2. Addition of increasing concentrations of

NH4Cl (10, 20 and 50 mM, not shown) allowed us to determine a

buffering capacity of 5468 mmoles/mpH for either macrophage

[21].We next established that the pH defect of Stat12/2 PEMs

occurs also during Leishmania infection ,using FITC surface-labeled

Leishmania and intra-vesicular fluorescence-ratio measurement. We

used axenic amastigotes from L. donovani, which do not express

LPG and thus eliminate concerns regarding the release of labeled

LPG into other cell compartments and its effect on phago-

lysosomal fusion [22,23]. Similar to the zymosan control, Stat12/

2 phagosomes do not fully acidify following uptake of labeled

amastigotes and equilibrate at 0.3 pH units higher than controls

(Figure 3C).

Thus, Stat12/2 PEMs show a selective defect in phagosomal

acidification independent from lysosomal pH, which may enhance

intracellular parasite survival.

Normal recruitment of the lysosmal marker Rab7 in
Stat12/2 PEMs

Maturation of phagosomes into an acidic, hydrolase-rich

compartment depends upon interactions with the endocytic

network and the fusion with late endosomes or lysosomes [24].

Thus partial acidification of phagosomes in Stat1-deficient

macrophages may result from a failure to interact with these

acidic organelles. We established a detailed kinetics of phagosomal

acidification by fluorescence ratio measurement. Control and

Stat12/2 PEMs were incubated with zymosan-FITC for 20 min

at 4uC and intra-vesicular pH was determined during synchronous

uptake induced by temperature shift to 37uC. PEMs from both

control and deficient mice provided similar kinetics of phagosome

acidification during the first minutes after zymosan uptake,

however Stat12/2 phagosomes equilibrated shortly after at 0.5

pH units above the pH attained in control PEMs (Figure 4A).

Phagosome maturation was further studied by accumulation of the

late endosomal marker protein rab7 [25]. During the synchronous

uptake of Texas Red-labeled zymosan, rab7 was absent in early

phagosomes of control and Stat1-deficient PEMs (up to 20 min

post-incubation) and detected in perinuclear vesicular compart-

ments (data not shown). Rab7 was first detected in phagosomes of

both control and Stat12/2 PEMs 30 min after zymosan uptake

and was maintained thereafter for the rest of the incubation period

(Figure 4B). Thus the defect in phagosomal acidification is

independent from lysosomal fusion as judged by the recruitment

of the lysosomal marker Rab7.

Figure 2. Stat1-deficient macrophages are more permissive for
Leishmania infection. (A and B) Macrophage infection. (A) Wild-type
and lpg12 promastigotes (left panel) or lesion-derived amastigotes
(right panel) were opsonized with C3b and incubated with peritoneal
macrophages derived from SV129 control and Stat12/2 mice. The
number of intracellular parasites was estimated by nuclear staining and
fluorescence microscopy throughout the infection period. Parasite
survival at day 5 (for promastigotes) and at day 2 (for amastigotes) was
normalized to the initial infection efficiencies at 2 h post-infection.
Three independent experiments were performed and the bars show the
standard deviations of one representative triplicate experiment. *,
p = 0.12; **, p = 0.01. In (B), parasite survival was determined in
untreated (circles) and NMMA-treated PEMs (squares). (C) Superoxide
determination. Superoxide production of confluent monolayers of
SV129 control and Stat12/2 peritoneal macrophages was determined
by ferrycytochrome c reduction assay following incubation with
zymosan in the presence (+SOD) and the absence (2SOD) of 100 ng/
ml superoxide dismutase. The optical density of the supernatants was
determined spectrophotometrically using supernatants from untreated
cells as blank.
doi:10.1371/journal.ppat.1000381.g002

Role for Stat1 in Phagosome Acidification
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Limited proton transporting activity in Stat12/2 PEMs
Vesicle acidification is achieved by the combined action of an

electrogenic H+-ATPase, which pumps protons into the lumen,

and a chloride-channel that short-circuits the electrical potential

across the membrane, allowing proton transport further to

continue. We tested if a defect in one of these activities accounts

for the elevated phagosomal pH in Stat1-deficient macrophages.

Phagosomes containing FITC-conjugated zymosan were isolat-

ed from control and Stat1-deficient bone marrow-derived

macrophages (BMM), diluted into the reaction mixture containing

ATP and reactions were started by the addition of MgSO4

(Figure 5, closed arrows). Phagosomes from control mice showed a

rapid but transient decrease in vesicular pH by 0.3 pH units to

5.95 (s.d. 0.04) during the first minute after MgSO4 addition

(Figure 5, left panel). Phagosomes from Stat12/2 BMMs were

able to initiate phagosome acidification (Figure 5, middle panel)

but showed a pH decrease of only 0.15 pH units to 6.13 (s.d.0.04).

This acidification profile indicates the presence of a functional H+-

ATPase that provides limited activity most likely due to a defect in

charge neutralization compared to the control (p,0.002 for the

difference observed one minute after ATP addition). This

hypothesis was further sustained in K2SO4-treated control

preparations. Replacement of chloride with impermeant anion

sulfate eliminates the charge neutralization normally conferred by

the chloride channel, a treatment that resulted in partial

acidification of Stat1+/+-preparations similar to the one observed

in Stat12/2 preparations (Figure 5, right panel).

Stat1-deficient phagosomes are defective in charge-
neutralization

We tested the charge neutralizing activity in reconstituted

vesicles from membrane preparations of control and Stat1-

deficient BMMs. Mg2+-ATP-dependent proton transport was

determined following quenching of acridine orange fluorescence,

Figure 3. Stat12/2 phagosomes show a selective defect in
phagosomal acidification. (A) Phagosomal pH-measurement. Mono-
layers of untreated (left panel) or LPS/IFNc treated (right panel) SV129
control and Stat12/2 PEMs were established on 1 by 2.5 cm glass
slides and pH of phagosomes containing FITC-labeled zymosan was
determined by ratio-fluorescence determination. Calibration for fluo-
rescence was done in situ. The fraction of particles bound to and
remaining on the cell surface was controlled for and found to be
negligible by measurement of the response to alterations in the pH of
the external buffer. Each experiment was performed in duplicate and
repeated at least three times. The graph shows a representative time
course measurement of phagosome alkalinization upon addition of
10 mM NH4Cl (open arrow head), equilibration and removal (closed
arrow head). (B) and (C) Measurement of intracellular pH. (B)
Monolayers of SV129 control and Stat12/2 PEMs were incubated for
30 min with 10 mM BCECF-AM, overnight with 2.5 mg/ml FITC-dextran,
or 2 h with FITC-labeled zymosan, and cytoplasmic, lysosomal, or
phagosomal pH were assessed by ratio-fluorescence determination. The
bars represent the standard deviation of three independent duplicate
experiments. (C) Monolayers of SV129 control and Stat12/2 PEMs were
infected for 2 h with FITC-labeled axenic L. donovani amastigotes (Leish)
or incubated with FITC-labled zymosan (zymo), and phagosomal pH
were assessed by ratio-fluorescence determination.
doi:10.1371/journal.ppat.1000381.g003

Figure 4. Stat1-deficient PEMs are normal in phagosome
maturation. (A) Kinetics of phago-lysosomal fusion. Monolayers of
SV129 control and Stat12/2 PEMs were incubated with FITC-labeled
zymosan at 4uC for 20 min. Phagosomal pH was monitored by ratio-
fluorescence determination during synchronized phagosome formation
and acidification at 37uC. (B) Indirect immunofluorescence analysis.
Control and Stat12/2 PEMs were incubated on ice with TexasRed-
labeled zymosan for 20 min and synchronous uptake was established
by temperature shift to 37uC. Cells were fixed at time points 0, 30
(shown here), 60 and 90 min after uptake, and subcellular localization
of the lysosomal marker rab7 was assessed by indirect immunofluores-
cence. Control cells were stained with the FITC-conjugated secondary
antibody alone. The bar corresponds to 10 mm.
doi:10.1371/journal.ppat.1000381.g004

Role for Stat1 in Phagosome Acidification
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a weak base that accumulates in acidic compartments and shows a

pH-dependent decrease in fluorescence during vesicle acidification

[26]. Vesicles derived from both cell types were able to initiated

acidification upon addition of MgSO4 in the presence of ATP,

however vesicles derived from Stat1-deficient cells acidified only

partially when compared to the control (Figure 6A, left panel).

Acidification was restored to normal levels in these preparations in

the presence of valinomycin, a potassium ionophore that

eliminates the chloride-dependence of acidification by collapsing

the potential generated by the proton pump. These data show that

Stat1-deficient macrophages are defective in charge neutralization

most likely due to a chloride channel dysfunction [19,27]. Western

Blot analysis of crude and phagosomal extracts (Figure 6B and

data not shown) with polyclonal antibody AB656 [26] revealed

similar levels in expression of the chloride channel family members

detected by this antibody in control and Stat1-deficient prepara-

tions, suggesting that the defect in the mutant cells may be linked

to a difference in activity rather than expression of chloride

channel proteins, or results from the absence of chloride channel

species not detected by this antiserum.

Leishmania survival in Stat1-deficient macrophages is
independent from phago-lysosomal fusion

Immediately following phagocytosis by host macrophages,

Leishmania promastigotes transiently inhibit phagolysosomal fusion,

a process mediated by LPG [18,23]. We recently showed that this

delay in phagosome maturation did not alter survival of either

wild-type or lpg2parasites [18]. The Stat12/2 PEMs allowed us

for the first time to test the effect of phagosomal pH on parasite

survival in situ, providing a second perspective on our previous

findings.

Control and Stat12/2 PEMs previously labeled with dextran-

FITC were infected synchronously with either wild-type or lpg12

Leishmania and fusogenic phagosomes were identified by flores-

Figure 5. pH measurement on isolated phagosomes. Intra-vesicular pH of phagosomes containing FITC-labeled zymosan was determined in
untreated control preparations (left panel), untreated preparations from Stat12/2 BMMs (middle panel), and control preparations treated with
93 mM K2SO4 (right panel). Acidification was initiated by addition of 2.5 mM ATP and 1 mM MgSO4 (closed arrow). Subsequent addition of 20 mM
NH4Cl increased the pH of all phagosome preparations (open arrow). The addition of 10 mM nigericin increased the pH to 7 (not shown). Each time
course was done in triplicate with the standard deviation indicated by the error bars.
doi:10.1371/journal.ppat.1000381.g005

Figure 6. Analysis of vesicle acidification by acridine orange fluorescent quenching. (A) Membrane vesicles derived from phagosomes of
Stat1-deficient BMMs and control were diluted into the appropriate reaction mixture containing 2.5 mM ATP, and reactions were started by the
addition of 1 mM MgSO4 either in the absence (control, open squares) or in the presence of 0.1 mM valinomycin (closed squares). All experiments
were corrected for base-line drift (,5% of total fluorescence). (B) Crude cell extracts were subjected to Western Blot analysis with anti-chloride
channel antibody AB656.
doi:10.1371/journal.ppat.1000381.g006

Role for Stat1 in Phagosome Acidification
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cence microscopy 3 h later as described [18]. As previously shown,

wild-type parasites reside in non-fusogenic phagosomes

(Figure 7A). As expected form the absence of LPG, phagosomes

containing lpg12 parasites were highly fusogenic [23,28]. Signif-

icantly, the exposure to lysosomal content in SV129 control and

Stat12/2 cells had no effect on parasite survival during the first 2

days post-infection, when Leishmania-containing phagosomes are

generally fully acidified (Figure 7B). In contrast, parasite numbers

showed a substantial increase in Stat12/2 PEMs between day 2

and day 5 post-infection, when amastigote differentiation was

completed and intracellular growth initiated. Together these data

suggest that Stat12/2 PEMs show normal fusogenic properties

during Leishmania infection. Additionally, the fact that LPG-

deficient parasites show no difference in intracellular survival

during the first 48 h in WT and Stat12/2 macrophages, despite

the significant difference in their phagolysosomal pH, further

supports the conclusion that killing of the LPG-deficient mutant is

independent of phagosome acidification.

Discussion

The inducible transcription factor Stat1 transmits the immune-

protective effects of IFNc during viral, bacterial and parasitic

infections [10,11,16,29,30]. Previously, a constitutive activity of

Stat1 has been identified that regulates target gene expression in

an IFNc-independent manner [14,15]. However, the significance

of this pathway on host immunity and its impact on the

interpretation of studies performed in Stat1-deficient animals

had not been studied. Here we describe for the first time a novel

function of constitutive Stat1 in modulation of phagosomal

acidification.

Fusion of phagosomes with hydrolase-rich, acidic compartments

including lysosomes and endosomes [31] establishes a hostile

environment to potential pathogens as well as comprising a key

compartment for antigen presentation [32–34]. The relevance of

lysosomal degradation in anti-leishmanial resistance has been

genetically defined by studies of the natural-resistance-associated

macrophage protein, NRAMP1 [35], a transmembrane phospho-

glycoprotein which confers natural resistance to a variety of

intracellular pathogens [36] by regulating the intra-phagosomal

pH [37]. By utilizing in vitro Leishmania infection assays we

identified a selective defect in phagosomal acidification in Stat1-

deficient macrophages (Figure 3), which resulted in a twofold

increase of intracellular parasite survival during a 5 days infection

period (Figure 2).

The selective Stat12/2 defect in acidification allowed us to

investigate in situ the role of phagosomal pH on Leishmania survival

and growth. A potential role for acidic pH in anti-leishmanial

resistance has been put forward by Desjardins and co-workers

based on the observation that promastigotes reside transiently in

non-fusogenic phagosomes [23,28,38]. This effect is mediated by

the major surface glycoconjugate LPG, which is released from the

parasite surface into the host cell cytoplasm, where it interferes

with vesicular fusion [22,39]. Hence, Leishmania may have evolved

an intracellular survival strategy reminiscent to other pathogens,

including Toxoplasma [40], Legionella [41] and Mycobacteria [20,36],

all of which avoid contact with the lysosomal content.

Increased survival of intracellular L. major in Stat1-deficient host

cells seems to support a role for phagosomal acidification in anti-

leishmanial resistance. However, we and others have provided

previously compelling evidence that Leishmania promastigotes are

perfectly well adapted for survival in acidic environments.

Promastigotes grow normally at pH 5.5 [42], and their surface

glycocalyx confers resistance to lysosomal hydrolases in insect and

vertebrate hosts [43–46]. We previously showed that intracellular

survival of attenuated lpg2 mutants was restored to wild-type levels

in oxidant-deficient phox2/2 host cells, although extensive fusion

of parasite-containing phagosomes with host cell lysosomes

occurred [18]. Here we confirmed these data and showed that

intracellular parasite burden was similar in control and Stat12/2

PEMs for the first 48 h of infection despite the difference in

phagosomal pH during this time period (Figure 7). Both survival of

wild-type and attenuated lpg2 mutant parasites was equally

enhanced in Stat12/2 PEMs between day 2 and day 5 post-

infection (Figures 2A and 7B), suggesting that the pH-dependent

activity compromised in Stat12/2 PEMs acts independent of

LPG and its effects on oxidant resistance or phago-lysosomal

fusion.

Acidic pH is maintained in phago-lysosomes by the combined

action of v-ATPases that transport protons across the membrane,

and chloride channels that neutralize the transmembrane potential

by counter ion conductivity. Stat12/2 PEMs were normal in

phagosome maturation as judged by the kinetics of phago-

lysosomal fusion and the accumulation of the late endosomal

marker protein rab7 in the mutant phagosomes (Figure 4A and

4B). Dissociation of the molecular events required for vesicular

acidification in Stat12/2 cells by ratio-fluorescence measure-

ments indicated functional vATPase activity (Figure 5), which was

limited by the increasing transmembrane potential during proton

transport and a selective defect in charge neutralization (Figure 6).

The mechanism how Stat1 regulates counter-ion conductivity

remains elusive and is currently under investigation. Possible

mechanisms include a direct transcriptional activation of chloride

channel expression or indirect effects on expression of regulatory

molecules that modify chloride channel activities, such as p53 [47],

erk7 [48] or c-Src [49].

In summary, our data provide evidence for a novel IFNc-

independent function of Stat1 in phagosome acidification, which

may have important implications for the interpretation of data

previously obtained by others in Stat1-deficient animals. For

example, Stat12/2 mice have been recently shown to display an

unexpected increase in bone mass, which was attributed to a

dysregulation of osteoclast differentiation [50]. Bone remodeling

occurs by terminally differentiated cells of the monocyte-

macrophage lineage termed osteoclasts, which generate an acidic

compartment on the surface of the bone required for resorption

([26] and references therein). Conceivably, a defect in Stat12/2

osteoclast in vesicular acidification similar to the one we describe

here for Stat12/2 macrophages may have a major impact on

bone homeostasis and thus may substantially participate in

increased bone formation observed in these mice. More

significantly, Stat12/2 mice were widely used to study the role

Figure 7. Phago-lysosomal fusion does not affect Leishmania
major survival. (A) Phago-lysosomal fusion was quantified by labeling
of parasitophorous vacuoles with FITC-dextran, previously loaded into
the lysosomal compartment (Methods). (B) PEM infection was
performed as described in legend of Figure 1B. Experiment was done
in duplicate and mean values are shown.
doi:10.1371/journal.ppat.1000381.g007
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of IFNc-mediated immunity to various pathogens. Given the

importance of vesicular pH in either resistance to bacterial and

protozoan pathogens, and its relevance in the uncoating process

during viral entry, the role of constitutive Stat1 activity in innate

anti-microbial resistance may have to be re-investigated in light of

its potential role in acidification.

Materials and Methods

Mice and parasites
129/Sv control mice and mice inactivated for Stat1 expression

(referred to as Stat12/2 or Stat1-deficient, [11]) were purchased

from Taconic (Germantown, NY). All animals were handled in

strict accordance with good animal practice as defined by the

relevant national and/or local animal welfare bodies, and all

animal work was approved by the appropriate institutional

committee. Leishmania major strain LV39clone5 (Rho/SU/59/P,

[51]) was grown in M199 medium at 26uC as previously described

[52]. The LPG-deficient lpg12 null mutant was maintained in

media supplemented with 16 mg/ml hygromycin B and 20 mM

puromycin as described [17]. Axenic amastigotes of L. donovani

(strain LD1SR, [53]) were cultured at 37uC in M199 supplement-

ed with 20% FCS at pH 5.5 according to Zilberstein et al. [54].

Mouse and macrophage infection
Virulence was assessed following inoculation of 106 promasti-

gote parasites from day 4 of stationary culture into the footpad of 6

to 8 weeks old female Stat12/2 mice and congenic SV129

controls. Infections were monitored by comparing the thickness of

the injected and uninjected footpads with a Vernier caliper.

Murine bone marrow macrophages (BMM) were obtained from

the femurs of female mice and differentiated in vitro in the

presence of M-CSF as described [55]. Peritoneal exudate

macrophages (PEM) were elicited by injection of 2 ml endotox-

in-free starch suspension (2% w/v in normal saline) into mice.

Cells were isolated three days later by peritoneal lavage using cold

Dulbecco’s modified Eagles medium (DMEM), washed and

resuspended in DMEM/10% FBS. For infection, PEM were

seeded in 12 well plates onto 18 mm glass cover slips (36105 cells/

ml) and non adherent cells were removed by washing after 30 min

incubation at 37uC in 5% CO2. Adherent PEM were infected with

complement-opsonized promastigotes from day 4 of stationary

growth [56] or lesion-derived amastigotes at a multiplicity of

infection of 10 parasites per macrophage. Following 2 hours

incubation at 33uC in DMEM 0.7% BSA under serum free

conditions, non-phagocytosed parasites were removed by multiple

washing steps with DMEM without FBS and incubation was

proceeded for another 5 days at 33uC. Growth of extracellular

parasites was prevented during this period by washing the cells

once a day. The number of intracellular parasites was monitored

at 2 h, 24 h, 48 h and120 h post-infection by nuclear staining and

fluorescence microscopy as described [17]. All culture media were

tested to be endotoxin-free using the Pyrotell LAL test kit

(Associates of Cape Cod Inc., MA).

Determination of superoxide, nitric oxide, and IL-12
Superoxide was measured by the ferricytochrome reduction

assay [57]. PEMs were washed with Hank’s buffered saline

solution (HBSS), and incubated for 90 min at 37uC with zymosan

(10 particles per cell), purified metacyclic WT (MOI = 10) or lpg12

promastigotes (MOI = 3) in 80 mM ferricytochrome c/HBSS.

Supernatants were cleared by centrifugation at 4u and the

concentration of reduced cytochrome c was determined spectro-

photometrically at 550 nm (e550 nm = 2.16104 M21 cm21). The

background was determined in equally treated control cells in the

presence of 100 ng/ml superoxide dismutase (Sigma) in Hank’s

Balanced Salt Solution (HBSS). NO-derived nitrite in culture

supernatants was determined by the Griess reaction [58]. Briefly,

100 ml were removed from conditioned medium, incubated with

an equal volume of Griess reagent (1% sulfanilamide/0.1%

naphthyl ethylene diamine dihydrochloride/2.5% H3PO4) at

room temperature for 10 min, and the NO2
2 concentration was

determined in spectrophotometrically a at 550 nm using NaNO2

as a standard. IL-12 (p40) levels were determined in the PEM

culture supernatants by an ELISA capture method (Pharmingen,

San Diego, CA). Briefly, microtiter plates coated with a capture

monoclonal anti-IL-12p40 antibody were incubated with 100 ml of

culture supernatant, and bound IL-12 was detected with

polyclonal rabbit anti-IL12p40 antibody and peroxidase-conju-

gated sheep anti-rabbit antibody.

Immunfluorescence staining
Cells were washed once in phosphate buffered saline (PBS),

permeabilized with 100% methanol (220uC) for 30 seconds and

re-hydrated for 10 min at RT in PBS. Preparations were

sequentially incubated for 20 min at 37uC with 1/100 dilutions

of rab7 primary antibody (Santa Cruz, CA) and 1/100 dilution of

FITC conjugated anti-rabbit secondary antibodies as described

[59].

Surface labeling
Zymosan particles or amastigote parasites were labeled for

20 min at 4uC with NHS-carboxyfluoresceine (250 mg/ml,

Boehringer Mannheim, Germany) or Succinate-Texas Red

(Molecular Probes, OR) in 100 mM NaHCO3, 150 mM NaCl

at pH 7.6, and washed three times in serum-free DMEM by

centrifugation at 10006g for 5 min.

Phagolysosomal fusion
PEM were seeded in 12 well plates onto 18 mm glass cover slips

(36105 cells/ml), and incubated overnight (at least 12 h) in

DMEM supplemented with 10% FCS and 2.5 mg/ml FITC-

conjugated dextran (10 kD, lysine fixable, Molecular Probes, OR).

Cells were washed vigorously and incubated at 4u for 20 min with

stationary-phase promastigote parasites at a multiplicity of

infection (MOI) of 10 parasites per host cell. were infected for

2 h at 33u at for WT or synchronous parasite uptake was achieved

For synchronous infections, parasites were incubated to allow

attachment, Free parasites were removed by washing, and

synchronous infection was achieved by temperature shift to

37uC [60]. Fusogenic FITC-positive phagosomes were quantified

by fluorescence microscopy on paraformaldehyde-fixed prepara-

tions over a period of 3 hrs following uptake.

Measurement of intracellular pH
All pH measurements were performed in situ with conjugates of

fluorescein isothiocyanate. The pH response of the conjugated dye

was calibrated in solution and in cells where intracellular

compartments were equilibrated with medium pH as described

previously [19].

Phagosomal pH
Monolayers of peritoneal macrophages were incubated with

fluorescein-conjugated parasites or zymosan particles for 30 min

at 37uC in a humidified CO2 incubator (ratio ca. 10 particles or

parasites per macrophage). Cells were washed rigorously,

incubated further for 2 h at 37uC and phagosomal pH was
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assessed in an Aminco SPF-500 spectrofluorimeter as previously

described [61]. Parasite- and zymosan-conjugates were calibrated

in each of the cells employed in these studies (not shown). The pKs

of the free dye and dye conjugates were identical in solution and

for intracellular measurements indicating that they were reporting

the vesicle pH and not conditions particular to the particle surface,

compartment or dye conjugate [62,63]. These measurements were

used to determine vesicle pH in the following studies.

Cytoplasmic pH
Cells were incubated in 10 mM in 29,79-bis(2carboxyethyl)-5-

carboxyfluoresceine-tetraacetoxymethyl ester, BCECF-AM (Mo-

lecular Probes, OR), for 30 min and washed as previously

described [64]. Intracellular cytoplasmic fluorescence was cali-

brated, and intracellular pK and pH response were determined

using buffered Nigericin solutions [61,64].

Endosomal pH
Macrophage monolayers were incubated overnight (at least

12 h) in DMEM supplemented with 10% FCS and 2.5 mg/ml

FITC-conjugated dextran (10 kD, lysine fixable, from Molecular

Probes, OR). Cells were washed vigorously and endo-lysosomal

pH was assessed by ratio-fluorescence determination. The

buffering capacity was determined as described [21].

pH measurement on isolated phagosomes
Macrophage monolayers were allowed to phagocytose FITC-

conjugated zymosan, collected by scraping in turtle buffer

supplemented with 1 mM dithiothreitol [26] and disrupted in a

tight fitting Dounce homogenizer. Undisrupted cells and debris

were removed by centrifugation at 15006g for 5 min and the

phagosomes sedimented at 100006g. The pellet was suspended in

140 mM KCl, 10 mM HEPES pH 7.0, and acidification of the

vesicles was initiated by the addition of 2.5 mM potassium ATP

and 1 mM MgSO4. The intravesicular pH was assessed using

ratio-fluorescence determinations following calibration of intra-

phagosomal pH with Nigericin [61,64].

Acridine orange fluorescence quenching
Isolated phagosomes containing unlabeled zymosan were

disrupted by one freeze-thaw cycle at 270uC, zymosan particles

were removed by centrifugation at 20006g and the membrane

fraction was pelleted at 1000006g for 60 min at 4uC. The assay

was performed as described [26].

Western blot
Western blot analysis was performed using the enhanced

chemiluminescence (ECL) detection kit from Amersham Interna-

tional, UK. Cellular extracts were resolved by SDS-PAGE and

electroblotted onto nitro-cellulose membrane (Amersham Inter-

national, UK). Antibody incubation and detection were performed

according to the protocol supplied with the kit. Primary antibody

AB656 [26] was diluted 1/200.
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