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A kinase anchor protein 12 (AKAP12) as a tumor suppressor in various cancers has been extensively studied and confirmed.
However, its immune implication in stomach adenocarcinoma (STAD) remains uncertain. Here, using The Cancer Genome
Atlas (TCGA), Human Protein Atlas (HPA), Tumor Immune Estimation Resource (TIMER), Cancer Cell Line Encyclopedia
(CCLE), integrated repository portal for tumor-immune system interactions (TISIDB), and Search Tool for the Retrieval of
Interaction Gene/Proteins (STRING) database, we systematically analyzed the immune correlation of AKAP12 from three
aspects including immune infiltration cells, immune-related pathways, and immunomodulators and developed a AKAP12-
related 4-gene signature for prognosis prediction. Our results showed that AKAP12 mRNA and protein levels were
downregulated in STAD patients, and its expression was positively related to CD4+ T cells and macrophages. In addition, the
immune cell infiltration levels were associated with AKAP12 gene copy number deletion in STAD. Based on CCLE database,
we found that AKAP12 coexpressed genes were enriched in several immune- and cancer-related pathways, which was further
validated by Gene Set Enrichment Analysis (GSEA). Moreover, we identified 46 immunomodulators that were significantly
related to AKAP12 expression using TISIDB database, and these immunomodulators were involved in immune-related
pathways including Th17 cell differentiation and natural killer cell-mediated cytotoxicity. Additionally, based on the 46
AKAP12-related immunomodulators, a 4-gene risk prediction signature was developed using the Cox regression model. The
risk signature was identified as an independent prognostic factor, which can accurately predict the prognosis of patients with
STAD, showing good predictive performance. Furthermore, we constructed a prognostic nomogram and calibration to predict
and assess patient survival probabilities by integrating the risk score and other clinical factors. In conclusion, our study
provides strong evidence that AKAP12 is closely related to tumor immunity in STAD from three aspects: immune infiltration
cells, immune pathways, and immunomodulators. More importantly, the AKAP12-related prognostic signature may have a
good application prospect for clinical practice.

1. Introduction

Stomach adenocarcinoma (STAD) is the fifth most common
malignant tumor and one of the main causes of cancer
deaths, accounting for 7.7% of all cancer deaths [1]. Its occur-
rence is a progressive process involving multiple steps and
multiple factors, such as environmental diet, helicobacter
pylori infection, heredity, and precancerous state. In the early
stage of STAD, there are only some unclear upper gastroin-
testinal symptoms, such as abdominal pain, anorexia, and

mild anemia. With the progress of the disease, pyloric or
cardiac obstruction may occur, and complications such as
upper gastrointestinal hemorrhage and perforation may also
occur. Local masses, ascites, and supraclavicular lymph node
enlargement can be seen in advanced STAD. At present, sur-
gery is the main treatment for gastric adenocarcinoma. Che-
motherapy, radiotherapy, and traditional Chinese medicine
can be used as auxiliary treatments. Clinically, for resectable
STAD patients, the comprehensive treatment model based
on surgical resection combined with chemotherapy has
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certain curative effects, but the tumor is prone to progress
or relapse, and the 5-year survival rate of advanced STAD
patients is as low as 10% to 15% [2]. For unresectable and
metastatic STAD, patients can obtain limited benefit from
typical therapies, including systemic chemotherapy and
targeted drugs, but they are facing a larger treatment bot-
tleneck, and the survival time of patients usually does not
exceed 1 year [3]. Although the individualized comprehen-
sive treatment strategy based on surgery has been widely
used in STAD, tumor recurrence and metastasis are still
the main reasons for its high mortality. Moreover, the
early diagnosis rate of STAD is low. Most patients with
STAD have been in local progression stage when they visit
the hospital, and the direct surgical effect is not ideal.
Therefore, novel treatment strategies and biomarkers are
urgently needed.

Recently, the emergence of immune checkpoint inhibi-
tors (ICI) has officially kicked off the era of tumor immuno-
therapy. As a new type of treatment, tumor immunotherapy
is based on the human immune system to exert antitumor
effects by inhibiting negative feedback immune regulation
mechanisms [4]. Immune checkpoint regulation is one of
the most important immune regulation mechanisms for
antitumor treatment, which regulates the intensity or
breadth of the immune response through ligand-receptor
binding [5]. Programmed cell death 1(PD-1) and pro-
grammed cell death ligand 1 (PD-L1) are the most well-
known target molecules for immune checkpoint blockade
[6]. PD-1/PD-L1 pathway inhibitors have achieved signifi-
cant clinical effects in the treatment of a variety of malignant
tumors such as melanoma, bladder cancer, lung cancer, and
renal cell carcinoma [7]. Especially, PD-L1 expression is
upregulated in gastric cancer and is closely related to tumor
progression and patient prognosis [8]. Moreover, in several
clinical trials, ICI alone or in combination with other treat-
ment options have achieved good positive results and less
toxic side effects for STAD [9–11]. Thus, some ICI were used
in clinical. For instance, trastuzumab is used for human
EGFR-2 positive gastric cancer, and pembrolizumab is used
for second-line and later-line treatment of gastric cancer
with highly microsatellite instability/different mismatch
repair (MSI-H/dMMR) [10, 11]. However, the effective
response rate for immunotherapy is limited to fraction of
gastric cancer patients, and the commonly used markers,
such as PD-L1, tumor mutation burden and tumor infiltrat-
ing leukocytes, also have certain defects in assessing the
response to immunotherapy [12]. Therefore, it is essential
to identify novel biomarker and to explore its immune
implication, thus enhancing individualized treatment and
improving the success rate of immunotherapy. In silico anal-
ysis is promising to screen out useful biomarkers for
immune therapy. For example, Wang and his colleagues
screened immune-associated DEGs between esophageal can-
cer and normal samples using TCGA and immPORT data-
bases, based on which a 6-immune gene prognostic model
was constructed by regression algorithm and examined both
in survival and immunity terms [13]. Similarly, the current
study was processed bioinformatically on the role of
AKAP12 in the immunity of stomach carcinoma.

A kinase anchor protein 12 (AKAP12), as an intracellular
macromolecular scaffold protein and a member of kinase
anchoring proteins family, participates in the integrated regu-
lation of multiple signals in biological cells and exert an
important role in maintaining the integrity of normal tissue
structure and function by anchoring protein kinase C, protein
kinase A, F-actin, etc. [14]. In recent years, a series of studies
have reported that AKAP12 expression is downregulated in
many types of tumors, such as liver cancer, colorectal cancer,
prostate cancer, and lung cancer [15]. Its decreased expression
and low activity in tumor cells may be due to hypermethyla-
tion in the promoter region of AKAP12 gene and are closely
related to the malignancy degree [16, 17]. Moreover, the vitro
and vivo experiments have confirmed that overexpression of
AKAP12 significantly inhibits tumor cell proliferation and
metastasis by controlling oncogenic signaling pathways in a
spatiotemporal manner [18]. In contrast, tumor malignant
biological behaviors were enhanced by interfering with the
expression of AKAP12 [19, 20]. The occurrence of tumor is
determined by the interaction between tumor cells and the
tumor microenvironment including immune infiltrating cell
microenvironment around tumor cells [21]. However, as a
well-known tumor suppressor, the immune implication of
AKAP12 in STAD has not been explored.

In the present study, comprehensive bioinformatics
analysis was performed to evaluate the association between
AKAP12 expression and immune infiltration cells, immuno-
modulators, and the signaling pathways regulating the
AKAP12-mediated immune response. Moreover, based on
AKAP12-associated immunomodulators, we developed a 4-
immunomodulator prognostic signature for survival predic-
tion in STAD. In this step, we used univariate and multivar-
iate Cox regression analyses to construct and validate
prognostic characteristics and evaluate the predictive perfor-
mance of risk scores, etc. Cox regression analysis takes sur-
vival outcome and survival time as dependent variables
and can simultaneously analyze the impact of many factors
on survival. Because of its excellent nature, it has been
widely used in medical follow-up studies.

2. Materials and Methods

2.1. Data Collection. The transcriptome profiling (type:
HTSeq–FPKM) and clinical information (type: bcr xml) of
STAD were both downloaded from The Cancer Genome
Atlas (TCGA) project (https://portal.gdc.cancer.gov/). A
total of 407 RNA expression profile samples were obtained,
which included 375 tumor samples and 32 normal samples.
The clinical data of 443 STAD cases were downloaded. After
excluding patients with missing survival data and crucial
clinical factors, the information of 371 samples was retained
for further analysis.

2.2. AKAP12 Expression Analysis. Difference analysis of
AKAP12 mRNA expression in normal and STAD samples
was performed by R package “limma.” The immunohisto-
chemical protein expression of AKAP12 gene in normal
and STAD samples was obtained from the Human Protein
Atlas (HPA) database (https://www.proteinatlas.org/) [22].
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2.3. Correlation Analysis between AKAP12 and Immune Cell
Based on Tumor Immune Estimation Resource (TIMER) and
CIBERSORT. TIMER database contains three modules:
immune association, cancer exploration, and immune esti-
mation, and it is a reliable tool to investigate the relationship
between immune infiltration and target gene (https://
cistrome.shinyapps.io/timer/) [23]. In this study, the correla-
tions between AKAP12 expression levels/copy number alter-
ations (CNA) and six types of immune cells were estimated
using the TIMER “immune association” modules. CIBER-
SORT is an R/web version tool that deconvolves the expres-
sion matrix of human immune cell subtypes based on the
principle of linear support vector regression [24]. This
method is based on a known reference gene set and provides
a set of gene expression characteristics of 22 immune cell
subtypes, namely, LM22 [25]. In our study, we used CIBER-
SORT to calculate the abundance of immune cells in TCGA-
STAD samples based on LM22, and samples were assigned
into AKAP12high and AKAP12low groups according to
AKAP12 expression medium. Difference analysis of 22 types
of immune cells between the two groups was performed by R
package “limma” and visualized by R package “vioplot.”

2.4. Analysis and Validation of Immune-Related Pathways of
AKAP12 Coexpressed Genes. To investigate AKAP12-related
pathways, we first downloaded the RNA-seq data of 37
stomach cancer cell lines from the Cancer Cell Line Ency-
clopedia (CCLE) website (https://sites.broadinstitute.org/
ccle) and processed them by perl [26]. Based on the expres-
sion matrix data of stomach cell lines, we further screened
out AKAP12 coexpressed genes through the “limma” R
package with the filtering conditions: correlation coefficient
> 0:5 and p value < 0.05. Finally, these coexpressed genes
were subjected to Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) enrichment
analyses with the filtering condition p value < 0.05, which
was visualized by the “ggplot2” R package. To further clarify
the gene set related to AKAP12, the medium expression
value of AKAP12 divided 37 stomach cancer cell lines into
AKAP12high and AKAP12low groups, and Gene Set Enrich-
ment Analysis (GSEA) was performed by setting the prede-
fined gene sets “c2.cp.kegg.v7.4.symbols.gmt” with false
discovery rate (FDR) p value < 0.05 and permutation value
1000 [27].

2.5. Analysis of AKAP12-Associated Immunomodulators.
Integrated repository portal for tumor-immune system inter-
actions (TISIDB) is a powerful website containing a large
amount of tumor immunity related data, in which the associ-
ation between genes and immune functions (such as lympho-
cytes, immunomodulators, and chemokines) for 30 types of
TCGA cancers was precalculated (http://cis.hku.hk/TISIDB/
) [28]. In this study, we used TISIDB to identify AKAP12
expression-associated immunostimulators and immunoinhi-
bitors under the condition p value < 0.05 through Spearman
correlation test. Then, AKAP12-associated immunomodula-
tors were used to construct a protein-protein interaction
(PPI) network using Search Tool for the Retrieval of Interac-
tion Gene/Proteins (STRING) database (https://string-db

.org/) with setting high confidence at 0.7 [29]. Afterward,
AKAP12-associated immunomodulators were subjected to
GO and KEGG analysis using WebGestalt online tool
(http://www.webgestalt.org/) with FDR < 0:05 [30].

2.6. Construction of the Prognostic Signature and Nomogram.
The association of AKAP12-associated immunomodulators
and prognosis was analyzed by stepwise Cox regression
analysis using R package “survmine” and “glmnet.” A prog-
nostic signature was established based on the AKAP12-
associated immunomodulators. According to the multivari-
ate Cox result, the risk score for each patient was calculated
through the formula: risk score = β1x1 + β2x2 +⋯ + βixi,
where βi represents the coefficient of each prognostic gene,
and xi represents the expression level of prognostic gene
[31]. The association between risk score and survival time
was determined by Kaplan–Meier survival curve and log-
rank test. Multivariate Cox regression analysis was used to
assess the independence of risk score from other clinical
factors. The prediction performance of risk score was eval-
uated using R package “survivalROC.” The nomogram was
constructed to predict the impact of important clinical
parameters including risk score on the overall survival of
patients using R package “rms,” and the consistency index
(C-index) is calculated to evaluate the prediction accuracy
of the nomogram [32]. Calibration curves were plotted to
compare the predicted survival rate with actual survival rate
by R package “rms.”

2.7. Statistical Analysis. Statistical analyses were conducted
by R (v4.0.5). Student’s t-test was used to compare differ-
ences between groups. Survival curves were generated using
the Kaplan–Meier method. Correction analysis of gene
expression was performed by Spearman method. Univariate
and multivariate analyses were conducted using Cox regres-
sion models to determine the independent prognostic fac-
tors. p value < 0.05 indicated statistical significance.

3. Results

3.1. Association between AKAP12 and Immune Infiltration
Cells in STAD. As a tumor suppressor, AKAP12 mRNA
and protein levels were downregulated in STAD patients
(Figures 1(a) and 1(b)). We next investigate whether
AKAP12 expression and copy number alterations were asso-
ciated with tumor immune infiltration based on TIMER
database. As shown in Figure 1(c), AKAP12 expression
was positively related with infiltration levels of CD4+ T cell
(cor = 0:408) and macrophage (cor = 0:545). Besides that,
with chromosome arm-level deletion of AKAP12, infiltra-
tion levels of B cells, CD8+ T cells, CD4+ T cells, and den-
dritic cells were significantly decreased (Figure 1(d)). To
further clarify the relationship between AKAP12 expression
and specific immune infiltration cells, CIBERSORT method
was used to determine the infiltrating fraction of 22 types
of immune cells in TCGA-STAD samples, and all samples
were divided into AKAP12high and AKAP12low expression
groups based on AKAP12 expression median. Our results
showed that the infiltrating proportions of plasma cells,
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Figure 1: Continued.
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Figure 1: The expression of AKAP12 in STAD and its relationship with immune infiltrating cells. (a) The mRNA expression levels of AKAP12
in TCGA-STAD tissues and normal samples. ∗∗p < 0:01. (b) Immunohistochemical analysis of AKAP12 protein expression in STAD and
normal tissues. Data were obtained from HPA database. The brown areas represent positive expression and the blue negative. (c) Correlation
analysis between AKAP12 mRNA expression and six types of immune infiltrating cells based on TIMER database. The relation coefficient
and p value are shown in each plot. (d) Associations between AKAP12 gene copy numbers and immune cell infiltration levels based on
TIMER database. The p value is shown in each plot. (e) Violin plot displaying the infiltrating levels of 22 types of immune cells between the
AKAP12high expression group and the AKAP12low expression group (group cutoff = AKAP12 expressionmedian). The p value is shown in
the figure.
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Figure 2: AKAP12 is associated with cancer- and immune-related pathways based on CCLE project. (a) GO function annotation based on
AKAP12 coexpressed genes. (b) KEGG pathway analysis based on AKAP12 coexpressed genes. (c) GSEA enrichment analysis of AKAP12high

and AKAP12low expression groups.
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Figure 3: Continued.
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memory activated CD4 T cells, follicular helper T cells, rest-
ing NK cells, and neutrophils were significantly higher in the
AKAP12low expression group (Figure 1(e)). On the contrary,
patients with high AKAP12 expression displayed higher
infiltrating proportions of native B cells, memory resting

CD4 T cells, regulatory T cells, activated NK cells, mono-
cytes, and resting mast cells (Figure 1(e)). The above results
indicate that the expression of AKAP12 and the alteration of
copy number may affect the infiltration level of tumor
immune cells.
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Figure 3: Identification of AKAP12-associated immunomodulators in STAD. (a) Correlation heat map and dot plots showed 15
immunoinhibitors significantly associated with AKAP12 expression in STAD. (b) Correlation heat map and dot plots showed 31
immunostimulators significantly associated with AKAP12 expression in STAD.
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Figure 4: Continued.
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3.2. AKAP12 Is Associated with Immune-Related Pathways
in Gastric Cancer. To investigate the functional and pathway
enrichment of the AKAP12-associated genes, we performed
the GO and KEGG analyses of the AKAP12 coexpressed
genes. We first analyzed the RNA-seq data containing 37
stomach cancer cell lines from the CCLE datasets. Based
on the expression matrix data of stomach cell lines, we fur-
ther filtered out a series of AKAP12 coexpressed genes by
setting the filtering conditions: correlation coefficient > 0:5
and p value < 0.05. GO results of these coexpressed genes
are shown in Figure 2(a), and KEGG analysis showed that
AKAP12-related coexpressed genes were enriched in cancer-
and immune-related pathways, including EGFR tyrosine
kinase inhibitor resistance, Ras signaling pathway, FoxO
signaling pathway, p53 signaling pathway, Fc gamma R-
mediated phagocytosis, PI3K-Akt signaling pathway, and
mTOR signaling pathway (Figure 2(b)). Furthermore, based
on the expression medium value of AKAP12 in CCLE data-
sets, stomach cell lines were assigned into AKAP12high and
AKAP12low groups. As shown in Figure 2(c), GSEA enrich-
ment analysis demonstrated that several cancer- and
immune-related pathways, such as hedgehog signaling path-
way, pathway in cancer, and antigen processing and presen-
tation, were activated in the AKAP12high group, which
further validated that AKAP12 may affect tumor progression
through immune-related pathways in gastric cancer.

3.3. AKAP12 Is Associated with Immunomodulators in
Gastric Cancer. We next aimed to explore the relationship
between AKAP12 and immunomodulators. For this pur-
pose, TISIDB, an integrated repository portal for tumor-
immune system interactions, was used to analyze the relations
between immunomodulators and AKAP12 expression. Here,

15 immunoinhibitors (ADORA2A, BTLA, CD96, CD160,
CSF1R, HAVCR2, IL10, IL10RB, KDR, LGALS9, PDCD1LG2,
PVRL2, TGFB1, TGFBR1, and TIGIT) (Figure 3(a)) and 31
immunostimulators (C10orf54, CD27, CD28, CD40LG,
CD48, CD86, CD276, CXCL12, CXCR4, ENTPD1, HHLA2,
IL2RA, IL6, IL6R, KLRC1, KLRK1, MICB, NT5E, PVR,
RAET1E, TMEM173, TNFRSF9, TNFRSF13B, TNFRSF13C,
TNFRSF14, TNFRSF25, TNFSF4, TNFSF13, TNFSF13B,
TNFSF14, and TNFSF18) (Figure 3(b)) were identified as
either positively or negatively correlated with AKPA12 expres-
sion. By constructing a PPI network of the 46 immunomodu-
lators, we obtain a close interaction relationship between
AKAP12-related immunoregulatory genes (Figure 4(a)). GO
function annotations showed that AKAP12-related immuno-
modulators were involved in important functions related to
tumorigenesis and development (Figure 4(b)). Pathway
enrichment volcano map showed that significantly enriched
pathways of AKAP12-related immunomodulators include
some immune and tumor-related pathways (Figure 4(c)).

3.4. Construction of an AKAP12-Related Immunomodulator
Prognostic Signature. To investigate the prognostic signifi-
cance of the AKAP12-related immunomodulators, the
expression profile of 46 candidate AKAP12-related immu-
nomodulators combined with survival data was analyzed
in TCGA-STAD dataset (n = 371) using a stepwise multivari-
ate Cox regression analysis. Through filtration with p value
< 0.05 as the cutoff in univariate Cox regression analysis, 7
of 46 AKAP12-related immunomodulators were identified
to be associated with the overall survival of patients
(Figure 5(a)). Then, a prognostic risk signature containing
four AKAP12-related immunomodulators (CXCR4, IL6,
NT5E, and TNFSF18) was constructed following stepwise
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Figure 4: Analysis of the pathways involved in AKAP12-associated immunomodulators. (a) Constructing a PPI network based on the 46
AKAP12-associated immunomodulators using STRING tool. (b) GO function annotation based on the 46 AKAP12-associated
immunomodulators using WebGestalt online tool. (c) KEGG enrichment analysis based on the 46 AKAP12-associated immunomodulators
using WebGestalt online tool.
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Figure 5: Continued.
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Figure 5: Construction of a prognostic gene signature based on AKAP12-associated immunomodulators. (a) The associations between
AKAP12-associated immunomodulators and overall survival in STAD using univariate Cox regression analysis. (b) The hazard ratios of
AKAP12-associated immunomodulators integrated into the prognostic signatures are shown in the forest plots for TCGA-STAD
patients. (c) Survival curve for risk score based on Kaplan–Meier analysis in TCGA-STAD patients. (d) Distribution of risk scores,
survival status, and gene expression profiles for the TCGA-STAD patients. (e) Univariate and (f) multivariate Cox regression analyses of
the risk score and overall survival in TCGA-STAD patients. (g) Time-dependent ROC curve for the risk score in TCGA-STAD patients.
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multivariate Cox regression analysis (Figure 5(b)). In this
prognostic signature, each patient risk score was calculated
through the proposed formula: risk score = sumof the
expression level of the four immunomodulators × their
respective coefficient. Patients were then divided into high-
and low-risk groups according to the optimal risk score cutoff.
Survival curve exhibited that the high-risk group patients had
a worse prognosis than the low-risk group patients, with p
value < 0.001 (Figure 5(c)). The risk heat map displayed the
expression of the four risky immunomodulators was upregu-
lated as the patient’s risk score increased, and the high-risk
group also had higher deaths than the low-risk group
(Figure 5(d)). Then, we aimed to test whether the risk signa-
ture was independent of other clinicopathological characteris-

tics; our results showed that the risk score was significantly
associated with overall survival following the univariate Cox
regression analysis (HR = 2:128, 95%CI = 1:549 – 2:922, and
p value < 0.001) (Figure 5(e)). Moreover, with correction for
age, gender, grade, and stage in the multivariate Cox regres-
sion model, we found that the risk score still retained its prog-
nostic significance as an independent prognostic factor for
STAD patients (HR = 1:863, 95%CI = 1:318 – 2:634, and p
value < 0.001) (Figure 5(f)). Furthermore, the receiver operat-
ing characteristic (ROC) curve showed that risk signature had
an area under the curve (AUC) value of 0.652 (Figure 5(g)).
Finally, we generated a nomogram to evaluate the predicting
performance of the risk score combined with other clinical fac-
tors in TCGA-STAD patients (Figure 6(a)). The concordance
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Figure 6: Prognostic nomogram for TCGA-STAD dataset. (a) Nomogram for predicting the overall survival of TCGA-STAD patients. (b)
Calibration curves of 1-, 3-, and 5-year overall survival of TCGA-STAD patients. Red line: nomogram-predicted survival curve. Gray line:
ideal survival reference curve.
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index (C-index) that reflects the accuracy of prediction and
actual survival situation was 0.608. The calibration curve dis-
played that the predicted probability of the nomogram (red
line) closely matched the ideal reference line (gray line) for
the 5-year survival prediction (Figure 6(b)).

4. Discussion

STAD is one of the malignant tumors that endanger human
health. For early STAD, surgery combined with chemother-
apy has a significant effect, but for advanced STAD, its effect
is not ideal [33]. Immunotherapy provides hope for the
treatment of patients with advanced STAD, but there is a
defect in drug resistance [12]. Thus, it is essential and
urgently needed to identify novel biomarkers of immuno-
therapy in STAD. In the present study, we systematically
analyzed the immune significance of the tumor suppressor
AKAP12 from various aspects including immune infiltration
cells, immune-related pathways, and immunomodulators
and constructed an AKAP12-related immunomodulator
prognostic signature. Our results suggest that AKAP12
may be a potential immunotherapeutic target for STAD.

The regulatory effect of AKAP12 as a tumor suppressor
gene in tumors has been extensively studied and confirmed.
For instance, KAP12 expression is downregulated in colo-
rectal tumor tissues, and AKAP12 methylation level was
positively associated with tumor grade [16]. Exogenous
overexpression of AKAP12 in Lovo colon cancer cell line
inhibits tumor cell proliferation, migration, and invasion
ability [18]; in contrast, AKAP12 silencing or AKAP12/
HDAC3 cosilencing promotes tumor cell proliferation,
colony-forming ability, and cell cycle progression [20].
These studies suggest AKAP12 plays a protective role in pre-
venting the occurrence and progression of colorectal cancer.
In addition to its inhibitory effect on tumor growth and
metastasis by scaffolding key regulatory proteins such as
protein kinase C, F-actin, and cyclins, AKAP12 also exerts
important role in the drug resistance mechanism of tumors
[14, 15, 34]. In our present study, we also detected a signifi-
cantly lower expression of AKAP12 in STAD. Moreover,
CpG island hypermethylation was frequently observed in
the promoter region of AKAP12 in gastric cancer, and the
expression of AKAP12 can be restored through methyltrans-
ferase inhibitor [17], suggesting DNA methylation is directly
involved in the silencing of the AKAP12 in gastric cancer.
Furthermore, the reexpression of AKAP12 in gastric cancer
cell line induced apoptotic cell death and reduced colony
formation [17], indicating AKAP12 is a potential tumor sup-
pressor of gastric cancer.

Tumor immunotherapy reflects the complex cellular and
molecular interactions between tumor cells and the sur-
rounding immune microenvironment [21]. An important
content of our research is to clarify the association between
AKAP12 and immune infiltration cells in STAD. Based on
TIMIR database, our results demonstrated that AKAP12
expression was positively related to CD4+ T cells and macro-
phages. Besides that, the deletion of AKAP12 somatic copy
number causes a reduction in the infiltrating proportion of
B cell, CD8+ T cell, CD4+ T cell, and dendritic cell. It should

be noted that the abovementioned immune cells are a fuzzy
classification concept. It is essential to investigate the precise
tumor-promoting or -suppressing immune cells to clarify
the specific role of AKAP12-related immune cells. For this
purpose, CIBERSORT algorithm containing 22 types of
infiltrating immune cells was performed, and the results
showed the infiltrating abundance of tumor-suppressing
immune cells, such as native B cells, memory resting CD4
T cells, and activated NK cells, was significantly higher in
patients with AKAP12-high expression. These results sug-
gest that AKAP12 may play an important effect on immune
cell infiltration of STAD.

Furthermore, our results confirmed that AKAP12 is
involved in the regulation of immune-related signaling path-
ways from at least three perspectives. Firstly, KEGG pathway
analysis in our study revealed that AKAP12 coexpressed
genes were significantly enriched in PI3K-Akt signaling
pathway and mTOR signaling pathway. It is well established
that the PI3K-AKT-mTOR signaling network is dysregu-
lated in human cancer, and PI3K-AKT-mTOR inhibitors
can not only target cancer cell biology but also weaken
immune cell effector functions [35, 36]. Secondly, GSEA
enrichment analysis in our study showed that antigen pro-
cessing and presentation are activated in patients with
AKAP12 high expression, which has been proved to be an
important and essential link in the process of immune cells
killing cancer antigens in tumor immunity [37]. Thirdly,
KEGG pathway analysis based on AKAP12-related immu-
nomodulators demonstrated that several important immune
pathways including Th17 cell differentiation and natural
killer cell-mediated cytotoxicity were involved in AKAP12-
mediated immune events. Sun et al. reported that tumor
exosomes promote Th17 cell differentiation and inhibit
tumor growth by delivering lncRNA CRNDE-h in colorectal
cancer [38]. Shen et al. provide evidence that natural killer
cell-mediated cytotoxicity can be enhanced to kill breast
cancer cells by silencing NKG2D ligand-targeting miRNA
[39]. Taken together, we speculate that AKAP12 may also
play an important role in gastric cancer tumor immunity
through these immune-related pathways.

In recent years, as ICI have made breakthroughs in the
treatment of gastric cancer, and more and more immune-
related gene signatures have been identified to evaluate the
prognosis of gastric cancer patients. For example, Wang
et al. identified a stromal-immune score-based 4-gene prog-
nostic signature by estimating stromal and immune scores
from TCGA and Gene Expression Omnibus (GEO) gastric
cancer data [40]. Liu et al. developed an immune-related
gene pair signature based on ImmPort database, and the sig-
nature is associated with overall survival and immune check-
point expression in gastric cancer patients [41]. In our study,
we also identified an AKAP12-related immunomodulator
signature for STAD prognosis prediction, in which four
immunomodulators (CXCR4, IL6, NT5E, and TNFSF18)
were included. CXCR4 encodes a CXC chemokine receptor
specific to stromal cell-derived factor-1, which has seven
transmembrane regions and is located on the cell surface.
The cases studied by Kamihara et al. [42] indicated that
CXCL12 (SDF-1)/CXCR4 axis is involved in the observed
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metastasis of diffuse large B cell lymphoma to primary
STAD and considered that the interaction between chemo-
kines and their receptors may be the potential mechanism
of the observed metastasis between tumors. IL6 encodes a
cytokine that plays a role in inflammation and B cell matu-
ration. The study of Ju et al. [43] showed that tumor-
associated macrophages through IL-6 and TNF-ɑ signal
induce the expression of PD-L1 in gastric cancer cells and
help tumor cells escape cytotoxic T cell killing. NT5E
encodes a plasma membrane protein that catalyzes the con-
version of extracellular nucleotides to membrane permeable
nucleosides and performs many homeostatic functions in
healthy organs and tissues. Since the free adenosine pro-
duced by NT5E can inhibit the cellular immune response
and promote the immune escape of tumor cells, it can be
used as an inhibitory immune checkpoint molecule [44].
TNFSF18 is a member of the tumor necrosis factor (ligand)
superfamily 18 and has the activity of binding to tumor
necrosis factor receptors. The results of Chen et al. showed
that five differently expressed genes, including TNFSF18,
can be used as a single biomarker to predict the efficacy of
anti-PD-1 in patients with metastatic non-small-cell lung
cancer [45]. In addition, this risk signature is not only an
independent prognostic factor for gastric cancer but also
presents good prediction performance. Moreover, we pro-
vide a reference for the individualized prognosis of patients
by integrating the risk score and other clinical factors to con-
struct a nomogram.

In conclusion, despite the flaws in our study, for exam-
ple, pure bioinformatics analysis without experimental veri-
fication, our study provides strong evidence that AKAP12 is
closely related to tumor immunity in STAD from three
aspects: immune infiltration cells, immune pathways, and
immunomodulators. More importantly, the AKAP12-
related prognostic signature may provide good application
prospects for clinical practice.
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