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Abstract
Recent advances in long-range Hi-C contact mapping have revealed the importance of the

3D structure of chromosomes in gene expression. A current challenge is to identify the key

molecular drivers of this 3D structure. Several genomic features, such as architectural pro-

teins and functional elements, were shown to be enriched at topological domain borders

using classical enrichment tests. Here we propose multiple logistic regression to identify

those genomic features that positively or negatively influence domain border establishment

or maintenance. The model is flexible, and can account for statistical interactions among

multiple genomic features. Using both simulated and real data, we show that our model out-

performs enrichment test and non-parametric models, such as random forests, for the iden-

tification of genomic features that influence domain borders. Using Drosophila Hi-C data at

a very high resolution of 1 kb, our model suggests that, among architectural proteins,

BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our

model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143

and Polycomb group proteins as positive drivers of domain borders. The model also reveals

the existence of several negative drivers that counteract the presence of domain borders

including P300, RXRA, BCL11A and ELK1.

Author Summary

Chromosomal DNA is tightly packed up in 3D such that around 2 meters of this long mol-
ecule fits into the microscopic nucleus of every cell. The genome packing is not random,
but instead structured in 3D domains that are essential to numerous key processes in the
cell, such as for the regulation of gene expression or for the replication of DNA. A current
challenge is to identify the key molecular drivers of this higher-order chromosome organi-
zation. Here we propose a novel computational integrative approach to identify proteins
and DNA elements that positively or negatively influence the establishment or mainte-
nance of 3D domains. Analysis of Drosophila data at very high resolution suggests that
among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D
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domains. In humans, our results highlight the roles of CTCF, cohesin, ZNF143 and Poly-
comb group proteins as positive drivers of 3D domains, in contrast to P300, RXRA,
BCL11A and ELK1 that act as negative drivers.

Introduction
High-throughput chromatin conformation capture (Hi-C) has emerged over the past years as
an efficient approach to map long-range chromatin contacts [1–3]. This technique has allowed
the study of the 3D architecture of chromosomes at an unprecedented resolution for many
genomes and cell types [4–7]. Multiple hierarchical levels of genome organization have been
revealed: compartments A/B [1], sub-compartments [8], topologically associating domains
(TADs) [4, 5] and sub-TADs [7]. Among those domains, TADs represent a pervasive structural
feature of the genome organization. TADs are stable across different cell types and highly con-
served across species.

A current challenge is to identify the molecular drivers of topological arrangements of
higher-order chromatin organization. There is a growing body of evidence that insulator bind-
ing proteins (IBPs) such as CTCF, and cofactors such as cohesin, act as mediators of long-
range chromatin contacts [5, 6, 9–11]. In human, depletion of cohesin predominantly reduces
interactions within TADs, whereas depletion of CTCF not only decreases intradomain contacts
but also increases interdomain contacts [12]. The densest Hi-C mapping in human has recently
revealed that loops that demarcate domains are often marked by asymmetric CTCF motifs
where cohesin is recruited [8]. In Drosophila, silencing of cohesin and condensin II have
recently demonstrated their roles on long-range contacts [13]. In addition, numerous IBPs,
cofactors and functional elements colocalize at TAD borders [11]. However it is unclear if all
these proteins and functional elements, or specific combinations of them, play a role in TAD
border establishment or maintenance. Computational approaches that integrate protein bind-
ing (chromatin immunoprecipitation followed by high-throughput DNA sequencing, ChIP-
seq) with Hi-C data may be well-suited to identify the key drivers of chromatin architecture.

Most computational approaches dedicated to chromosome conformation analysis have
focused on correcting contact matrices for experimental biases [6, 14–16] in order to assess
more precisely the significance of contact counts [17, 18], to identify chromatin compartments
[1, 15, 19], or to 3D model chromosome folding [1, 5, 20–22]. However few computational
methods have been proposed to study the roles of DNA-binding proteins and functional ele-
ments in chromosome folding. A simple yet widely used statistical method consists in assessing
enrichment of a genomic feature around 3D domain borders by Fisher’s exact or Pearson’s chi-
squared tests [4, 5, 7]. An important caveat of enrichment test is that it only identifies those
genomic features that colocalize at domain borders, but it cannot determine which genomic
features influence the domain border establishment or maintenance. For instance, two genomic
features might be both found significantly enriched at domain boundaries, but only one of
them might truly influence the domain border establishment or maintenance. This is due to
the colocalization (correlation) between the two genomic features. Statistically speaking, corre-
lation does not imply causation. Other works focused on the prediction of 3D domain borders
using (semi) non-parametric models and identified a subset of genomic features that are the
most predictive of TADs [23, 24]. However a genomic feature can efficiently predict 3D
domain borders without being influential [25].

In this paper, we propose a multiple logistic regression to assess the influence of genomic
features such as DNA-binding proteins and functional elements on topological chromatin
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domain borders. Compared to enrichment test and non-parametric models, multiple logistic
regression assesses conditional independence and thus can identify most influential proteins
with respect to domain borders. Moreover the multiple logistic regression model can easily
accommodate interactions between genomic features to assess the impact of co-occurences on
domain borders. We illustrate our model using recent Drosophila and human Hi-C data allow-
ing to probe TAD borders depending on multiple proteins and functional elements. Using
both simulated and real data, we show that our model outperforms enrichment test and non-
parametric models such as random forests for the identification of known and suspected archi-
tectural proteins. In addition, the proposed method identifies genomic features that positively
or negatively impact TAD borders with a very high resolution of 1 kb.

Results

The model
The proposed multiple logistic regression models the influences of p genomic features on 3D
domain borders:

ln
ProbðY ¼ 1jXÞ

1� ProbðY ¼ 1jXÞ ¼ b0 þ βX ð1Þ

Where X = {X1, . . ., Xp} is the set of p genomic features such as DNA-binding proteins and Y
is a variable that indicates if the genomic bin belongs to a border (Y = 1) or not (Y = 0). The
set β = {β1, . . ., βp} denotes slope parameters, one parameter for each genomic feature. The
model can easily accommodate interaction terms between genomic features (see Subsection
Materials and Methods, Analysis of interactions). By default, model likelihood is maximized
by iteratively reweighted least squares to estimate unbiaised parameters. However, when
there are a large number of correlated genomic features in the model, L1-regularization is
used instead to reduce instability in parameter estimation [26].

We illustrate the proposed model using two scenarios and compare it with enrichment test
(Fig 1). In the first scenario, protein A positively influences 3D domain borders, while protein
B colocalizes to protein A. In this scenario, enrichment test will estimate that the parameter
associated with protein A βA > 0 and the parameter associated with protein B βB > 0. In other
words, both proteins A and B are enriched at 3D domain borders. Multiple logistic regression
will instead estimate that parameters βA > 0 and βB = 0. This means that protein A positively
influences 3D domain borders, while protein B does not. This is because multiple logistic
regression can discard spurious associations (here between protein B and 3D domain borders).
One would argue that enrichment test can also be used to discard the spurious association if
the enrichment of protein B when protein A is absent is tested instead. However such condi-
tional enrichment test becomes intractable when more than 3 proteins colocalize to domain
borders, whereas multiple logistic regression is not limited by the numbers of proteins to ana-
lyze within the same model.

In the second scenario, the co-occurrence of proteins A and B influences 3D domain bor-
ders, but not the proteins alone. Enrichment test will find that each protein alone is enriched at
3D domain borders (βA > 0 and βB > 0) as well as their interaction (βAB> 0). The proposed
model will instead find that only the interaction between proteins A and B influences 3D
domain borders (βA = 0, βB = 0 and βAB > 0).

In addition to these two previous scenarios, another interest of the model is the possibility
to study the negative influence of a protein (or of a co-occurence of proteins) on TAD border
establishment of maintenance. In other words, its presence counteracts the establishment or
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maintenance of 3D domain borders. In such scenario, multiple logistic regression will estimate
a parameter β< 0 (see below).

Depending on the parameter estimation algorithm used (likelihood maximization or
L1-regularization), results are interpreted differently. If likelihood maximization is used, then a
protein beta parameter can be considered as significantly different from zero if the correspond-
ing p-value is lower than the significance level computed by Bonferroni procedure. If L1-regu-
larization is used instead, then p-values are not computed. A protein is considered as
influential if its beta parameter is different from zero. Using both algorithms, the beta parame-
ter is the only measure used to quantify how strong is the influence of a protein on the 3D
domain borders, and the p-value should not be used instead because it depends on the amount
of data available. Both algorithms are useful in practice. Likelihood maximization allows to
estimate beta parameters without any bias but influential proteins should be known in advance.
L1-regularization can be useful to select the influential proteins among a large set of correlated
candidates, but estimates will be biased.

Parameter estimation accuracy
Several characteristics of the analyzed ChIP-seq and functional element data might prevent the
accurate estimation of multiple logistic regression parameters β. The matrix X of genomic fea-
tures is sparse (numerous values equal zero) because genomic features are often absent from a

Fig 1. Illustration of the proposed multiple logistic regression to assess the influences of genomic features on 3D domain borders and
comparison with enrichment test.

doi:10.1371/journal.pcbi.1004908.g001
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particular genomic bin. Sparsity of matrix X is known to prevent convergence of likelihood
maximization for parameter estimation [27]. Moreover some genomic features can be corre-
lated. For instance, different insulator binding proteins might bind to the same genomic
regions. For all these reasons, accurate estimation of parameters could fail in theory. Hence we
evaluated the accuracy of parameter estimation using simulations.

We simulated data that were similar to real ChIP-seq data (see Subsection Materials and
Methods, Data simulation, first paragraph). Both genomic coordinate data (e.g., ChIP-seq peak
coordinates) and quantitative data (e.g., ChIP-seq signal intensity log ChIP

Input
) were generated.

From the simulated data, multiple logistic regression model parameters were then estimated by
maximum likelihood. We first simulated 100 genomic coordinate and 100 quantitative datasets
that comprised 6 proteins and learned models without considering any interaction terms. In
Fig 2a, we plotted true against estimated parameter values. We reported a very good accuracy
for parameter estimation for both genomic coordinate and quantitative data with R2 = 99.5%
(p< 1 × 10−20) and R2 > 99.9% (p< 1 × 10−20) between true and estimated parameter values,
respectively. Because some proteins might be rare over the genome and only involved in some
3D domain borders, we studied parameter accuracy for simulated proteins with varied ChIP-
seq peak numbers. Parameter estimation was highly accurate even for proteins with a low num-
ber of peaks over the genome (R2 = 97.4% for 50 peaks; S1 Fig). In addition, we sought to assess
how parameter estimation is affected by 3D domain border inaccuracy of few kilobases. We
observed that with a border inaccuracy equal or lower than 2 kb, parameter estimation was still
accurate (R2> 70.9%, S2 Fig). We then simulated 100 genomic coordinate and 100 quantitative
datasets that comprised the same 6 proteins and learned models with all two-way (e.g. X1 X2)
interaction terms. In Fig 2b, we plotted true against estimated parameter values corresponding
to interaction terms only. Parameter estimation accuracy was still high for both genomic coor-
dinate data (R2 = 94.6%, p< 1 × 10−20) and quantitative data (R2 = 99.9%, p< 1 × 10−20). We
concluded that model parameter estimation was accurate for both marginal and two-way inter-
action of genomic features.

MLR outperforms enrichment test and random forests to identify drivers
of TAD borders
We then sought to assess how multiple logistic regression (MLR) efficiently identifies genomic
features that influence TAD borders, comparing with other approaches commonly used to
assess the link between TAD borders and genomic features. We compared our model with
enrichment test (ET) [4] and non-parametric model [23]. For the non-parametric model, we
used random forests (RF) which are very similar to the model used in [23], but for which a scal-
able implementation allowed high resolution analysis (https://github.com/aloysius-lim/bigrf).
For this purpose, we first simulated 100 datasets comprising 11 genomic features {X1, X2, . . .,
X11} that were similar to real ChIP-seq data (see Subsection Materials and Methods, Data simu-
lation, second paragraph). Among the genomic features, variables X1 and X10 were chosen to
be causal with an odds ratio of 4, which was comparable to odds ratios estimated from real data
(see below). We compared beta parameters from multiple logistic regression with beta parame-
ters from enrichment test and variable importances from random forests (Fig 3a). Enrichment
test correctly identified causal variables X1 and X10 as the most enriched (beta median = 1.3),
but also found highly enriched non-causal variables (beta median = 1). Random forests
detected X3 and X8 as the most influential variables for prediction (variable importance median
>2.75), although they were not causal genomic features. In contrast, multiple logistic regres-
sion correctly identified X1 and X10 as influential variables (beta median = 0.93) and discarded
non-causal variables (beta median = −0.03).
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We next simulated more complex scenarios for which the causal variables and their number
were randomly chosen for each simulation. In addition, simulations were carried out for differ-
ent odds ratios to study the influence of effect size. As previously, we compared multiple logis-
tic regression with enrichment test and random forests. For each method, we computed the
percentage of models that correctly ranked first the causal variables in terms of beta parameter
or variable importance (Fig 3b). We observed that both enrichment test and multiple logistic
regression successfully ranked first the causal variables even for a low odds ratio of 2 (93% of
models), whereas random forests mostly failed even for the easiest scenario (44% of models for
an odds ratio of 8; in the next paragraph, we will see that random forests poorly performed
here partly due to high data sparsity). We then compared empirical type I error rate for a sig-
nificance threshold α = 10−5 between enrichment test and multiple logistic regression for
which p-values on beta coefficients were available (Fig 3c). Even for a high odds ratio of 8,

Fig 2. Parameter estimation accuracy of multiple logistic regression. a) Estimated versus true parameter for
marginal genomic features (the model does not include any interaction between genomic features). b) Estimated
versus true parameter for two-way interactions between genomic features (i.e. for any interaction between two
genomic features, see SubsectionMaterials andMethods, Analysis of interactions). Genomic coordinate data
are ChIP-seq peak coordinates. Quantitative data are ChIP-seq signal intensities log ChIP

Input.

doi:10.1371/journal.pcbi.1004908.g002
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Fig 3. Comparisons betweenmultiple logistic regression (MLR), enrichment test (ET) and random forests (RF) on simulated and real data. a)
Comparison of MLR beta parameters with ET beta parameters and RF variable importances obtained from 100 simulated datasets including 11 genomic features.
Among the genomic features, variables X1 and X10 were chosen to be causal. For a method, a blue check mark denotes a causal or non-causal variable that was
correctly identified as causal (resp. non-causal). A black x mark denotes a causal or non-causal variable that was incorrectly identified as non-causal (resp.
causal). b) Percents of causal variables ranked first by ET, MLR and RF computed from 100 simulated datasets and varying odds ratios. Here the causal variables
and their number were randomly drawn at each simulation. c) Type I error rates for MLR and ET computed from 100 simulated datasets. RF were not included
because no p-values were available. The significance threshold αwas set to 10−5. Simulated data were the same as in b). d) Comparison of MLRwith ET and RF
to detect known or suspected architectural proteins in human using GM12878 cell ChIP-seq data. Receiver operating characteristic (ROC) curves were computed
fromWald’s statistics for ET, from beta parameters for MLR, and from variable importances for random forests. Computations were carried out at 1 kb resolution.

doi:10.1371/journal.pcbi.1004908.g003
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MLR had a low error rate of 16%. Conversely enrichment test showed a high error rate of 75%
even for an odds ratio of 2.

We also compared MLR with ET and RF using real data in human. For this purpose, we ana-
lyzed new 3D domains detected from recent high resolution Hi-C data at 1 kb for GM12878
cells for which 69 ChIP-seq data were available [8]. Multiple lines of evidence indicate that
CTCF and cohesin serve as mediators of long-range contacts [5, 6, 9–11, 28]. However several
proteins also colocalize or interact with CTCF, including Yin Yang 1 (YY1), Kaiso, MYC-associ-
ated zing-finger protein (MAZ), jun-D proto-oncogene (JUND) and ZNF143 [29]. In addition,
recent work has demonstrated the spatial clustering of Polycomb repressive complex proteins
[30]. Using the large number of available proteins in GM12878 cells, we could compare MLR
with ET and RF to identify known or suspected architectural proteins CTCF, cohesin, YY1,
Kaiso, MAZ, JUND, ZNF143 and EZH2. For this purpose, we computed receiver operating
characteristic (ROC) curves usingWald’s statistics for ET, beta parameters for MLR, and vari-
able importances for RF. We carried out computations at the very high resolution of 1 kb (see
Subsection Materials and Methods, Binned data matrix). ROC curves revealed that MLR clearly
outperformed ET and RF to identify architectural proteins (AUCMLR = 0.827; Fig 3d). Lower
performance of ET (AUCET = 0.613) was likely due to its inability to account for correlations
among the proteins (average correlation = 0.19). Regarding RF, its low performance (AUCRF =
0.558) could be explained by its well-known inefficiency with sparse data (at 1kb, there were
99.4% of zeros in the data matrix X). At a lower resolution of 40 kb (88.5% of zeros), RF per-
formed much better (AUCRF = 0.746) but still lower than MLR (AUCMLR = 0.815; S3 Fig).

To further validate MLR results with real data, we analyzed the impacts of single nucleotide
polymorphisms (SNPs) in the consensus CTCF motif in human. SNPs play an important role in
common genetic diseases and recent works have uncovered differential long-range contacts due
to variations in the CTCF motif [31–33]. SNPs in the consensus CTCF motif are thus expected
to affect, and most likely to decrease, the influence of CTCF motif on 3D domain border estab-
lishment or maintenance. We then tested if MLR was able to detect the impacts of SNPs on
CTCFmotif. For this purpose, we included within the same MLRmodel the wild-type (WT)
motif and the three alternative alleles for a given position in the motif. For instance, for the first
position, the MLR comprised genomic coordinates of theWTmotif CCANNAGNNGGCA and
the genomic coordinates of the mutated motifs ACANNAGNNGGCA, GCANNAGNNGGCA
and TCANNAGNNGGCA. Over 27 mutated CTCF motifs, 25 showed beta coefficients that
were lower than the one of WT CTCFmotif, indicating that the corresponding SNPs diminished
the influence of CTCF motif on TAD borders as expected (Fig 4). Because correlations among
the motif variables were very low (average correlation<0.01), ET performed as efficiently as
MLR to detect the influences of SNPs (AUCET = 0.926 and AUCMLR = 0.926), but RF was inaccu-
rate (AUCRF = 0.638; S4 Fig). For instance, for the first position, we observed that all three alter-
native alleles (A, G and T) diminished the influence of the motif with respect to 3D domain
borders. Some mutations even canceled the influence of CTCF motif (for instance, alleles A and
T on position 2). On the last position, allele G had a higher influence than theWTmotif. This
result was actually consistent with the ambiguity between allele A and G in the motif. Similar
results were obtained for consensus BEAF-32 motif CGATA inDrosophila (S5 Fig).

Using both simulated and real data, we concluded that multiple logistic regression correctly
identified causal variables and discarded spurious associations of non-causal variables with
TAD borders while both enrichment test and random forests failed. In addition, multiple logis-
tic regression successfully predicted expected effects of SNPs on CTCF and BEAF-32 motifs
known to influence long-range contacts in human and Drosophila, respectively. These pre-
dicted effects of SNPs could further serve to identify new regulatory variants in the context of
genome-wide association studies.
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Fig 4. Analysis of the impacts of single nucleotide polymorphisms on the consensus CTCFmotif in human GM12878 cells.

doi:10.1371/journal.pcbi.1004908.g004
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BEAF-32 influences TAD borders in Drosophila
We implemented the proposed model such that it can deal with either genomic coordinate
data or quantitative data. However, in the present study, we chose to focus on genomic coordi-
nate data as in [11, 34]. An advantage of this approach was that both DNA-binding proteins
and functional elements could be included within the same model. In addition, we observed
that logistic regression models built from genomic coordinate data usually outperformed those
obtained with quantitative data in terms of deviance ratio and AIC (model deviance ratios and
AICs are given in S1 Table).

The influences of genomic features such as DNA-binding proteins or gene transcription on
TAD border establishment or maintenance can be estimated by the proposed multiple logistic
regression. Using Drosophila Kc167 cell Hi-C data at 1 kb resolution, we assessed the effects of
insulator binding proteins, cofactors, gene transcription and functional elements on TAD bor-
ders. Although TADs were computed from 1 kb resolution Hi-C data, genomic features were
binned at an even higher resolution of 50 bp in order to better discriminate between genomic
features that influence TAD borders and those that do not, and to reduce standard errors of
model parameters (see Subsection Materials and Methods, Binned data matrix). In this subsec-
tion, we first focused on the effects of insulator binding proteins in driving TAD borders [35].

In Drosophila, there are five subclasses of insulator sequences [36]. Each subclass is bound
by a particular type of insulator binding protein (IBP): suppressor of hairy wing (Su(Hw)),
Drosophila CTCF (dCTCF), boundary-element-associated factor of 32 kDa (BEAF-32), GAGA
binding factor (GAF), and Zeste-White 5 (ZW5) [10]. In addition, the general transcription
factor dTFIIIC was recently identified as a new IBP [11]. We assessed enrichments of these
IBPs within TAD borders (Fig 5). We observed enrichments for all these IBPs (all coefficients

b̂ > 1:34 and all p-values p< 1 × 10−20). BEAF-32 was the most enriched IBP with a

Fig 5. Comparison between enrichments by enrichment tests and influences by multiple logistic
regression of insulator binding proteins at topologically associating domain (TAD) borders of wild-
typeDrosophila Kc167 cells. In both enrichment test and multiple logistic regression, beta parameters are
computed and displayed. Error bars show 95% confidence intervals of beta parameters.

doi:10.1371/journal.pcbi.1004908.g005
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coefficient b̂ ¼ 2:71, corresponding to an odds ratio ÔR ¼ 15:03, whereas GAF was the least

enriched IBP with a coefficient b̂ ¼ 1:34, corresponding to an odds ratio ÔR ¼ 3:82.
Multiple logistic regression yielded different results (Fig 5). All beta coefficients decreased

reflecting colocalization among the proteins (average correlation of 0.28). Despite these correla-
tions, the tight 95% confidence intervals reflect that betas were estimated with low standard
errors. This is due to the very large number of observations (>1 million) compared to the low
number of variables (6 variables) obtained for a binning at 50 bp. There were clear differences of
betas among the IBPs compared with enrichment analysis [5, 6]. Only BEAF-32 showed high

and significant beta (BEAF-32: b̂ ¼ 1:92, p< 1 × 10−20). For other IBPs, betas were significant

but much lower (b̂ < 0:95, p< 1 × 10−20). Thus although dCTCF, dTFIIIC, GAF and Su(Hw)
were enriched at TAD borders, multiple logistic regression revealed that they weakly influence
TAD borders. High enrichments of these proteins are due to their correlations with BEAF-32.
For instance, previous work showed that numerous dCTCF sites align tightly with BEAF-32
[37]. These results supported the role of BEAF-32 as most influential IBP of TAD borders.

Architectural proteins impact more TAD-based organization than
transcription
There has been an ongoing debate to know whether transcription or architectural proteins are
the main cause of TAD border demarcation [6]. Using enrichment test, we observed that active

transcription start sites (TSSs) were enriched at TAD borders (b̂ ¼ 1:82, p< 1 × 10−20), as well

as architectural proteins such as BEAF-32 (b̂ ¼ 2:72, p< 1 × 10−20). Using multiple logistic
regression, we then estimated the effects of transcription and of architectural proteins on TAD
borders within the same model (S6 Fig). We observed that active TSSs had a significant positive

effect in TAD border establishment/maintenance (b̂ ¼ 0:42, p< 1 × 10−20). This effect was

much lower than the one of architectural protein BEAF-32 (b̂ ¼ 2:59, p< 1 × 10−20). Our
model thus reveals that architectural protein BEAF-32 contributes much more to TAD-based
organization than transcription. However one might argue that the comparison between active
TSSs and BEAF-32 was not straightforward because the latter represented two distinct genomic
features, a functional element and a protein, respectively. Hence for a proper comparison
between transcription and architectural proteins, we compared within the same multiple logis-
tic regression the effects of the short isoform of Drosophila Brd4 homologue (Fs(1)h-S), a
major transcriptional factor involved in transcriptional activation, with the long isoform (Fs(1)
h-L), a recently identified architectural protein [38]. We observed that Fs(1)h-S had a signifi-

cant positive effect on TAD borders (b̂ ¼ 1:87, p< 1 × 10−20), but which was lower than the

one of Fs(1)h-L (b̂ ¼ 2:60, p< 1 × 10−20). Our results thus highlighted the prevalent roles of
architectural proteins compared to transcription, which was highly consistent with recent
results suggesting a lower impact of transcription [13].

The role of cofactors in Drosophila
Recent work supported the idea that IBPs may favor long-range contacts by recruiting cofac-
tors directly involved in stabilizing long-range contacts [8–10]. In Drosophila, several cofactors
were identified: condensin I, condensin II, Chromator, centrosomal protein of 190 kDa
(CP190), cohesin [10, 13, 39, 40] and Fs(1)h-L [38]. We first analyzed by multiple logistic
regression all abovementioned cofactors in their own to understand their relative contribution
to TAD borders (S7 Fig). Among the cofactors, CP190 had the highest influence on TAD bor-

ders in agreement with previous findings [5] (b̂ ¼ 1:12, p< 1 × 10−20). Because cofactors were
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expected to be recruited by IBPs to the chromatin [8, 9, 39, 40], we then regressed cofactors
with all IBPs and all IBP-cofactor interactions (see S2 Table). We observed that CP190 still pre-

sented a high beta (b̂ ¼ 1:13, p< 1 × 10−20), which reflect that additional IBPs are able to
recruit these cofactors in concordance with recent results [41].

An important question is to know if IBPs demarcate TAD borders depending on the pres-
ence of specific cofactors [10]. To answer this question, we assessed if the co-occurence of an
IBP with a cofactor could affect TAD borders by estimating the corresponding statistical inter-
action IBP-cofactor (Fig 6). Among the significant positive interactions, we reported effects for

Fig 6. Analysis of interactions between insulator binding proteins (IBPs) and cofactors at topologically
associating domain (TAD) borders of wild-typeDrosophilaKc167 cells. Beta parameter corresponding to each
interaction IBP-cofactor from the multiple logistic regression is plotted. Interaction terms are detailed in Subsection
Materials and Methods, Analysis of interactions. Error bars show 95% confidence intervals of beta parameters. Barren is a
subunit of condensin I, Cap-H2 is a subunit of condensin II and Rad21 is a subunit of cohesin.

doi:10.1371/journal.pcbi.1004908.g006

Fig 7. Analysis of functional elements usingmultiple logistic regression at topologically associating domain (TAD) borders of wild-type
Drosophila Kc167 cells. Error bars show 95% confidence intervals of beta parameters.

doi:10.1371/journal.pcbi.1004908.g007
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Su(Hw) with Rad21 (b̂ ¼ 0:44, p = 3 × 10−7), and lower effects of Su(Hw) with Chromator

(b̂ ¼ 0:29, p = 2 × 10−4), BEAF-32 with condensin I (Barren) (b̂ ¼ 0:27, p = 2 × 10−5), dTFIIIC

with Fs(1)h-L (b̂ ¼ 0:21, p = 0.001), dCTCF with condensin I (Barren) (b̂ ¼ 0:23,
p = 2 × 10−3). These positive interactions reflected synergistic effects of IBPs with cofactors. We
did not report any significant positive statistical interaction between dCTCF and cohesin as
observed in human [8]. In contrast to vertebrates, Drosophila CTCF does not appear to rely on
cohesin to establish or maintain interactions [42]. Of interest, our method further highlighted
strong and significant negative interactions that revealed antagonistic effects at domain bor-

ders, in particular for BEAF-32 with cofactor CP190 (b̂ ¼ �0:80, p< 1 × 10−20). As such, our
model may allow to retrieve both synergistic and antagonistic influences of co-factors, which
may better reflect the complexity behind the establishment or maintenance of TAD borders.

Analysis of functional elements in Drosophila
We sought to further investigate a wide variety of functional elements such as insulators and
regulatory sequences. Results are reported in Fig 7. Insulators were by far the most influential

functional elements with respect to domain borders (b̂ ¼ 5:07, p< 1 × 10−20), as established in
human [8, 31]. Regarding other functional elements, we found positive effects for repeat

regions (b̂ ¼ 0:71, p< 1 × 10−20), and especially for tandem repeats on TAD borders

(b̂ ¼ 1:10, p = 5 × 10−9). Repeat regions were previously reported to spatially cluster together

[43]. In addition, snoRNA genes had a positive influence on domain borders (b̂ ¼ 1:37,
p = 1 × 10−7), which may reflect their role in higher-order chromatin structure [44]. Further-

more, a negative impact on TAD border was detected for regulatory sequences (b̂ ¼ 1:87,
p = 6 × 10−10), strengthening the hypothesis that functional long-range contacts involving reg-
ulatory elements could compete with structural contacts [45] (see Discussion).

Positive and negative effects of proteins in human
We next analyzed the effects of DNA-binding proteins on 3D domains of human genome
where fewer architectural proteins have been uncovered [29]. To investigate the possible con-
tributions of these proteins, we analyzed new 3D domains detected from recent high resolution
Hi-C data at 1 kb for GM12878 cells for which a large number of ChIP-seq data were available
[8]. Over the 69 proteins analyzed, 51 proteins presented very high and significant enrichments

(all coefficients b̂ > 3 and all p-values p< 1 × 10−20). Multiple logistic regression instead

detected 15 proteins with significant positive effects on domain borders (all coefficients b̂ >

0:5 and all p-values p< 5 × 10−4; S3 Table). Our analyses confirmed that, in contrast to Dro-
sophila, CTCF and cohesin (subunit Rad21) presented the highest effects among all factors

(CTCF: b̂ ¼ 1:90, p< 1 × 10−20; cohesin: b̂ ¼ 1:91, p< 1 × 10−20), in complete agreement
with numerous studies showing their important roles in shaping chromosome 3D structure in

mammals [8, 9, 12]. ZNF143 had the third highest effect (b̂ ¼ 1:85, p< 1 × 10−20), in total
agreement with a very recent study demonstrating its role in long-range contacts [46]. In addi-
tion, multiple logistic regression identified EZH2, the catalytic subunit of the Polycomb repres-
sive complex 2 (PRC2), as a protein that significantly impacted TAD borders (4th highest

effect: b̂ ¼ 1:32, p< 5 × 10−11). In contrast, multiple logistic regression estimated a null beta

for candidate architectural proteins JUND (b̂ ¼ 0:04, p = 0.85), Kaiso (b̂ ¼ 0:43, p = 0.10) and

a very low beta for MAZ (b̂ ¼ 0:23, p = 3 × 10−4). Although these three proteins colocalize or
interact with CTCF, our model suggests that they might not impact TAD borders. We also
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notably identified several factors associated with transcriptional activation that had significant

negative influences on TAD borders. These proteins included RXRA (b̂ ¼ �1:37,

p = 3 × 10−4), P300 (b̂ ¼ �1:22, p = 1 × 10−10), BCL11A (b̂ ¼ �0:82, p = 1 × 10−9) and ELK1

(b̂ ¼ �0:74, p = 4 × 10−9), reinforcing the view that transcription could also interfere with
TAD borders depending on context.

Large-scale analysis of DNA motifs in human
In the previous subsection, analyses of DNA-binding proteins were limited by available ChIP-
seq data. Here we alleviated this limitation by analyzing transcription factor binding site
(TFBS) motifs available from the large MotifMap database [47]. Given the large number of
TFBS motifs (544 motifs), we used L1-regularization for parameter estimation. We identified

213 positive drivers (all coefficients b̂ > 1) and 75 negative drivers (all coefficients b̂ < 1),
meaning that a large number of TFBSs actually play a role in TAD border establishment or

maintenance. CTCF motifs ranked first (b̂ ¼ 45:34) in complete agreement with recent studies
[8, 31]. But our model also uncovered other TFBSs whose roles in TAD borders are less well

known such as EGR-1 (b̂ ¼ 34:04), p53 (b̂ ¼ 25:55), MIZF (b̂ ¼ 22:46), GABP (b̂ ¼ 21:94)
and many others (for a complete list, see S4 Table). For instance, p53 is a major tumor suppres-
sor gene and the most frequently mutated gene (>50%) in human cancer [48]. Regarding nega-

tive drivers, we identified ALX4 (b̂ ¼ �35:82), EGR4 (b̂ ¼ �26:72), ZNF423 (b̂ ¼ �23:97).
All these results highlighted the great potential of TFBS motif analysis allowing the study of a
very large number of DNA-binding proteins.

Discussion
Here, we describe a multiple logistic regression (MLR) to assess the roles of genomic features
such as DNA-binding proteins and functional elements on TAD border establishment/mainte-
nance. Based on conditional independence, such regression model can identify genomic fea-
tures that impact TAD borders, unlike enrichment test (ET) and non-parametric models.
Using simulations, we demonstrate that model parameters can be accurately estimated for
both marginal genomic features (no interaction) and two-way interactions. In addition, we
show that our model outperforms enrichment test and random forests for the identification of
genomic features that influence domain borders. Using recent experimental Hi-C and ChIP-
seq data, the proposed model can identify genomic features that are most influential with
respect to TAD borders at a very high resolution of 1 kb in both Drosophila and human. The
proposed model could thus guide the biologists for the design of most critical Hi-C experi-
ments aiming at unraveling the key molecular determinants of higher-order chromatin
organization.

Enrichment test shows slight differences of enrichments among architectural proteins. This
could suggest that domain borders are determined by the number and levels of all proteins
present at the border rather than the presence of specific proteins [11, 13]. However MLR
instead reveals that only some architectural proteins influence the presence of 3D domain bor-
ders. Moreover, MLR retrieves both positive and negative contributions among most influen-
cial proteins, depending on contexts such as co-occurence. From these novel results, we
propose a biological model for 3D domain border establishment or maintenance (Fig 8). In
this model, three kinds of proteins are distinguished: positive drivers (βMLR > 0), negative driv-
ers (βMLR < 0), and proteins that are enriched or depleted at borders but are not drivers (βET >
0 or βET < 0, and βMLR = 0). Positive drivers favor attraction between domain borders leading
to the formation of 3D domains. CTCF and cohesin are well-studied positive drivers in
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mammals [8, 10]. By contrast little is known about negative drivers of 3D domain borders that
could favor repulsion between specific chromatin regions [49]. Repulsion phenomenon could
be the result of allosteric effects of loops in chromatin [45]. Negative drivers could also regulate
disassembly of protein complex that mediate long-range contacts [50].

In Drosophila, MLR identifies BEAF-32, a well-characterized IBP, as a positive driver of
TAD borders [51, 52]. Conversely, other IBPs including dCTCF, dTFIIIC, GAF and Su(Hw)
are found significantly enriched at TAD borders, but present weak or no influences, in agree-
ment with recent works [53]. Regarding cofactors, CP190 presents a high and significant posi-
tive influence on domain demarcation, in agreement with previous findings [5]. Regarding
functional elements, although our data highlight that insulators are by far the main positive
drivers of TAD borders, they also show that additional elements, that are known to colocalize
in 3D [18, 43, 44], play a role including repeat regions. Moreover, MLR suggests that snoRNA
genes are novel functional elements that positively influence border demarcation. Recent
works suggest that active chromatin and transcription also play a key role in chromosome par-
titioning in TADs [53]. Here our results reveal that both architectural proteins and transcrip-
tion contribute to TAD borders. In contrast, regulatory regions are identified as negative
drivers of TAD borders. One possible explanation is that such regulatory regions are involved
in functional long-range contacts with gene promoters that would compete with the formation
of more structural contacts at the origin of TADs [45]. Alternatively, a negative influence may
be linked to the transient nature of certain functional contacts [54].

Almost half of dCTCF and cohesin sites are overlapping in Drosophila, and knockdown of
dCTCF results in a strong decrease of cohesin binding [11]. As such, one might expect syner-
gistic effects of dCTCF with cohesin (also called statistical interaction) in driving TAD borders.
However, such conclusion could not be drawn. Following statistical theory, it is not because
two variables are correlated (here dCTCF and cohesin colocalize), that it implies a synergistic
effect of the two variables on TAD borders. Although dCTCF and cohesin are both enriched at

Fig 8. Model for 3D domain border establishment or maintenance.

doi:10.1371/journal.pcbi.1004908.g008
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TAD borders, MLR does not detect a significant interaction of dCTCF with cohesin. Instead
we observe a high interaction of Su(Hw) with cohesin. Negative interactions that reflect antag-
onistic effects between architectural proteins are found between IBP BEAF-32 and cofactor
CP190. These antagonistic effects suggest that cofactors might not always help IBPs in stabiliz-
ing loops [10]. One explanation is that cofactors could sometimes compete with IBPs for long-
range protein-protein interactions.

In human, MLR identifies well-studied architectural proteins CTCF and cohesin as the
most influential positive drivers of 3D domains, in complete agreement with their established
roles in shaping chromosome 3D structure [8, 9, 12]. MLR also points out the positive influ-
ences of ZNF143 and PRC2 proteins whose recent studies have uncovered their roles in con-
trolling spatial organization [30, 46]. In addition, our model reveals the roles of additional
factors including RXRA, P300, BCL11A and ELK1 as negative drivers of 3D domain borders.
P300 was previously shown to be depleted at domain borders [55]. Here we find that P300 and
three other proteins can counteract the establishment or maintenance of domain borders. P300
is a well-known regulator of cell growth and division, and helps prevent the growth of cancer-
ous tumors [56]. Interestingly, the three other proteins RXRA, BCL11A and ELK1 are also
related to cancer [57–59]. Furthermore, the analysis of a large number of TFBS motifs con-
firmed the role of CTCF in TAD border formation [8, 31]. But this analysis also uncovered
many other TFBSs, such as p53, a major tumor suppressor gene [48].

The proposed method relies on the accurate identification of 3D domains. To further
improve our understanding of the key drivers of 3D domain borders, Hi-C experiments at a
higher resolution are needed. In addition, a variety of methods have been recently developed
for 3D domain inference, and no consensus has been reached yet to determine which method
is the most appropriate. Another important question is to understand the roles of key drivers
in chromatin interactions within domains. For instance, it is essential to identify proteins that
influence functional interactions between enhancers and promoters that regulate gene expres-
sion. Although far more complex, it is of note that similar regression approach may largely
help in retrieving positive from negative patterns in these contexts.

Materials and Methods

Hi-C data and topologically associating domains
For Drosophila 3D domain analysis, we used publicly available high-throughput chromatin
conformation capture (Hi-C) data from Gene Expression Omnibus (GEO) accession
GSE63515 [13]. Hi-C experiments were done for wild-type Drosophila melanogaster Kc167
cells with DpnII restriction enzyme. Hi-C data were binned at 1 kb resolution. Contact matri-
ces were normalized using ICE method [15] implemented in the R package HiTC (http://www.
bioconductor.org/packages//2.11/bioc/html/HiTC.html). From the normalized contact matri-
ces, TAD genomic coordinates were identified using HiCseg method [19].

For human 3D domain analysis, we used publicly available 3D domains of GM12878 cells
identified by the Arrowhead algorithm from Gene Expression Omnibus (GEO) accession
GSE63525 [8].

ChIP-seq data
For Drosophila analysis, we used publicly available binding profiles of chromatin proteins of
Drosophila melanogaster wild-type embryonic Kc167 cells. ChIP-seq data for CP190, Su(Hw),
dCTCF and BEAF-32 were obtained from GEO accession GSE30740 [60]. ChIP-seq data for
Barren (condensin I), Cap-H2 (condensin II), Chromator, Rad21 (cohesin), GAF and dTFIIIC
were obtained from GEO accession GSE54529 [11]. ChIP-seq data for Fs(1)h-L and Fs(1)h-LS
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were obtained from GEO accession GSE42086 [38]. ChIP-seq peaks were called using MACS
1.4.2 (https://github.com/taoliu/MACS). Fs(1)h-S peaks were defined as peaks from Fs(1)h-LS
that did not overlap any Fs(1)h-L peak.

For human analysis, we used publicly available ChIP-seq peaks of 69 chromatin proteins
(ATF2, ATF3, BATF, BCL11A, BCL3, BCLAF1, BHLHE40, BRCA1, CEBPB, CHD1, CHD2,
CTCF, E2F4, EBF1, EGR1, ELF1, ELK1, ETS1, EZH2, FOS, FOXM1, IKZF1, IRF3, IRF4,
JUND, MAFK, MAX, MAZ, MEF2A, MEF2C, MTA3, MXI1, MYC, NFATC1, NFE2, NFIC,
NFYA, NFYB, NRF1, P300, PAX5, PBX3, PIGG, PML, POU2F2, RAD21, REST, RFX5,
RUNX3, RXRA, SIN3A, SIX5, SP1, SRF, STAT1, STAT3, STAT5A, TAF1, TCF12, TCF3,
USF1, USF2, YY1, ZBTB33, ZEB1, ZNF143, ZNF274, ZNF384 and ZZZ3) of GM12878 cells
from ENCODE [61].

Functional elements
For Drosophila analysis, we used RNA-seq data from wild-type Kc167 cells to map active tran-
scription start sites (TSSs) [62]. For all other functional elements, we used flybase reference
genome annotation (http://flybase.org/).

DNAmotifs
For human analysis, we used transcription factor binding site (TFBS) motifs from the Motif-
Map database (http://motifmap.ics.uci.edu/).

Binned data matrix
From TAD coordinates, ChIP-seq data and functional element mapping, we constructed
50-base and 1-kb binned data matrices that were further used for multiple logistic regressions
with Drosophila and human data, respectively. A matrix was composed of a column variable Y
that indicated if the genomic bin belonged to a TAD boundary (Y = 1) or not (Y = 0). To define
TAD boundaries, we extracted 1 kb and 20 kb regions that were centered around the positions
demarcating two TADs in Drosophila and human genomes, respectively. The other column
variables X = {X1, . . ., Xp} were the set of p genomic feature variables of interest. If genomic
coordinate data were used (e.g., ChIP-seq peak or functional element coordinates), variable Xi

denoted the presence (Xi = 1) or absence (Xi = 0) of the genomic feature i within the genomic
bin. Note that if a genomic coordinate only overlapped x% of the genomic bin, then Xi = x%. If
quantitative data were used (e.g., ChIP-seq signal intensity log(ChIP/Input)), variable Xi was
the average value within the genomic bin.

Enrichment test
Enrichment test assesses the enrichment of a genomic feature within chromatin domain bor-
ders. The genomic feature of interest can be protein-DNA binding sites detected from ChIP-
seq experiment. Chromatin domain borders can be borders between topologically associating
domains identified from Hi-C experiment.

From the contingency table (Table 1), one can test the odds ratio that reflects the magnitude
of enrichment (OR> 1) or depletion (OR< 1) of the genomic feature within the domain bor-
ders. The test consists in assessing the following null (H0) and alternative (H1) hypotheses
about odds ratio OR:

H0 : OR ¼ 1 ð2Þ

H1 : OR 6¼ 1 ð3Þ
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The odds ratio is the ratio of the inside border odds (500/5000) to the outside border odds

(2000/2000000). Here ÔR ¼ 500=5000

2000=200000
¼ 10.

Previous enrichment test can be reformulated as a simple logistic regression model:

ln
ProbðY ¼ 1jXiÞ

1� ProbðY ¼ 1jXiÞ
¼ b0 þ bXi ð4Þ

Variables Xi 2 X and Y are described in Subsection Materials and Methods, Binned data
matrix. In the simple logistic regression, the slope parameter β is the natural logarithm of the
abovementioned odds ratio OR. Thus β> 0 means enrichment, while β< 0 reflects depletion.
Using logistic regression model, parameter β can be tested by Wald’s test. The Wald’s statistic
is calculated as:

W ¼ b̂ � b�
ŝb

¼ b̂ � 0

ŝb

¼ b̂
ŝb

ð5Þ

Where β� is the beta parameter value under H0 assumption (β� = 0) and ŝb denotes the stan-

dard error of parameter β. StatisticW follows a normal distribution.
An important drawback of enrichment test relies on the fact that it does not account for

potential colocalizations (i.e. correlations) among the genomic features of interest. The pres-
ence of correlations might prevent the identification of the genomic features that really drive
the establishment or maintenance of domain borders. For instance, if two genomic features are
significantly enriched, this might not mean that both are involved in the establishment or
maintenance of the borders. One feature might truly affect borders while the other feature
might only be correlated to the former. There is thus a need for a model that could identify
those enriched features that drive the presence of borders.

Multiple logistic regression
The proposed multiple logistic regression is an extension of the simple logistic regression for p
genomic features:

ln
ProbðY ¼ 1jXÞ

1� ProbðY ¼ 1jXÞ ¼ b0 þ βX ð6Þ

Where X = {X1, . . ., Xp} is the set of p genomic features of interest and β = {β1, . . ., βp} denotes
the set of slope parameters (one parameter for each genomic feature). As for simple logistic
regression, each βi 2 β coefficient can be tested by a Wald’s test.

By default, multiple logistic regression β0 and β parameters are estimated by iteratively
reweighted least squares. However, when there are a large number of correlated genomic fea-
tures in the model, L1-regularization is applied and parameters are learned by coordinate
descent [26]. The L1-regularization lambda that gives the lowest mean cross-validated error is
selected. To assess quality of fit for a model, we use the deviance ratio defined as the ratio of the

Table 1. Example of a contingency table to assess enrichment (or depletion) of a genomic feature
within the domain borders.

Presence of the feature Absence of the feature

Inside border 500 5000

Outside border 2000 200000

doi:10.1371/journal.pcbi.1004908.t001
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fitted model deviance to the saturated model deviance. We also use Akaike information crite-
rion (AIC).

The matrix X is sparse and the Wald’s test might be biased when data are sparse [27].
Hence likelihood ratio test (LRT) that is not affected by data sparseness can be used instead. To
test parameter βi with LRT, two models are built: a first modelM1 over all variables X, and a
second modelM2 over all variables except Xi (X \ Xi). Then the following Di statistic is calcu-
lated:

Di ¼ �2ln
LM1

LM2

 !
ð7Þ

Where LM1
is the likelihood ofM1 and LM2

is the likelihood ofM2. Statistic Di follows a chi-

squared distribution with one degree of freedom. The better accuracy of LRT comes at the cost
of more intensive computations. In practice, we observe that Wald’s test p-values are close to
LRT p-values.

In the multiple logistic regression setting, parameter βimeasures the effect of genomic feature
Xi on the presence of borders conditional on the other genomic features that belong to X \ Xi. A
value of βi> 0 or βi< 0 means that the genomic feature Xi positively or negatively influences
the presence of borders, respectively. A value of βi = 0 reflects the fact that the genomic feature
Xi does not affect the presence of borders. If two genomic features X1 and X2 are colocalized and
only X1 drives the establishment or maintenance of domain borders, then only the correspond-
ing β1 parameter will be significantly different from zero. However the above formulation of the
model does not account for potential statistical interactions between genomic features.

Analysis of interactions
Interaction terms can be included in the multiple logistic regression to account for potential
interactions between genomic features. For instance, one can include in the model an interac-
tion term between two genomic features X1 and X2:

ln
ProbðY ¼ 1jX1;X2Þ

1� ProbðY ¼ 1jX1;X2Þ
¼ b0 þ b1X1 þ b2X2 þ b12X1X2 ð8Þ

The product X1 X2 is the statistical interaction term between the two genomic features X1 and
X2. Parameter β12 measures the effect of interaction X1 X2 on the presence of borders.

Data simulation
In order to assess the accuracy of multiple logistic regression parameter estimation, we simu-
lated data that were the most similar to the real genomic data using the following procedure.
First, for a simulation s, a set of observation rows was randomly drawn with resampling from
matrix X (nonparametric bootstrap). This resampling allowed to keep the original correlation
structure among the variables. The bootstrapped data matrix was denoted Xs. Second βs ¼
fbs

1; :::; b
s
pg parameter values were drawn from a normal distributionN ðm; sÞ with mean μ = 0

and variance σ = 1. Parameter bs
0 (intercept) value was drawn from a normal distribution with

same variance but with mean μ = −4.5. This setting of the mean of bs
0 allowed to control the

number of values Y = 1 close to the one observed from real data (the number of borders in real
data was low). Third a quantitative variable Zs was calculated using the regression formula:
Zs ¼ bs

0 þ βsXs. A probability variable Probs was calculated by the inverse logit function: 1/
(1 + exp(−Zs)). Then each probability value from Probs was used to draw a value for Ys using
binomial distribution.
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We also used simulated data to compare multiple logistic regression with enrichment test
and random forests. As previously, for a simulation s, we used non-parametric bootstrap and
kept the correlation structure of original data. Among the variables, a subset of variables Xc 2
X was chosen to be causal, i.e. to influence the presence of borders. We chose a generative
model that was non-linear and non-additive not to favor multiple logistic regression over other
models. For this purpose, we set a probability p0 of the presence of a border in a bin if all causal
variable values were inferior to 0.5. We also set a probability p1 (with p1 > p0) if at least one
causal variable had a value superior or equal to 0.5. Values of p0 and p1 were chosen according
to the number of borders in real data. Then, for each bin, the value for Ys was drawn using a
binomial distribution with either p0 or p1 depending on the causal variable values.

Implementation and availability
The multiple logistic regression is implemented in R language. The model is available in the R
package “HiCfeat” which can be downloaded from the Comprehensive R Archive Network
and from the web page of Raphaël Mourad (https://sites.google.com/site/raphaelmouradeng/
home/programs).
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S6 Fig. Comparison of the influences of transcription and of architectural proteins on
topologically associating domain borders of wild-type Drosophila Kc167 cells. a) Multiple
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