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Lung cancer is one of the main cancer types due to its persistently high incidence and
mortality, yet a simple and effective prognostic model is still lacking. This study aimed to
identify independent prognostic genes related to the heterogeneity of lung
adenocarcinoma (LUAD), generate a prognostic risk score model, and construct a
nomogram in combination with other pathological characteristics to predict patients’
overall survival (OS). A significant amount of data pertaining to single-cell RNA sequencing
(scRNA-seq), RNA sequencing (RNA-seq), and somatic mutation were used for data
mining. After statistical analyses, a risk scoring model was established based on eight
independent prognostic genes, and the OS of high-risk patients was significantly lower
than that of low-risk patients. Interestingly, high-risk patients were more sensitive and
effective to immune checkpoint blocking therapy. In addition, it was noteworthy that
CCL20 not only affected prognosis and differentiation of LUAD but also led to poor
histologic grade of tumor cells. Ultimately, combining risk score, clinicopathological
information, and CCL20 mutation status, a nomogram with good predictive
performance and high accuracy was established. In short, our research established a
prognostic model that could be used to guide clinical practice based on the constantly
updated big multi-omics data. Finally, this analysis revealed that CCL20 may become a
potential therapeutic target for LUAD.
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INTRODUCTION

Lung cancer has been one of the most leading causes of cancer death worldwide. According to
data from the American Cancer Society in 2021, there are approximately 235,760 new cases and
131,880 deaths, and lung cancer ranks second and first in morbidity and mortality, respectively,
among malignant tumors (Siegel et al., 2021). Based on histological subtypes, lung cancer is
divided into small cell lung cancer and non-small cell lung cancer (NSCLC). NSCLC represents
85% of all lung cancers and includes lung adenocarcinoma (LUAD), lung squamous cell
carcinoma, and large cell carcinoma. Among them, LUAD is the largest NSCLC subgroup,
accounting for 40% of all lung tumors (Denisenko et al., 2018). Despite advances in surgical
resection, radiotherapy, chemotherapy, immunotherapy, and targeted therapy over the past
decades, the prognosis of patients with LUAD is still very poor, with a 5-year survival rate of 15%
(Herbst et al., 2018; Zhang et al., 2020a; Isla et al., 2020; Ruiz-Cordero and Devine, 2020).
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Therefore, it is necessary to explore this condition at the
molecular level to enable accurate diagnosis, treatment, and
prognosis assessments.

It is a scientific consensus that tumors are highly
heterogeneous (de Sousa and Carvalho, 2018). Heterogeneity
makes sensitive cells die as a result of the drug’s cytotoxicity,
whereas drug-resistant cells survive due to mutations, gene
expression changes, alternative splicing, etc., resulting in a
poor prognosis of patients and also leading to different
sensitivity levels and subsequently different treatment schemes
(Aleksakhina et al., 18722019; Dagogo-Jack and Shaw, 2018;
Vasan et al., 2019; Marusyk et al., 2020; Narayanan et al.,
2020). Therefore, an accurate understanding of tumor
heterogeneity is of great significance for assessing the
prognosis and for selecting a reasonable and feasible treatment
plan. To some extent, the emergence of heterogeneity can be
attributed to the evolution of tumors (Lim and Ma, 2019). Single-
cell transcriptomics analysis provides novel ideas for solving this
problem. The Monocle 2 algorithm uses the reverse graph
embedding method to project high-dimensional data into a
low-dimensional space, learn cell trajectories, and different cell
evolution according to pseudo-time values, thereby successfully
constructing differentiation trajectories (Trapnell et al., 2014; Qiu
et al., 2017a; Qiu et al., 2017b). Monocle2 has been successfully
applied to many types of cancers, such as hepatocellular
carcinoma, glioblastoma, multiple myeloma, laryngeal
carcinoma, etc., thus verifying the authority, practicability, and
reliability of the algorithm (Liang et al., 2020; Ionkina et al., 2021).
Unfortunately, monocle2 has not been widely used to screen
prognostic factors associated with LUAD.

Considering this issue from a micro perspective, the
heterogeneity of tumors can also be partially explained by the
tumor microenvironment. Malignant solid tumor tissues include
tumor cells but also other types of cells, such as stromal cells,
immune cells, vascular cells, etc. (Wu and Dai, 2017). A series of
studies have reported that immune cells have a complex impact
on tumor growth, disease progression, and drug resistance (Wang
et al., 2019a; Greten and Grivennikov, 2019; Hinshaw and
Shevde, 2019). Interestingly, recent studies have shown that
tumor purity, which represents the proportion of tumor cells
in all cells residing in the tumor microenvironment, is related to
prognosis. These studies consider that low tumor purity will cause
tumor immune escape, which is associated to unfavorable
prognosis (Zhang et al., 2017; Gong et al., 2020). In this
article, the ESTIMATE (Yoshihara et al., 2013) and
CIBERSORT (Newman et al., 2015) algorithms can help us
better understand the influence of various immune
components and tumor purity on the prognosis of LUAD.

Aiming at the heterogeneity of tumors, many studies had
attempted to establish LUAD prognosis prediction models
from different aspects such as immune cells, ferroptosis-
related genes, non-coding RNAs, and glycolysis genes,
among which immune-related prognosis studies accounted
for the majority (Liu et al., 2019; Li et al., 2020; Zuo et al.,
2020; Gao et al., 2021; Zheng et al., 2021). For example, Yuwei
Zhang et al. noted the correlation between tumor invasion
environment, especially tumor immune system, and tumor

progression and treatment outcome, and constructed a 27-
gene prognostic model based on multiple omics data (Zhang
et al., 2020b). Chenghan Luo et al. trained a prognostic model
based on two immune genes, ANLN and F2, by using
information from 761 LUAD patients (Luo et al., 2020).
Both studies noted the effect of tumor immune factors on
patient prognosis, and constructed relatively satisfactory
models with concordance indexes of 0.73 and 0.66,
respectively. However, the analysis of these studies was
still incomplete, factors such as tumor purity and the
proportion of immune cells had not been taken into
account, and the models still needed to be further
improved. This study aims to explore the independent
prognostic risk genes associated with heterogeneity in
LUAD and to construct a prognostic model in
combination with other basic clinical information that is
capable of predicting the corresponding possible
immunotherapy responses of high- and low-risk patients.

MATERIALS AND METHODS

Acquisition, Dimensionality Reduction and
Cell Annotation of scRNA-Seq Data
The scRNA-seq data of three human primary LUAD samples
with a reading depth of 10× genomics based on Illumina
NextSeq 500, accession numbers GSM3304007,
GSM3304011 and GSM3304013, were downloaded from the
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/) database. After that, the scRNA-seq data was
preliminarily filtered through the Seurat package in order to
obtain higher quality cells. The cells and genes used for
subsequent analysis needed to meet the following three
quality control standards: 1) the gene was detected in at
least three cells, 2) the cell had at least 50 genes detected,
and 3) mitochondrial genes accounted for no more than 5%.
The FeatureScatter function was run to analyze the correlation
between the sequencing depth and total intracellular
sequences. The data was normalized by LogNormalize and
1,500 highly variable genes among cells were selected by the
default parameter vst for subsequent cell type identification.
Principal component analysis (PCA), a multivariate statistical
analysis method, was picked for preliminary linear
dimensionality reduction (Lall et al., 2018). Each principal
components (PC) essentially represented a “meta feature”,
which combined relatively concentrated information of
related features. Therefore, the PC at the top is more likely
to represent the data set. In this study, we chose the first 15 PCs
with a p value < 0.05 and further analyzed them through the
non-linear dimensionality reduction technique the
t-distributed stochastic neighbor embedding (t-SNE)
algorithm to obtain the main clusters (Satija et al., 2015).
With adjusted p value < 0.05 and | log2[fold change (FC)] | > 1
as the cutoff criterion, FindAllMarkers command was used to
find the representative genes of each cluster. Finally, SingleR
package was run to automatically annotate the corresponding
cell type of each cluster according to the marker gene.
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Pseudo-Time Analysis and Enrichment
Analysis of Lung Adenocarcinoma
Differentiation-Related Genes Base on
Single-Cell RNA Sequencing Data
We used an unsupervised method to select genes and ran the
Monocle2 algorithm to perform non-linear dimensionality
reduction, that was, to project the obtained high-dimensional
data matrix into a low-dimensional space (Qiu et al., 2017a). The
de-embedding machine learning algorithm learned and
constructed cell trajectories, and finally projected all cells onto
a root and several main branches. Different branches
corresponded to different directions of differentiation, and
cells on the same branch were considered to have the same
differentiation characteristics. Using adjusted p value < 0.05 and |
log2FC] | > 1 as the significance standard, the significantly
differentially expressed genes among the main branches and
the root were defined as LUAD differentiation-related genes
(LDRGs). WEB-based GEne SeT AnaLysis Toolkit
(WebGestalt, http://www.webgestalt.org/) was used for
geneontology [GO, including cellular component (CC),
biological process (BP), molecular function (MF)] and kyoto
encyclopedia of genes and genomes (KEGG) analysis.

Acquisition and Processing of RNA
Sequencing Data
RNA-seq data of LUAD samples from GEO and TCGA databases
were used in this study. The RNA-seq data matrix composed of
443 LUAD samples was obtained from GSE68465 in the GEO
(http://www.ncbi.nlm.nih.gov/geo/) database. This cohort was
used for 1) molecular classification, 2) analysis of the
correlation between prognosis and clinicopathological
characteristics, and between prognosis and tumor
microenvironment, and 3) verification of prognostic models.
The RNA-seq data matrix composed of 535 LUAD samples
and 59 normal samples was downloaded from the Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database
for the construction of prognostic models.

Molecular Subtype Classification of Lung
Adenocarcinoma Patients Based on Lung
Adenocarcinoma Differentiation-Related
Genes
After preprocessing, log2-scale transformation and
normalization of the RNA-seq matrix, the expression data of
LDRGs were extracted for the following consistent clustering
analysis. ConsensusClusterPlus, an R package based on
resampling methods to verify the rationality of clustering and
evaluate the stability of clusters, was used to perform consensus
clustering on LUAD samples. The main parameters were 50 re-
sampling, 0.8 sample sampling ratio, max K = 9, “pam” clustering
algorithm and euclidean distance algorithm. The cumulative
distribution function (CDF) curve helps researchers determine
the number of subtypes in a visual form. Kaplan-Meier analysis

was chosen to compare survival differences between different
clusters.

Tumor Microenvironment Scores, Immune
Cell Infiltration and Immune Checkpoint
Gene Expression Across Molecular
Subtypes
The study calculated the immune/stromal scores and tumor
purity of each sample through the ESTIMATE package
(Yoshihara et al., 2013). The content of 22 immune cells in
each sample from GSE68465 was identified by CIBERSORT
package (Newman et al., 2015). Meanwhile, the infiltration
density of immune cells and expression of 30 validated ICGs
in different LUAD subtypes was compared by the limma package.
Kaplan-Meier analysis was used to investigate the prognostic
value of immune cells and ICGs。

Risk Scoring Model Generation and
Validation
TCGA cohort was used as the training set to generate the risk
scoring model, and GSE68465 dataset was used as the test set to
verify the model. The expression data of LDRGs, poorly
histological grade-related genes and ICGs in the training set
and testing set were extracted, and the data were normalized
and corrected by log2-scale transformation. Genes with
independent prognostic performance were screened by
univariate analysis, LASSO regression and multivariate Cox
analysis to generate a risk scoring model. The risk scoring
could be calculated as the sum of the products of gene
expression levels and coefficients. The patients were divided
into high-risk groups and low-risk groups based on the mean
value of the risk scores. Kaplan-Meier analysis and ROC curves
were completed to evaluate model accuracy and predictive
performance.

Establishment and Validation of a
Nomogram Based on the The Cancer
Genome Atlas Cohort
Based on TCGA cohort, age, gender, tumor purity, stage, risk
score and CCL20 mutation status were included in univariate
and multivariate analyses, respectively. Subsequently,
independent prognostic variables were combined into
nomograms to predict OS at 1-, 3-, and 5-year. ROC curves
and calibration curves were used to evaluate the predictive
performance and accuracy of the nomogram.

Immunotherapy Response
The tumor immune dysfunction and elimination (TIDE,
http://tide.dfci.harvard.edu/) is a computational method
that evaluates the prognostic effect of immune checkpoint
blocking therapy. It is used in our study to determine the
response of high- and low-risk LUAD patients to
immunotherapy.
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Statistical Analysis and Data Visualization
Statistical analysis and data visualization used R software
(version 4.0.4) and Perl (version 5.28.1.0). Packages such as
ggplot2, limma, edgeR, survival and venn. diagram in R
software are used for data analysis and visualization.

RESULTS

Ten Cell Clusters Were Identified and
Annotated Based on Marker Genes
After quality control and normalization of LUAD scRNA-seq data,
1,695 high-quality cells and 3,162 genes from LUAD cores were
included for subsequent analysis in this study (Figure 1A). The
number of genes detectedwas obviously positively correlated with the
depth of sequencing (Figure 1B). To better distinguish cell types, we
used variance analysis to identify the 1,500 highly variable genes
(Figure 1C). Furthermore, PCA was used to reduce data
dimensionality and screen related genes. The top 20 related genes
fromPCs are shown as dot plots and heatmaps in the Supplementary
Figure S1. However, the PCA results found that there were no clear
separations among LUAD cells (Figure 1D). Therefore, we selected
15 primary PCs with significant differences (p values < 0.01) for
further analysis (Figure 1E). Based on t-SNE algorithm, 1,695 LUAD
cells were successfully divided into ten clusters (Figure 1F), and the

application of differential analysis revealed 1,693 marker genes
(Supplementary Figure S2). According to the marker genes, these
clusters were annotated by singleR (Figure 1G). A total of 566 cells in
clusters 0 and three were annotated as T cells, 598 cells in clusters 1
and 2 as monocytes, 216 cells in clusters 4 and 8 as B cells, 90 cells in
cluster 5 asmacrophages, 87 cells in cluster 6 as cancer stem cells, and
138 cells in clusters 7 and 9 as cancer cells.

Trajectory Analysis Identified Two
Branches, and Gene Set Enrichment
Analysis Analyzed Biological Functions
Pseudo-time and trajectory analysis suggested that all cells were
distributed in one root and in two main branches (branches I and
II). The results revealed that clusters 0, 3, 4, and 5weremainly located
in the roots, containing T and B cells; clusters 1, 2, and 6 were mainly
located in branch I, containing macrophages and monocytes; and
clusters 7, 8, and 9 were mainly located in branch II, containing
cancer cells, cancer stem cells, and some B cells (Figure 2A). In
addition, this work identified 240 LDRGs in branch I and 213 LDRGs
in branch II (Supplementary Tables S1, S2). To understand the
correlation between the molecular functions of LDRGs and the
different differentiation trajectories, we used the WebGestalt
online tool to perform GSEA. The LDRGs in branch I were
dramatically associated with repressed immune-related pathway

FIGURE 1 | 10 cell clusters were identified and annotated based onmarker genes. (A) After quality control of the scRNA-seq data, 3,583 cells from the tumor cores
of three human LUAD samples were included in the analysis. (B) Correlation analysis between sequencing depth and detected genes was examined, and the Pearson
correlation coefficient was 0.91. (C) The variance of 3,162 genes were analyzed, the results indicated that 1,500 genes marked with the red dots had high variation and
1,662 genes marked with the black dots had low variation. (D) PCA showed no significant separations of cells in LUAD. (E) PCA determined 15 PCs with an
estimated p value < 0.01. (F) According to t-SNE algorithm, 1695 LUAD cells were successfully aggregated into 10 clusters. (G) Based on the marker genes, 10 clusters
were annotated by the singleR.
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FIGURE 2 | Trajectory analysis identified two branches, and GSEA analyzed biological functions. (A) Pseudo-time analysis reveals two LUAD branches with
different evolution trajectories. (B,C) MF, CC, BP and KEGG for branches I and II LDRGs were conducted to assess related biological functions. An FDR < 0.05 was
considered statistically significant. Blue represented pathway activation, and orange represented pathway inhibition.
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response and active ribosome activity, whereas the LDRGs in branch
II were related with vibrant immune-related pathways and
susceptibility to bacterial or viral infections. Collectively, these
findings demonstrated that LUAD cells in different differentiated
directions exhibited different biological tumor characteristics
(Figures 2B,C).

Correlation Between Lung
Adenocarcinoma Subtypes Based on Lung
Adenocarcinoma Differentiation-Related
Genes and Different Overall Survival and
Clinical Characteristics
A LDRG-based consensus clustering analysis was performed
on 443 LUAD patients in GSE68465, and all acquired samples
were classified into six subtypes (k value = 6, Figures 3A–C).

Kaplan-Meier survival analysis revealed that subtype 2 (C2)
had the highest overall survival (OS), whereas subtype 4 (C4)
had the worst OS (log-rank p = 9 × 10–3, Figure 3D). In
addition, we compared the clinicopathological characteristics
of LUAD among different subtypes of patients in the
GSE68465 cohort. As shown in Figure 3E, there were
significant differences among the six subtypes pertaining to
histologic grades. However, no significant differences were
observed in other variables among all subtypes.

To compare genes related to differential histologic grades in
different subtypes, with an adjusted p value < 0.05 and fold
change > 2 set as parameters, the EdgeR was conducted to analyze
differences between C4 and C2 and between C6 and C2. Taking
the intersection, the results showed that there were 18 co-
upregulated and 14 co-downregulated genes. GSEA indicated
that upregulating genes were closely related to the increased

FIGURE 3 | Correlation of LUAD subtypes based on LDRGs with different OS and clinical characteristics. (A) Consensus clustering matrix of GEO cohort (k = 6).
(B,C) CDF curve of consensus score (k = 2–9) in GEO cohort. (D) Kaplan-Meier survival analysis of the 6 subtypes of LUAD patients in the GEO cohort. (E)Comparisons
of the clinicopathological variables with six subtypes patients. (F)MF, CC, BP, and KEGG analysis of co-upregulated genes. An FDR < 0.05 was considered statistically
significant.
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FIGURE 4 | The analysis of tumor microenvironment scores, and prognostic analysis in immune cell infiltration and immune checkpoint genes. (A) Difference
analysis of immune cell score, stromal cell score, ESTIMATE score and tumor purity among the six subtypes. (B) The accumulation percentage map of 22 kinds of
immune cells in six subtypes from different LUAD samples. (C) Box plots of infiltration density of 22 kinds of immune cells in different subtypes. Kaplan-Meier survival
analysis of immune cells (D) and immune checkpoints (E–I). (J) Differential expression analysis of 30 recognized immune checkpoints in different subtypes. ns p >
0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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sensitivity of cells to external stimuli, to decreased cell resistance
to bacterial infection, and to the widening of the blood vessel
diameter (Figure 3F). In contrast, enrichment results pertaining
to downregulated genes were not significant (Supplementary
Figure S3).

Analysis of Tumor Microenvironment
Scores, Prognostic Analysis in Immune Cell
Infiltration, and Immune Checkpoint Genes
Based on tumor microenvironment scores, our results
revealed that stromal/ESTIMATE/immune scores in C3,
C4, C5, and C6 decreased, whereas tumor purity was
gradually increased in C3, C4, C5, and C6 (Figure 4A).
The content of the 22 immune cells in each LUAD sample
was calculated by the CIBERSORT algorithm and was
visualized through an accumulation percentage map, where
different colors represent different immune cells (Figure 4B).
Afterward, the Wilcoxon test was used to compare the
infiltration density of the immune cells in different
subtypes (Figure 4C), and the results found that the
immune cells were significantly different among the six
subtypes examined (p < 0.01), except for the activated CD4
T cells, activated NK cells, and eosinophils. The Kaplan-Meier
survival analysis showed that the infiltration density of
memory B cells was positively correlated with patient
survival (p = 0.015, Figure 4D). Memory B cell infiltration
density was found to be the highest in C2, which translates to
improved OS, whereas memory B cell infiltration density was
the lowest in C6, which means poor OS.

Expression of the 30 immune checkpoints among LUAD
subtypes was measured and compared (Figure 4J), and our
results found that immune checkpoints were significantly
different among the six subtypes (p < 0.05), except for
interleukin 12A (IL12A), lactate dehydrogenase B (LDHB),
programmed cell death 1 (PDCD1), and TNF superfamily
member 18 (TNFSF18). It is worth noting that
downregulation of LDHB predicted a better OS
(Figure 4F). LDHA was downregulated in C2, and the
Kaplan-Meier analysis indicated that lowly expressed
LDHA predicted better OS (Figure 4E). CD28 and
TNFRSF4 were upregulated in C3, and the Kaplan-Meier
analysis indicated that highly expressed CD28 and
TNFRSF4 predicted better OS (Figures 4H,I). Furthermore,
JAK2 was upregulated in C4, and the Kaplan-Meier analysis
indicated that highly expressed JAK2 predicted worse OS
(Figure 4G). These results provide a molecular basis for
understating that the different subtypes have different OS.

Construction of a Prognostic Risk Scoring
Model to Predict Lung Adenocarcinoma
Patient Survival
Based on previous studies, 313 genes, consisting of 291 LDRGs,
18 significantly upregulated genes related to histologic grade and
four immune checkpoint genes were further screened by
univariate analysis, LASSO, and multivariate Cox analysis

(Supplementary Tables S3, S4). Ultimately, 14 genes were
generated in the TCGA training cohort. According to the 95%
confidence interval of these genes, we finally identified eight
significant survival-predicting genes: c-type lectin domain
containing 7A (CLEC7A, HR = 0.69, p < 0.001), baculoviral
IAP repeat containing 3 (BIRC3, HR = 1.19, p = 0.032),
superoxide dismutase 1 (SOD1, HR = 1.62, p = 0.007),
versican (VCAN, HR = 1.17, p = 0.039), kynureninase
(KYNU, HR = 1.14, p = 0.032), CC motif chemokine ligand
20 (CCL20, HR = 1.10, p = 0.004), cancer/testis antigen 1B
(CTAG1B, HR = 2.40, p < 0.001), and CD69 molecule (CD69,
HR = 0.82, p = 0.022). Furthermore, the Supplementary Figure
S4 demonstrates the expression levels of eight prognostic genes in
cell profiles. It is shown that CLEC7A, VCAN, and KYNU were
significantly upregulated in monocytes, BIRC3 and SOD1 were
mainly distributed in T cells, CCL20 was highly expressed in
tumor cells, and CD69 was highly expressed in B cells. CTAG1B
was filtered out during quality control.

The prognostic risk scoring model was developed based on the
above eight prognostic-related genes, and the formula was as
follows:

Risk score = ExpCLEC7A × (−0.377) + ExpBIRC3 × 0.170 +
ExpSOD1 × 0.483 + ExpVCAN × 0.156 + ExpKYNU × 0.132 +
ExpCCL20 × 0.099 + ExpCTAG1B × 0.877 + ExpCD69 × (−0.201).

According to this formula, the risk scores of all patients in the
TCGA training set and the GEO testing set were calculated, and
the patients were divided into high- and low-risk groups based on
the median of the risk scores (Figure 5C). The Kaplan-Meier
survival analysis showed that OS of patients in the high-risk
group was significantly poorer than the OS in the low-risk group
both in the training set (p < 0.001, Figure 5A) and the testing set
(p = 0.014, Figure 5D). The areas under the receiver operating
characteristic curves (ROC) for predicting 1-, 3-, and 5-year OS
were 0.764, 0.766, and 0.760, respectively, in the training set
(Figure 5B) and 0.621, 0.617, and 0.573, respectively, in the
testing set (Figure 5E). These results showed that this prognostic
risk score model could be used as a reliable prognostic predictor
for LUAD patients.

The Key Role of CCL20 in Lung
Adenocarcinoma
The intersection of 291 LDRGs and 32 genes related to
histologic grade showed that they both had CCL20 and
C-X-C motif chemokine ligand 8 (CXCL8). Furthermore,
CCL20 was also included in the survival-predicting genes
(Figure 6) and was mainly expressed in cancer cells of
branch II.

Establishment and Validation of a
Nomogram for Predicting Patient OS Based
on the The Cancer Genome Atlas Cohort
Univariate and multivariate Cox regression analysis showed
that stage, risk score, and CCL20 mutation status could be used
as independent factors for the prognosis of LUAD
(Supplementary Tables S5, S6). Patients with higher risk
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scores and later stage had poorer prognosis. CCL20 mutations
were also associated with poor prognosis. Finally, a prognostic
nomogram was successfully developed to predict the OS rate of
LUAD patients based on the TCGA cohort (Figure 7A). Time-
dependent ROC analysis showed that the nomogram could

effectively predict the 1-, 3-, and 5-year OS rates of patients,
with AUC values of 0.768, 0.766, and 0.758, respectively
(Figure 7B). The calibration chart also revealed that the
predicted OS rate was consistent with the actual
observations in the TCGA cohort (Figure 7C).

FIGURE 5 | Construction of a prognostic risk scoring model to predict LUAD patient survival. Kaplan-Meier survival analysis was performed to calculate the OS of
high-risk and low-risk groups patients in the TCGA training set (A) and GEO test set (D). The ROC curve was used to verify the ability of the risk model to judge the 1-, 3-,
and 5-year OS rates of patients in the TCGA (B) and GEO set (E). Risk score analysis of eight prognostic-related genes in TCGA (C) and CGGA (F) sets. Upper: The
survival status and time of LUAD patients distributed by risk score. Middle: The patients were classified into a high-risk group or a low-risk group by using the
median value of the risk score. Bottom: Heat maps of the expression levels of eight prognostic-related genes.
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DISCUSSION

Although the incidence of LUAD is consistently reduced year by
year, as a result of public education and implementation of
etiological preventive measures, such as quitting smoking, it
still remains a global public health issue due to its respective
high mortality rates (Siegel et al., 2021). To date, there is a lack of
effective prediction models that could be used to guide clinical
prognosis evident. Most tumors originate from a single cell, and
tumor progression is caused by the gradual selection of more
aggressive and more resistant dominant cancer cell variant
sublines due to acquired genetic instability (Nowell, 1976).
The strong drug resistance caused by heterogeneity greatly
increases the complexity of tumors and reflects the increasing
difficulty of drug design, thus rendering the prognosis of cancer
patients unsatisfactory (Fedele et al., 2014). LUAD is the most

common respiratory tumor with extremely high heterogeneity. In
this study, we analyzed the factors affecting LUAD heterogeneity
based on the RNA-seq and somatic mutation data from TCGA
and the scRNA-seq and RNA-seq data from GEO. Single-cell
trajectory analysis verified LUAD heterogeneity, and the
subsequent enrichment analysis exhibited that this
heterogeneity was closely related to the activation and
suppression of the immune system function (Satija et al., 2015;
Lall et al., 2018). Eventually, CLEC7A, CD69, SOD1, BIRC3,
VCAN, KYNU, CCL20, and CTAG1B were identified as the eight
most significant, independent predictive genes. Based on these
eight genes, we established a risk scoringmodel and combined the
tumor stage and the CCL20 mutation status to successfully
develop a 1-, 3-, and 5-year prognostic nomogram. With high
predictive power, the nomogram could provide certain evidence
support for clinicians to predict the possibility of patient survival
time, thus enabling clinicians to formulate individualized optimal
treatment plans.

CLEC7A, also known as Dectin-1 and CD369, is a pattern
recognition receptor expressed by myeloid phagocytes
(macrophages, dendritic cells, and neutrophils) and plays a
pivotal role in antifungal response, antimicrobial reaction, and
autoimmunity through phagocytosis, respiratory burst,
cytokines, and others (Goodridge et al., 2011; Mattiola et al.,
2019). Besides, accumulated evidence has suggested that CLEC7A
had dual effects on cancer, namely, inhibiting and promoting
cancer (Tone et al., 2019). CLEC7A has been widely studied in
pancreatic cancer, kidney cancer, and liver cancer, etc., but the
true role of this gene remains controversial (Seifert et al., 2015;
Xia et al., 2016; Daley et al., 2017). CLEC7A, which is highly
expressed in M2-like tumor-associated macrophages, is linked to

FIGURE 6 | The key role of CCL20 in LUAD. Venn diagram of eight
independent risk scoring genes, 32 genes related to poor differentiation and
291 LDRGs.

FIGURE 7 | Establishment and validation of a nomogram for predicting patient OS based on the TCGA cohort. (A) Nomogram model to predict the prognosis of
LUAD patients based on the TCGA cohort stage, CCL20mutation situation and risk score were included in the prediction model. (B) The 1-year, 3-year, and 5-year ROC
curve were used to assessed the prognostic performance of the nomogram. (C) The calibration curves for predicting the 1-year, 3-year, and 5-year OS.
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galectin 9, thus leading to tolerogenic macrophage programming
and adaptive immunosuppression that contribute to tumor
exacerbation (Daley et al., 2017; Zhou et al., 2021a).
Conversely, activation of CLEC7A can exert effective anti-
tumor immunity by enhancing the expression of interleukin-
33 and interleukin-9 in dendritic cells and by inducing
differentiation of naive CD4+T cells into T-helper 9 cells
(Zhao et al., 2016; Chen et al., 2018). CLEC7A could also
stimulate the secretion of cytokines, such as interleukin-13,
interleukin-1, and TNF-α in macrophages to activate
macrophage tumoricidal response (Deng et al., 2018;
Alaeddine et al., 2019). This opposite effect may be caused by
the activation of different types of immune cells by CLEC7A in
different pathways. So far, little is known regarding the
relationship between CLEC7A and lung cancer. Chiba et al.
found that CLEC7A could promote natural killer cells to
secrete cytotoxic factors and thus fight lung cancer through
cell-to-cell contact (Chiba et al., 2014). In this study, CLEC7A
had a positive effect on the prognosis of LUAD patients, which
was consistent with the findings of previous studies (Zou et al.,
2020; Zhou et al., 2021b; Lin et al., 2021).

In addition, the key role of CCL20 in LUAD was identified in
this study. CCL20, also called liver and activation-regulated
chemokine, macrophage inflammatory protein 3 alpha, and
small-inducible cytokine A20, is highly expressed in many types
of cancer, including NSCLC, ovarian cancer, colorectal cancer,
penile cancer, breast cancer, gastric cancer, and pancreatic cancer
(Han et al., 2015; Liu et al., 2016; Lee et al., 2017;Wang et al., 2019b;
Liu et al., 2020a; Mo et al., 2020). This ligand has been found to
enhance themigration and proliferation of cancer cells through the
CCL20/CCR6 signaling pathway and to inhibit cell apoptosis,
which directly promotes cancer progression. In addition, CCL20
can indirectly promote cancer progression through immune cell
control to reshape tumor microenvironment. For instance, Wei
et al. concluded that the high expression of CCL20 in LUAD could
enhance CCL20/CCR6/ERK signal transduction, thereby
promoting the proliferation and migration of tumor cells (Wei
et al., 2019). Furthermore, Wang et al. believed that NSCLC cells
produce CCL20 in an autocrine and paracrine manner.
Overexpression of CCL20 overactivates the MAPK-PI3K
signaling pathway, thus leading to high chemoresistance,
accelerated proliferation, or a more stable ability to reside in
new locations of cancer cells (Wang et al., 2016). In this work,
CCL20 was found to be highly expressed mainly in branch II and
concentrated in tumor cells. Enrichment analysis showed that the
significant CCL20 upregulation can increase the sensitivity of
tumors to extracellular stimuli and promote bacterial invasion
of host cells, leading to instability of the intracellular environment,
but it can also increase the diameter of blood vessels in the tumor
environment to meet the needs of tumor proliferation and
migration. Furthermore, our findings showed that CCL20 was
significantly negatively correlated with the patient’s OS. Consistent
with previous research, CCL20 was confirmed to be an important
gene involved in the evolution of LUAD tumors, poor histologic
grade, and independent prognosis of patients in our work.

CD69 upregulation could induce LUAD cell apoptosis and
inhibit tumor proliferation, invasion, and metastasis, thus

suggesting a good prognosis. BIRC3, VCAN, CTAG1B,
SOD1, and KYNU promoted the survival and proliferation
of cancer cells, inhibited cancer cell apoptosis, and were related
to poor prognosis and treatment resistance (Jin et al., 2018; Liu
et al., 2020b; Al-Mansoob et al., 2021; Frazzi, 2021; Li et al.,
2021). In this work, these genes could also be used as potential
prognostic genes for LUAD, and their impact on LUAD was
consistent with the findings of previous reports.

Tumor immunotherapy has proven to be very effective
because it can manipulate the individual’s immune system
to identify and attack cancer cells, thereby inducing a long-
lasting and strong anti-tumor response (Gotwals et al., 2017;
Kennedy and Salama, 2020). Immunotherapy has achieved
amazing effects in solid tumors, such as melanoma, bladder
cancer, and breast cancer, but the effective survival benefit of
lung cancer has only recently been confirmed (van den Bulk
et al., 2018). However, it should not be ignored that
immunotherapy is not applicable to all patients with LUAD
(Zhao et al., 2019; Hegde and Chen, 2020). Unfortunately,
some patients have poor sensitivity to immunotherapy, but
also treatment side effects, such as pneumonia, can further
damage the already poor lung reserve, leading to accelerated
disease deterioration (Steven et al., 2016). Therefore, it is very
important to distinguish patients who are sensitive to
immunotherapy. The tumor immune dysfunction and
elimination (TIDE) algorithm came into being. The results
of this study showed that the TIDE score of low-risk patients
was significantly higher than that of high-risk patients,
indicating that high-risk patients are bound to benefit more
from immunotherapy and thus get a better prognosis
compared to low-risk patients (Supplementary Figure S5).
In general, a risk scoring model composed of eight
independent genes could provide a preliminary estimate of
patients’ responsiveness to immunotherapy, thereby
minimizing the negative effects of drug toxicity.

Our research also has certain limitations. In this research, we
only analyzed the molecular phenotypes and existing clinical data
that we were interested in. Phenotypes such as gene methylation,
gene mutations, long non-coding RNA, competing endogenous
RNA, and clinicopathological characteristics, such as smoking
history, chemotherapy and radiotherapy history, history of
underlying diseases, history of disease progression, etc., were
not considered due to the lack of unified standard data.
Consequently, survival prediction models necessitate
continuous improvement.

CONCLUSION

The current research analyzed the genes that affected tumor
heterogeneity and established a risk scoring model consisting of
eight independent prognostic genes through data dimensionality
reduction. The nomogram that combined risk scores,
clinicopathological variables, and CCL20 mutation status
provided a visual and accurate method for predicting the 1-, 3-,
and 5-year survival rates of patients. In conclusion, this study
emphasizes the impact of tumor heterogeneity on predicting
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patient OS and immunotherapy response and underlines a potential
therapeutic target for the treatment of LUAD.
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GLOSSARY

BIRC3 Baculoviral IAP repeat containing 3

BP Biological process

CC Component

CCL20 CC motif chemokine ligand 20

CD69 CD69 molecule

CDF The cumulative distribution function

CLEC7A c-type lectin domain containing 7A

CTAG1B Cancer/testis antigen 1B

GEO Gene Expression Omnibus

GO Geneontology

ICG Immune checkpoint gene

KEGG Kyoto encyclopedia of genes and genomes

KYNU Kynureninase

LASSO Least absolute shrinkage selection operator

LDRGs LUAD differentiation-related genes

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MF Molecular function

NSCLC Non-small cell lung cancer

OS Overall survival

PC Principal components

PCA Principal component analysis

ROC Receiver operating characteristic curves

SCLC Small cell lung cancer

SOD1 Superoxide dismutase one

TCGA The Cancer Genome Atlas

TF Transcription factors

TIDE The tumor immune dysfunction and elimination

t-SNE The t-distributed stochastic neighbor embedding

VCAN Versican

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 80749715

Zheng et al. Prognostic Model of Lung Adenocarcinoma

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Establishment of a Prognostic Model of Lung Adenocarcinoma Based on Tumor Heterogeneity
	Introduction
	Materials and Methods
	Acquisition, Dimensionality Reduction and Cell Annotation of scRNA-Seq Data
	Pseudo-Time Analysis and Enrichment Analysis of Lung Adenocarcinoma Differentiation-Related Genes Base on Single-Cell RNA S ...
	Acquisition and Processing of RNA Sequencing Data
	Molecular Subtype Classification of Lung Adenocarcinoma Patients Based on Lung Adenocarcinoma Differentiation-Related Genes
	Tumor Microenvironment Scores, Immune Cell Infiltration and Immune Checkpoint Gene Expression Across Molecular Subtypes
	Risk Scoring Model Generation and Validation
	Establishment and Validation of a Nomogram Based on the The Cancer Genome Atlas Cohort
	Immunotherapy Response
	Statistical Analysis and Data Visualization

	Results
	Ten Cell Clusters Were Identified and Annotated Based on Marker Genes
	Trajectory Analysis Identified Two Branches, and Gene Set Enrichment Analysis Analyzed Biological Functions
	Correlation Between Lung Adenocarcinoma Subtypes Based on Lung Adenocarcinoma Differentiation-Related Genes and Different O ...
	Analysis of Tumor Microenvironment Scores, Prognostic Analysis in Immune Cell Infiltration, and Immune Checkpoint Genes
	Construction of a Prognostic Risk Scoring Model to Predict Lung Adenocarcinoma Patient Survival
	The Key Role of CCL20 in Lung Adenocarcinoma
	Establishment and Validation of a Nomogram for Predicting Patient OS Based on the The Cancer Genome Atlas Cohort

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References
	Glossary


