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Abstract

Background: Detection of type 2 diabetes (T2D) is routinely based on the presence of dysglycemia. Although
disturbed lipid metabolism is a hallmark of T2D, the potential of plasma lipidomics as a biomarker of future T2D is
unknown. Our objective was to develop and validate a plasma lipidomic risk score (LRS) as a biomarker of future
type 2 diabetes and to evaluate its cost-effectiveness for T2D screening.

Methods: Plasma LRS, based on significantly associated lipid species from an array of 319 lipid species, was
developed in a cohort of initially T2D-free individuals from the San Antonio Family Heart Study (SAFHS). The LRS
derived from SAFHS as well as its recalibrated version were validated in an independent cohort from Australia – the
AusDiab cohort. The participants were T2D-free at baseline and followed for 9197 person-years in the SAFHS cohort
(n = 771) and 5930 person-years in the AusDiab cohort (n = 644). Statistically and clinically improved T2D prediction
was evaluated with established statistical parameters in both cohorts. Modeling studies were conducted to
determine whether the use of LRS would be cost-effective for T2D screening. The main outcome measures
included accuracy and incremental value of the LRS over routinely used clinical predictors of T2D risk; validation of
these results in an independent cohort and cost-effectiveness of including LRS in screening/intervention programs
for T2D.

Results: The LRS was based on plasma concentration of dihydroceramide 18:0, lysoalkylphosphatidylcholine 22:1
and triacyglycerol 16:0/18:0/18:1. The score predicted future T2D independently of prediabetes with an accuracy of
76 %. Even in the subset of initially euglycemic individuals, the LRS improved T2D prediction. In the AusDiab
cohort, the LRS continued to predict T2D significantly and independently. When combined with risk-stratification
methods currently used in clinical practice, the LRS significantly improved the model fit (p < 0.001), information
content (p < 0.001), discrimination (p < 0.001) and reclassification (p < 0.001) in both cohorts. Modeling studies
demonstrated that LRS-based risk-stratification combined with metformin supplementation for high-risk individuals
was the most cost-effective strategy for T2D prevention.

Conclusions: Considering the novelty, incremental value and cost-effectiveness of LRS it should be used for
risk-stratification of future T2D.
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Background
Type 2 diabetes (T2D) represents a complex metabolic
turmoil rather than just a derangement of blood glucose
control. In the continued quest for biomarkers of T2D
[1] methods that can tap the whole gamut of metabolic
disruption are therefore urgently required. In this con-
text, there is a growing realization of the existence of the
“plasma lipidome” that encompasses the entire spectrum
of circulating lipid molecules [2, 3]. New high-throughput
and high-resolution technologies applied to plasma lipido-
mic profiling are now providing additional insights into
disease pathophysiology and individual lipid species have
been associated with existing T2D or prediabetes [4–7].
However, the potential use of plasma lipid species as bio-
markers to predict future development of T2D remains
unexplored.
In this study, we used rich phenotypic and lipidomic

data from two large, well-characterized, population-
based cohorts and investigated the potential of plasma
lipid species as independent biomarkers of incident
T2D. We derived a lipidomic risk score (LRS) based on
significant association of plasma lipid species with time
to T2D in initially T2D-free Mexican American partici-
pants (n = 771, see Additional file 1: Figures S1, S2 and
Tables S1, S2) from the San Antonio Family Heart Study
(SAFHS) [8–10]. After establishing the independent and
additive value of this LRS in the SAFHS cohort, we vali-
dated these results in a geo-epidemiologically distinct
cohort from Australia – the AusDiab cohort (n = 644,
see Additional file 1: Figure S3 and Table S2) [7, 11].

Methods
Cohorts
Studies related to the development and accuracy of the
LRS were conducted in the SAFHS cohort [8–10]. At
baseline, this cohort consisted of 1,431 individuals from
42 large and extended pedigrees of Mexican Americans
residing in San Antonio, Texas, USA. Our protocol for
selecting 771 individuals without diabetes who were
followed for up to three additional visits spaced approxi-
mately 5 years apart (9197.1 person-years of follow-up
with a maximum follow-up of 23.53 years) is shown in
(Additional file 1: Figure S1). The distribution of SAFHS
participants across families, their familial relationships
and clinical characteristics and are shown in, (Additional
file 1: Figure S2, Table S1 and Table S2). To determine
the generalizability of the LRS derived from the SAFHS
data, we used an independent well-characterized, high-
risk subset of predominant Europid origin individuals
drawn from the AusDiab cohort [7, 11]. From this co-
hort, we selected 653 participants who were initially
non-diabetic. Since follow-up information was not avail-
able on 9 (1.4 %) individuals we included 644 partici-
pants in association analyses who were followed up for

5929.5 person-years (maximum follow-up 12.94 years).
The algorithm used for inclusion of AusDiab partici-
pants is given in Additional file 1: Figure S3 and their
clinical characteristics are shown in (Additional file 1:
Table S2).

Outcomes
Our primary outcome of interest was incident T2D, de-
fined as T2D detected during follow-up visits in partici-
pants who did not have T2D at the baseline visit. At
each visit, T2D was considered present when one or
both of the following conditions were met: i) fasting
plasma glucose ≥126 mg/dl (7.0 mmol/l) or 2-hour post-
glucose load ≥200 mg/dl (11.1 mmol/l)]; ii) receipt of
anti-diabetic medication. There were 122 (15.8) and 233
(36.2 %) cases of incident T2D in the SAFHS and
AusDiab cohorts, respectively.
We also examined the association of the LRS with six

measures of insulin resistance. These measures were
[12]: fasting plasma glucose (FPG), fasting plasma insulin
(FPI), homeostatic model of assessment – insulin resist-
ance (HOMA-IR), quantitative insulin sensitivity check
index (QUICKI) [13], McAuley index [14] and leptin/
adiponectin ratio [15]. HOMA-IR was defined as FPG
(mg/dl) x FPI (IU/L)/405; QUICKI was defined as 1/(log
FPI + log FPG (mg/dl)) and McAuley’s index was calcu-
lated as exp [2.63 – 0.28 ln(FPI) – 0.31 ln(serum triglyc-
erides in mmol/l)]. The methods used for measurement
of FPG, FPI, leptin and adiponectin have been previously
described [8–10, 16, 17].

Lipidomic studies
Lipidomic profiling was conducted in the Metabolomics
Laboratory, Baker IDI Heart and Diabetes Institute,
Australia. We quantified a total of 319 lipid species
(descriptive statistics are in, Additional file 1: Table S3)
in plasma using a combination of liquid chromatography
and electrospray ionisation-tandem mass spectrometry.
These methods have been described extensively else-

where [7, 18–22]. Briefly, 10 μL aliquots of plasma were
combined with 200 μL CHCl3/MeOH (2:1) and 15 μL of
internal standard mix. Then samples were mixed (rotary
mixer, 10 min), sonicated (water bath, 30 min) and
allowed to stand (20 min) at room temperature. After-
wards, the samples were centrifuged (16,000xg, 10 min)
and the supernatant was dried under a stream of nitrogen
at 40 °C. Extracted lipids were resuspended in 50 μL H2O
saturated BuOH, followed by 50 μL of 10 mM NH4CHOO
in MeOH. Extracts were centrifuged (3,350xg, 5 min) and
the supernatant transferred into 0.2 mL glass inserts in
vials with teflon lined caps. Lipid measurements were per-
formed by liquid chromatography electrospray ionisation-
tandem mass spectrometry using an Applied Biosystems
4000 QTRAP. Liquid chromatography was performed on
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a Zorbax C18, 1.8 μm, 50 × 2.1 mm column at 300 μL/min
using the following gradient conditions; 0 % B to 100 % B
over 8.0 min, 2.5 min at 100 % B, a return to 0 % B over
0.5 min then 3.0 min at 0 % B prior to the next injection.
Diacylglycerols and triacylglycerols were separated
using the same solvent system with an isocratic flow
(100 μL/min) of 85 % B over six minutes. Solvent A and
B consisted of tetrahydrofuran:methanol:water in the ra-
tios (30:20:50) and (75:20:5) respectively, both containing
10 mM NH4COOH. Quantification of individual lipid
species was then performed using scheduled multiple-
reaction monitoring (MRM) in positive ion mode [21, 22].
Lipid concentrations were calculated by relating the peak
area of each species to the peak area of the corresponding
internal standard. Cholesteryl ester species were corrected
for response factors determined for each species.

Statistical analysis
Data normalization
To ensure that the lipidomic traits are normally distrib-
uted and represented on a comparable metric, we trans-
formed the raw plasma concentration of each lipid
species by inverse-normalization that included ranking,
generation of cumulative density functions and deter-
mination of z-values based on the cumulative density.

Mixed effects Cox proportional hazards modeling
In the SAFHS cohort, we used mixed effects Cox
Proportional Hazards models that account for the fixed
effects of the predictors as well as random effects due to
kinship [23, 24]. We created a kinship matrix represent-
ing paired genetic relationships among study subjects.
The elements of a kinship matrix (φ) indicate the genetic
similarity (kinship coefficient) denoted by relationships
between each pair of the study subjects. For example,
the routinely used kinship coefficients for different
relationships are as follows: identical twins, 1; parent-
offspring or sibling, 0.5; and grandparent-grandchild,
avuncular, half-siblings or double first cousins, 0.25. Fur-
ther, the kinship coefficients for 3rd, 4th, 5th and 6th de-
gree relatives are 0.0078, 0.0020, 0.0005 and 0.0001,
respectively.
In these mixed effects Cox PH models we adjusted the

association of lipid species with time to T2D for the
following covariates: age, age2, sex, age x sex interaction,
age2 × sex interaction, systolic and diastolic blood pres-
sures (SBP and DBP), waist circumference, body mass
index (BMI), total serum cholesterol, serum high-density
lipoprotein (HDL) cholesterol, serum triglycerides and
use of anti-lipid and anti-hypertensive drugs. We
corrected for the potentially false positive results using
Benjamini and Hochberg’s [25] method of controlling the
false discovery rate (FDR). All p-values were two-tailed.

Receiver operating characteristics curves for family data
Parallel to the reasoning for using mixed effects Cox PH
analyses, we also accounted for kinship structure in the
receiver operating characteristics (ROC) curves using a
variance components approach. Receiver operating char-
acteristic curves plot a series of estimated sensitivity
(true positive rate) and 1-specificity (false positive rate)
pairs when a continuous predictor is dichotomized at
various cut-offs [26, 27]. In the context of family studies,
the estimates of sensitivity and specificities can be biased
due to the kinships. To account for the kinships in the
estimation of sensitivity and specificity we used the vari-
ance components approach and polygenic regression
modeling in the following way.
For a given cut-off, we used a liability threshold model

[28] for analysis of discrete traits and estimated the
prevalence of T2D events separately in participants
above and below the cut-off. We used polygenic regres-
sion models for this which permitted accounting for
both the kinships as random effects and the abovemen-
tioned clinical predictors as fixed effects. A polygenic
regression model is of the form:

LT ¼ μþ βaþ gi þ ei

where, LT is the liability threshold, μ is the overall mean
LT, β is the regression coefficient vector corresponding
to the covariate matrix a, gi is the polygenic effect (used
to estimate the heritabilities) and ei is the measurement
error. The mean (μ) represents the cumulative distribu-
tion function, the inverse of which provides probability.
In the case of discrete traits this probability represents
the prevalence of a condition.
Since we estimated the prevalence estimates in subset of

subjects who were above or below the cut-off for a pre-
dictor, these prevalence estimates represent the post-test
probability of a positive (p1) and negative (p0) result. Since
the proportion of subjects above the cut-off (p) can also be
estimated from the sample (through a similar polygenic
regression model); we derived the Bayesian estimates of
sensitivity and specificity as follows: sensitivity = p*p1/
[p*p1 + (1-p)*p0] and specificity = (1-p)*(1-p0)/[(1-p)*(1-
p0) + p*(1-p1)].
We repeated this procedure over the entire spectrum

of observed cut-off values and plotted the ROC curve as
tuples of sensitivity and 1-specificity. These estimates
implicitly account for the kinship structure of the study
subjects. We then used the methods described by
Hanley and McNeil [26] to determine the area under the
ROC curve (AUC, a measure of the predictive accuracy)
and its standard error. We used the chi-square tests
based on AUCs and their standard errors [29] to test for
significant difference between AUCs.
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Incremental value of plasma LRS
We determined the incremental value of lipidomic bio-
markers to commonly used methods of risk stratification
with respect to the following five aspects – model fit
(assessed by likelihood ratio χ2, LRχ2), information con-
tent (Akaike information criterion, AIC), accuracy (Uno’s
survival C statistic [30]), discrimination (integrated dis-
crimination improvement, IDI) and continuous version
of reclassification (net reclassification index, NRI).

Validation studies in the AusDiab cohort
In the AusDiab cohort, we used Poisson regression models
to account for length time bias (using length of follow-up as
an exposure variable) since the exact date of T2D diagnosis
was unknown. We took three complementary approaches
for validation of the LRS: i) the LRS derived from SAFHS
was directly applied to the AusDiab participants; ii) the LRS
was recalibrated for the AusDiab cohort; and iii) the predict-
ive performance of the recalibrated score in AusDiab was
compared to a similar set of Poisson regression models in
the SAFHS cohort. To increase the generalizability of these
interpretations, the confidence intervals (CI) were estimated
using a bootstrap procedure on 1000 replicates. We also
estimated AIC, IDI and NRI to quantify the improved pre-
diction due to LRS in the AusDiab cohort.

Cost-effectiveness studies
We investigated if the use of LRS - alone or in combin-
ation with other screening methods – would be a cost-
effective option in the setting of T2D screening. For this
we considered seven potentially useful screening and
intervention strategies (Fig. 4a) and compared the cost
and effectiveness of these strategies.
All the screening strategies considered in these ana-

lyses assume:

1. Single payer perspective
2. A one-time screening with the indicated strategy;
3. Identification of differential risk groups (high risk,

moderate risk or low risk) based on the strategy used;
4. Influence of the screening/interventions strategy on

the 5-year observed probability of incident T2D;
5. A willingness-to-pay (WTP) US$ 4450.12 for a

5-year T2D prevention program. This estimate is
based on the 3-year estimates of WTP reported by
Johnson et al. [31], linearly extrapolated to five years
and converted to 2015 US$; and

6. Even though the probability estimates used here are
derived from both SAFHS and AusDiab, the
analyses assume US target population to which the
cost-effectiveness measures apply.

Cost estimations For estimating the cost of interventions,
we used the 10-year cost-effectiveness data reported by the

DPP Trial [32, 33]. We cumulated the first five years data
from the DPP Trial in individuals undergoing Lifestyle
intervention, Metformin supplementation or No interven-
tion (placebo) group. We also considered the medical treat-
ment costs for individuals with and without T2D outside
the DPP. We then converted these costs into 2015 US$
which represent the undiscounted costs from a single-
payer’s perspective. It is recommended that the costs and
QALYs be discounted for future outcomes in studies of pre-
vention strategies such as ours. However, the rate at which
the costs and QALYs should be discounted (currently rec-
ommended to be 3.5 % for both [34]) is a subject of an on-
going debate [35–38]. In this study, we chose to use
undiscounted costs and QALYs since our aim was to con-
duct proof-of-principle cost-effectiveness analyses rather
than to provide a futuristic solution to screening for T2D.
Details of the cost estimations are shown in (Additional
file 1: Table S7). To estimate the costs of screening, we
used different sources of data. For the costs associated with
fasting plasma glucose (FPG), we used the costs as men-
tioned by Sullivan et al. [39] and converted these costs into
2015 US$. To estimate the cost of risk factor screening
using a questionnaire method, we used data as reported by
Zhang et al. [40] and converted these costs into 2015 US$.
The cost of the LRS was established as follows: assuming a
center that conducts a large number of lipidomic assays,
the cost of each lipidomic species measured is ~1 US$
(total 3 US$ for three lipid species), the cost of mass spec-
trometry is ~4 US$ and the cost of manpower for the assay
is 4 US$ totaling to US$11 per assay. For screening strat-
egies that used only LRS, there would be an additional cost
of plasma sample preparation (29 US$, based on costs
reported at: http://pathology.med.wayne.edu/lipidomics/
servicescosts.php) and a primary care visit (50 US$, re-
ported in [40]). However when the LRS is combined with
the fasting plasma glucose assays then these additional costs
of sample preparation and primary care visit are charged
only once and not duplicated for each assay separately.

Effectiveness measures We used two measures of ef-
fectiveness – risk reduction in the incidence of T2D and
quality-adjusted life years (QALYs). The estimates of
QALY were derived from the DPP data which report the
annual QALYs stratified by T2D status and intervention
received. Risk reduction in the incidence of T2D was es-
timated as a function of the probability of T2D at five
years and the expected probability based on efficacy of
the intervention used. We used an estimate of 0.58 and
0.31 as efficacy of lifestyle intervention and metformin
supplementation (500 mg once daily), respectively, based
on the DPP Trial results [33, 41].

Outcomes of cost-effectiveness studies These were:
cost and effectiveness, incremental cost-effectiveness
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ratios (ICER) and net monetary benefits. Results were
represented as cost-effectiveness plots, tornado diagrams
and ICER plots.

Analytical approach for cost-effectiveness studies We
conducted cost-effectiveness studies separately for the
SAHFS and AusDiab datasets. For each dataset, we used
the same estimates of costs and effectiveness measures
(as detailed above). The probability of being in either the
high risk (HR), moderate risk (MR) or low risk (LR) was
different for the two study cohorts; hence two different
sets of analyses were used. For each dataset, we first
studied the distribution of the risk groups and then con-
ducted cost-effectiveness studies by i) rolling back the
decision tree shown in (Additional file 1: Figure S6); and
ii) plotting the cost and effectiveness. Since there were
two effectiveness measures, we combined these mea-
sures into a single plot by using ordinate axis for QALYs
and altering the size of marker based on the risk reduc-
tion in T2D incidence (Fig. 4b and c). We then esti-
mated the ICERs based on estimated cost and QALYs
for each strategy (see Additional file 1: Table S8). These
analyses together represented the base case scenarios.
Finally, we conducted sensitivity analyses by first using
tornado plots (see Additional file 1: Figure S7) and then
conducting a one-way sensitivity analysis for the variable
to which the expected value (EV) was most sensitive.
For the one-way sensitivity analyses, we used microsi-
mulation with 1000 runs and the results were expressed
as mean cost/QALY ratio for each strategy based on the
1000 runs. Further, we smoothed the results using fourth
order polynomial regression analyses to capture the po-
tential non-linearity in the association of EV with the
sensitivity variable.

Statistical software
We used the following statistical programs (with the
analytical purpose): Sequential Oligogenic Linkage
Analysis Routines – SOLAR [42] (inverse normalization
of traits, polygenic regression models, ROC); coxme in R
(mixed effects Cox PH models, LRχ2, AIC); survC1 [43]
in R (Uno’s survival C statistic); survIDINRI [44] in R
(IDI and NRI estimation), Stata 12.0 (Stata Corp, College
Station, TX; data management, FDR corrected p-values,
Poisson regression analyses, improved prediction indices
in the AusDiab cohort and Cuzick’s nonparametric test for
linear trend), and TreeAge Pro 2015 (TreeAge Software,
Inc, Williamstown, MA; cost-effectiveness analyses).

Results
Development of LRS in the SAFHS cohort
In the SAFHS cohort, there was a wide inter-individual
variability in plasma concentrations of the lipid species (see
Additional file 1: Table S3). Thus, we transformed these

plasma concentrations using an inverse-normalization pro-
cedure for use as independent variables in mixed effects
Cox regression modeling. The results demonstrated
that after accounting for clinically relevant covariates,
87 of the 319 lipid species predicted T2D with a nom-
inal p-value <0 · 05 but only 10 lipid species had a false
discovery rate (FDR) corrected p-value <0 · 2 (Fig. 1a,
see Additional file 1: Table S4). We then included these
10 species (see Additional file 1: Figure S4A) in
backward-elimination stepwise regression models and
found that the final model retained only three lipid
species (Fig. 1a, see Additional file 1: Figure S4A):
dihydroceramide 18:0 (Cer(d18:0/18:0)), lysoalkylpho-
sphatidylcholine 22:1 (LPC(O-22:1)) and triacylglycerol
16:0/18:0/18:1 (TG(16:0/18:0/18:1)). LPC(O-22:1) was
associated with a slower disease onset while the other
two species were associated with faster progression to
T2D. From these results we generated a composite LRS
as shown in (Additional file 1: Figure S4B). To com-
pare the predictive accuracy of the lipid score against
each of its components, we conducted ROC analyses
(see Additional file 1: Figure S4C) which showed that
the predictive accuracy of the composite LRS (AUC
0 · 7566, 95 % CI 0 · 7111 – 0 · 8021) was significantly
better than that of any component species.

Prediction of future T2D based on LRS in the SAFHS
cohort
We stratified the SAFHS participants into tertiles of the
LRS. Participants in the middle and upper tertile groups
of the LRS progressed ~3 and ~8 times faster to T2D,
respectively, as compared to those in the lower tertile
group (Fig. 1b) even after accounting for all the relevant
clinical and biochemical confounders. Corroborating
these observations we found that by 15 years of follow
up 3 · 5, 12 · 5 and 30 · 7 % of the participants in the
lower, middle and upper tertile groups had progressed to
T2D, respectively (see Additional file 1: Figure S4D).
Since prediabetes [defined as the presence of impaired
fasting glucose (IFG) and/or impaired glucose tolerance
(IGT)] was a strong determinant of incident T2D risk in
the SAFHS participants (see Additional file 1: Figure S5),
we investigated if our results of lipidomic associations
were confounded by prediabetes. For this, we ran three
complementary regression models – a stratified model
(prediabetes as the stratifying variable), a model re-
stricted to participants with normal glucose tolerance
(NGT) and an interactive model that included inter-
action between the LRS tertiles and prediabetes. Our
results (Fig. 1c) showed that irrespective of the mod-
eling approach used, the participants in the middle
and upper tertile of the LRS progressed significantly
faster to T2D as compared to the participants in the
lower tertile.

Mamtani et al. Lipids in Health and Disease  (2016) 15:67 Page 5 of 12



Corroborating these results, we observed that the me-
dian LRS scores showed a clear gradient in association
with the T2D status (see Additional file 1: Table S5). In-
dividuals, who were NGT at baseline and remained NGT

throughout follow-up had the lowest median score,
while those were prediabetic at baseline but did not de-
velop T2D during follow-up had a higher median LRS
(0.38 versus −0.24). The highest median LRS, however,

Fig. 1 Development and assessment of the LRS in the SAFHS cohort. a Manhattan plot showing the association of the entire lipidome with incident
T2D. All results are from mixed effects Cox proportional hazards models that account for degree of relationship among participants. All models are
adjusted for age, age2, sex, age x sex interaction, age2 × sex interaction, systolic and diastolic blood pressures, waist circumference, body mass index,
total serum cholesterol, serum high-density lipoprotein cholesterol, serum triglycerides and use of anti-lipid and anti-hypertensive drugs. The dots are
color-coded for different lipid classes. The blue horizontal line represents a nominal type I error rate of 0.05 while the red horizontal line represents a
global, FDR-corrected type I error rate of 0.2. All lipid species above the red line were simultaneously included in stepwise regression models and the
species that were retained in the final multivariate model are indicated at the top of the plot. b Association of the LRS with incident T2D. Based on the
regression coefficients from this final model, we derived a LRS as 0 · 4176*i(Cer(d18:0/18:0))-0 · 3443*i(LPC(O-22:1)) + 0 · 5361*i(TG(16:0_18:0_18:1)) where
i(L) represents the inverse-normalized plasma concentration of lipid species L. The individuals were classified into three groups based on tertiles of the
LRS. Shown is a Kaplan-Meier plot of progression to T2D based on the LRS. The results of mixed effects Cox proportional hazards models are after
adjusting for the same covariates as those listed in Panel A. RH, relative hazard. c Association of the LRS with incident T2D independent of prediabetes.
The plot shows relative hazard (colored bars), 95 % confidence intervals (error bars) and p-values (rotated numbers above bars). Model 1 – stratified
mixed effects Cox PH model with presence of prediabetes as the stratifying variable; Model 2 – mixed effects Cox PH model restricted to
NGT participants only; Model 3 – Interactive model that included interaction terms between presence of prediabetes and the LRS tertiles. All models
use participants in the lower tertile of LRS as the reference category. NGT, normal glucose tolerance; Prediab, presence of prediabetes. d Clinical value
of the LRS as a biomarker of incident T2D. Plots show bars representing improvement in the indicated characteristic achieved by adding LRS to the
color coded models. Three models were used: clinical score for Mexican Americans (pink bars), oral glucose tolerance test (yellow bars) and clinical
score combined with oral glucose tolerance test (orange bars). Statistical significance of the improvement is shown by the rotated numbers above the
bars. *, the plot shows decrease in this parameter as a measure of improvement; LRχ2, likelihood ratio χ2 statistic; AIC, Akaike information criterion; Uno’s
C, Uno’s C statistic for survival data; IDI, integrated discrimination improvement; NRI, continuous net reclassification index
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was observed for individuals who developed T2D during
follow-up (0.78). Cuzick’s test for linear trend showed
that these median LRS values were linearly related to the
T2D status and highly significant (p < 1.0x10−22).

LRS-based improvement in clinical prediction of T2D in
the SAFHS cohort
We then examined if the addition of the LRS to
commonly used clinical predictors of T2D risk can sig-
nificantly augment the predictive performance. We con-
sidered two sets of commonly used predictors: a clinical
score tailored for Mexican Americans [45] and the oral
glucose tolerance test (OGTT). The clinical score is
based on age, sex, fasting glucose, systolic blood pres-
sure, HDL cholesterol, BMI and family history of T2D
[45]. Figure 1d shows that addition of the LRS to the
clinical score and to the OGTT, singly or in combin-
ation, resulted in an improved model fit (higher likeli-
hood χ2), information content (lower Akaike Informatin
Criterion, AIC) and predictive accuracy (increased c-
statistic of Uno). Integrated discrimination improvement
(IDI) showed a 3 · 7 % – 5 · 9 % improvement in discrim-
ination and the continuous net reclassification index
(NRI) indicated an improved reclassification by addition
of the LRS. The observed improvement in all indexes
was statistically significant (Fig. 1d).

Association of LRS with insulin resistance
Mechanistically, insulin resistance (IR) provides an initial
trigger to the pathogenesis of T2D [46–48]. Given the
fact that the LRS predicted progression to T2D even in
the NGT individuals, we considered whether the LRS
was associated with IR in the SAFHS individuals. In the

absence of data on the diagnostic euglycemic clamp, we
used six previously established measures of IR [12]: fast-
ing plasma glucose (FPG), fasting plasma insulin (FPI),
homeostatic model of assessment – insulin resistance
(HOMA-IR), quantitative insulin sensitivity check index
(QUICKI) [13], McAuley index [14] and leptin/adiponectin
ratio [15]. All the six indices of IR showed a consistently
linear association with the LRS tertiles in all as well as in
NGT individuals (Fig. 2). These findings afford a strong
support to the hypothesis that the LRS may be detecting
subclinical insulin resistance.

Validation of LRS in the AusDiab cohort
Next, we validated the LRS in another independent
cohort, the AusDiab cohort. The participants in the
AusDiab cohort were on an average ~20 years older,
were equally distributed across sex, had lower BMI but
higher blood pressures, had higher total serum choles-
terol and triglycerides and a higher prevalence of exist-
ing prediabetes at baseline as compared to the SAFHS
participants (see Additional file 1: Table S2). Despite
these differences, a direct validation of the LRS derived
from the SAFHS showed that the score was associated
with an increased risk of incident T2D in AusDiab par-
ticipants even after accounting for clinical covariates or
prediabetes at baseline (Fig. 3a, left panel). Since prac-
tical application of the LRS can include population-
specific refinement, we recalibrated the LRS for the
AusDiab cohort and again observed an increased risk of
incident T2D (Fig. 3b, left panel). To examine the ro-
bustness of these findings we ran the analyses in 1000
bootstrap samples and found that the LRS continued to
be a significant predictor of T2D in the AusDiab cohort.

Fig. 2 Association of LRS with measures of insulin resistance (IR) in SAFHS participants. Each plot shows the median (colored bars) and inter-quartile
range (error bars) for the indicated measure of IR across tertiles of LRS. L, M and U represent lower, middle and upper tertiles of the LRS, respectively.
K-W P, Kruskall-Wallis test significance value; R2, variability in the measure of IR explained by tertiles of LRS estimated using quantile regression; FPG,
fasting plasma glucose; FPI, fasting plasma insulin; HOMA-IR, homeostatic model of assessment – insulin resistance; QUICKI, quantitative
insulin sensitivity check index; L/A Ratio, leptin/adiponectin ratio; NGT, normal glucose tolerance
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Similar to the observations in the SAFHS cohort, the
AusDiab cohort also demonstrated a statistically signifi-
cant linear trend in median LRS based on T2D status
(see Additional file 1: Table S5). Moreover, to permit a
direct comparison of this recalibrated score in the
AusDiab cohort, we also ran corresponding mixed ef-
fects Poisson regression models in the SAFHS partici-
pants (see Additional file 1: Table S6) and observed that
the LRS indeed provided excellent corroborative results
in both cohorts. Further, we found that in all the

modeling approaches taken in the AusDiab cohort,
addition of the LRS (whether derived from SAFHS or
recalibrated for the AusDiab cohort) was always associ-
ated with a statistically significant improvement in the
information content, discrimination and reclassifica-
tion (Fig. 3a and b, Right panels). Together, these re-
sults demonstrate that the LRS derived from the SAFHS
participants was generalizable to an independent and dis-
tinct cohort.

Cost-effectiveness modeling of LRS based screening and
intervention strategies
Considering these results in totality, we next investigated
whether T2D risk-stratification based on the LRS would
be an economically viable alternative to existing risk strati-
fication strategies. It is being recognized that screening for
T2D with FPG combined with lifestyle intervention in
high-risk individuals may be cost-effective compared to
no screening at al. [39, 49, 50] We therefore considered
whether the LRS – alone or in combination with FPG or
clinical risk factors – would be cost-effective as compared
to FPG alone for outcomes measured at the end of five
years. We used the probability estimates from SAFHS and
AusDiab cohorts, cost and utility estimates from the DPP
trial [33, 41] and screening costs from other published
studies [39, 50–52]. Details of the probabilities, costs and
utilities are provided in Materials and Methods, (see
Additional file 1: Tables S7 and S8). We compared seven
potentially useful screening-and-intervention strategies
(Fig. 4a, Additional file 1: Figure S6) and found (Fig. 4b,
Additional file 1: Table S9) that the strategy of risk stratifi-
cation using the LRS followed by metformin treatment for
the high-risk individuals would be the most cost-effective
screening strategy. In both SAFHS and AusDiab, this
strategy was associated with least costs (see Additional
file 1: Table S9) and was more cost-effective than the
strategy of FPG followed by lifestyle intervention (nega-
tive incremental QALYs in both cohorts, see Additional
file 1: Table S9). Similarly, the strategy of risk factor
stratification combined with the LRS was also associated
with negative incremental effectiveness in both cohorts.
On the other hand, the proportion of potential T2D cases
prevented by the LRS/metformin strategy was the least as
compared to other candidate strategies considered. There-
fore, practical use of the screening-and-intervention policy
will likely be a trade-off between attempting to increase
QALYs versus targeting aggressive reduction in T2D inci-
dence. Lastly, the decision in favor of LRS/metformin
strategy was most sensitive to the probability of T2D at
five years in the high risk individuals (see Additional file 1:
Figure S7). However, over the entire range of sensitivity
analyses, the strategy of LRS/metformin for high-risk in-
dividuals remained the most cost-effective solution in
both cohorts (Fig. 4b and c).

Fig. 3 Validation of the LRS in the AusDiab cohort. a Direct application
of the LRS derived from SAFHS cohort to the participants from AusDiab
cohort. Left panel shows incidence rate ratio for future T2D associated
with one standard deviation change in the LRS. The results are from
three Poisson regression models that used duration of follow-up as an
exposure variable: U – unadjusted; C – adjusted for clinical covariates;
P – adjusted for presence of prediabetes. The clinical covariates used
for adjustment in the multivariate models were: age, sex, systolic and
diastolic blood pressure, body mass index, total cholesterol, HDL
cholesterol, serum triglycerides, family history of diabetes, and use of
anti-hypertensive and lipid-lowering drugs. The Right Panel shows
three bar charts each of which depicts improvement in the indicated
parameter upon addition of the LRS to the indicated regression model.
Rotated numbers at the top of the bars are p-values. ΔAIC, improvement
in Akaike Information Criterion; IDI, integrated discrimination
improvement; NRI, continuous net reclassification index. b LRS
recalibrated for AusDiab. Based on the results of Poisson regression
analyses in the AusDiab, a recalibrated LRS was calculated as follows:
0.2259*i(Cer(d18:0/18:0))-0.2397*i(LPC 22:1) + 0.3267*i(TG(16:0_18:0_18:1))
where i(L) represents the inverse-normalized plasma concentration of
lipid species L. Key to the plots in (Panel b) is the same for those in
(Panel a)
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Discussion
Our study reports five novel findings: i) the plasma LRS
independently, accurately and additively predicted inci-
dent T2D; ii) given the LRS could accurately risk-stratify
even the NGT participants indicates that the plasma lipi-
domic changes may precede those in glucose metabol-
ism; iii) these changes are associated with insulin
resistance; iv) the LRS is generalizable as validated in a

distinctly different cohort; and v) the LRS combined
with metformin supplementation for high-risk individ-
uals is the most cost-effective screening strategy. Of
note, supportive evidence for the biological plausibility
of the three significant lipid species as T2D biomarkers
is plentiful. We have previously shown that the dihydro-
ceramide/ceramide, triacyglycerol and phosphatidylcho-
line axes are important targets in T2D pathophysiology

Fig. 4 Cost effectiveness analyses of candidate screening and intervention strategies for T2D risk-stratification. a The seven strategies that were
considered. The diagrams use the following convention: circles, name of the screening test; hexagons, results of the screening test; rectangles,
suggested intervention; thick border for rectangles, high-risk group; thin border for rectangles, moderate-risk group; dashed border for rectangles,
low-risk group. The abbreviations used in the panel are as follows: FPG, fasting plasma glucose; IFG impaired fasting glucose; NFG, normal fasting
glucose; LRS, lipidomic risk score; HS, high score; LS, low score; RF, risk factor assessment. For LRS, a high score was defined on the basis of cutoffs
defined by receiver-operating-characteristic curves. The strategies are color coded and the colors are consistently used in panels B and C. The full
decision tree based on the seven strategies is shown in (Additional file 1: Figure S6). Details of the costs and utilities are provided in Material and
Methods, (see Additional file 1: Figure S6, Tables S7 and S8). b Cost-effectiveness analyses based on the LRS in the SAFHS cohort. Leftmost plot
shows the relative distribution of the risk groups based on the screening strategy used (LR, low-risk group; MR, moderate-risk group; HR, high-risk
group). The plot second from left shows costs (2015 US$) and quality-adjusted life years (QALYs) for each strategy. The size of the markers is proportional
to the expected risk reduction in T2D incidence. The next plot shows incremental cost-effectiveness ratios using the most cost-effective strategy (#3) as
the reference strategy. The rightmost plot shows smoothed results of sensitivity analyses that used 1000 microsimulation runs. The results
were smoothed using fourth-order polynomial regression lines. Sensitivity analyses shown here are for the variable (probability of T2D at 5-years in HR
individuals) to which the decision was most sensitive based on the tornado diagrams shown in (Additional file 1: Figure S7). c Cost-effectiveness
analyses based on the LRS in the AusDiab cohort. Key to plots is the same as those for plots in (Panel b). Full numerical results of cost effectiveness
analyses for both cohorts are provided in (Additional file 1: Table S9)
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[7]. The enzyme ceramide synthase 1 (specifically in-
volved in the biosynthesis of Cer(d18:0/18:0), [53]) is
inversely associated with alterations in murine models of
insulin resistance [54, 55]. The negative association be-
tween lysoalkylphosphatidylcholine species and T2D risk
is in agreement with the beneficial associations of
LPC(O) observed in studies of overfeeding [56] and in-
sulin resistance [57]. Lastly, the TG(16:0/18:0/18:1) has
been reported as a prominent triacylglycerol species that
discriminated between cases and controls of diabetes in
the Framingham Offspring Study participants [58].
Two important findings from our study should be

highlighted. First, it is instructive that the majority of the
significant lipid species enlisted in (Additional file 1:
Figure S4A) contained palmitate or stearate moieties
both of which are preferred substrates for stearoyl-CoA
desaturase [59] (SCD) – an enzyme involved in convert-
ing saturated to unsaturated fatty acids. This observation
points towards a possibility of the derangement of SCD
pathway as a forerunner of T2D. Interestingly, the EPIC-
InterAct study [60] also found that the group of satu-
rated fatty acids comprising myristic acid, palmitic acid
and stearic acid is associated with a significantly in-
creased risk of T2D. Second, since there is a strong gen-
etic basis to T2D it is conceivable that the LRS may
share some genetic influences with T2D. Genetic studies
in future need to establish putative overlaps that can partly
explain the genetics of T2D. Such studies need to carefully
dissect out the potential associations of genetic variants,
epigenetic infrastructure and gene expression on T2D sus-
ceptibility through an altered lipidomic signature.

Conclusions
The lipidomic risk score based on plasma concentration
of three, non-redundant plasma lipid species is an inde-
pendent and additive biomarker of incident T2D. In the
context of biomarkers for cardiovascular risk, Hlatky et al.
[61] have suggested that “a novel risk marker should be
evaluated in several phases, including initial proof of con-
cept, prospective validation in independent populations,
documentation of incremental information when added to
standard risk markers, assessment of effects on patient
management and outcomes, and ultimately, cost-
effectiveness.” Our study extends this concept to T2D
risk-stratification and demonstrates strong evidence for
plasma LRS as a biomarker for future T2D.The strengths
of our study include the scale of lipidomic profiling, pro-
spective evaluation, two well-characterized cohorts, replic-
ability of the accurate and independent value of LRS, its
clinical value as assessed by IDI and NRI, and the cost-
effectiveness analyses. The global epidemic of T2D
beckons a combination of preventive strategies aimed at
its control [62]. Considering the immense costs of dia-
betes management, it is incumbent upon us to evaluate

effective preventive strategies which will hinge heavily on
accurate and early detection [1, 63]. In that vein and to
that end, our study suggests that while dysglycemia re-
mains a direct measure of T2D, other subtle metabolic
changes may precede it and methods aimed at detecting
these early signals can play a significant role in the preven-
tion and control of T2D.
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