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Starting with the early stages, patients with chronic kidney disease (CKD) experience higher burden of cardiovascular disease
(CVD). Moreover, CVD complications are the major cause of mortality in CKD patients as compared with complications from
chronic kidney failure. While traditional CVD risk factors, including diabetes, hypertension, hyperlipidemia, obesity, physical
inactivity, may be more prevalent among CKD patients, these factors seem to underestimate the accelerated cardiovascular disease
in the CKD population. Search for additional biomarkers that could explain the enhanced CVD risk in CKD patients has gained
increasing importance. Although it is unlikely that any single nontraditional risk factor would fully account for the increased CVD
risk in individuals with CKD, oxidative stress appears to play a central role in the development and progression of CVD and its
complications. We will review the data that support the contribution of oxidative stress in the pathogenesis of CVD in patients
with chronic kidney failure.

1. Introduction

Cardiovascular disease (CVD) is a major cause of morbidity
and mortality in patients with chronic kidney disease (CKD)
[1, 2]. Even early stages of CKD that are characterized by
relatively preserved or minimally decreased overall renal
function are associated with increasing incidence of de novo
and recurrent CVD events [3, 4]. As glomerular filtration
rate (GFR) diminishes, the prevalence and severity of CVD
abnormalities have been reported to be increasing [5, 6].
Among patients with stages III-IV CKD, the prevalence
of CVD is 4- to 5-fold higher than that observed for
the general population. CKD patients are known to be
affected by diabetes, hypertension, and obesity—which are
known traditional CVD risk factors in general population
[7, 8]. However, cross-sectional studies demonstrated that
the Framingham Risk Score which is based on the traditional
CVD risk factors failed to determine the extent of CVD
risk in subjects with CKD and those with end-stage renal
disease (ESRD) [9–11], and other factors must be involved

in the increased CVD prevalence in this high-risk population
[12, 13]. Before a new biochemical marker could be consid-
ered as CVD risk factor, it must meet the following condi-
tions: (a) evidence of the biological plausibility as to why
the factor may promote CVD risk; (b) demonstration that
the risk factor level increases with severity of kidney disease;
(c) evidence of an association between the risk factor and
cardiovascular disease in CKD patients; (d) demonstration in
double-blind, randomized placebo-controlled clinical trials
that treatment of the risk factor decreases CVD outcomes.
Available data on the importance of oxidative stress as one
of the contributing factors in the prevalence and severity of
CVD abnormalities in patients with chronic kidney disease
will be summarized in the following sections.

2. Role of Oxidative Stress in CVD

Oxidative stress (OxStress) is recognized as a critical factor
in the development of atherosclerotic cardiovascular disease
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(ACVD) [14, 15]. According to the oxidation hypothesis of
atherosclerosis, low-density lipoprotein (LDL) in its native
state is not atherogenic [16, 17]. LDL must undergo oxidative
modification before it can contribute to the initiation and
progression of atherosclerosis [16, 17]. Data from animal
models of atherosclerosis, both diet-induced and geneti-
cally altered models, have demonstrated the presence of
oxidized LDL (oxLDL) in plasma as well as in atheroscle-
rotic lesions [18, 19]. Presence of oxLDL, autoantibodies
against malondialdehyde-modified LDL, and of LDL-IgG
immune complexes has also been reported in human plasma
and human atherosclerotic lesions [18, 19]. The pathways
involved in the formation of these oxidative markers and the
relationship between these markers and disease progression
remain to be elucidated.

In case-control studies, some reports have suggested a
positive relationship between autoantibodies against MDA-
LDL (one form of oxLDL) and disease severity [20, 21],
while others have noted no relationship [22] or inverse
relationship [23] between autoantibody levels to oxLDL and
the extent of atherosclerosis. In the Watanabe rabbit, animals
with high autoantibody levels following immunization with
oxLDL were found to have less severe lesions than animals
with low antibody levels [24]. We have reported that
independent of fasting levels of autoantibodies, patients with
diseased endothelium demonstrated a characteristic acute
and transient reduction in autoantibody levels following
meal consumption [25]. Such a reduction in autoantibody
levels was not observed in young healthy controls with one
or less than one risk factor. We also reported that this meal-
induced reduction in autoantibody levels is unique to meal
challenges that are enriched in polyunsaturated fatty acids.
Isocaloric meal challenges containing primarily saturated or
monounsaturated fatty acids failed to induce the transient
reduction in autoantibody levels in these same individuals
[26, 27].

A large body of evidence suggests that oxidized low-
density lipoprotein (oxLDL) is the leading candidate in
the pathogenesis of atherosclerosis [28] and may serve
as a unique mediator of oxidative status in the vascular
environment [28]. While the emphasis is on the oxidative
modification of LDL, all plasma lipoproteins are subjected to
oxidative modification [29]. Case-control studies as well as a
limited number of prospective studies have linked the level of
oxLDL to disease severity. Due to the heterogeneity of oxLDL
and the available epitopes that are recognized by the various
antibodies, a number of different immunoassays are available
for oxLDL, and the correlation among these measurements
is quite poor [30]. Several studies have reported strong and
independent relationship between measures of oxLDL and
CVD [31–33], including metabolic syndrome [34]. Data
from progression/regression studies with nonhuman pri-
mates actually complicated the relationship between indices
of LDL oxidation and disease status. Using antibodies that
recognized the oxidative epitopes of phospholipids moiety of
LDL (oxPL), diet-induced atherosclerosis is associated with
increased levels of oxLDL and increased levels of total oxPL as
well as oxPL/apoB [35]. With regression, as LDL-cholesterol
is reduced, there was a modest reduction in total oxPL

but a statistically significant increase in oxPL/apoB [35]. In
humans, data from clinical trials (REVERSAL, MIRACL)
with aggressive LDL-cholesterol reduction also reported and
unexpected increase in oxPL/apoB [36, 37].

Oxidative modification of LDL resulted in the formation
of a lipid-rich particle with specific characteristics that con-
tribute to the development of early atherosclerosis [38]. By
inducing adhesion molecules (VCAM-1) and specific recep-
tors, oxLDL stimulates the adhesion of circulating monocytes
to endothelial cells [39]. oxLDL can also stimulate the
production and release of monocyte chemotactic protein-1
(MCP-1) by endothelial cells and smooth muscle cells
resulting in the enhanced migration of monocytes into the
arterial intima [40]. oxLDL has also been reported to inhibit
in vitro proliferation and survival of vascular cells [41] as
well as alterations in the normal function of endothelial cells
[42]. Additionally, oxLDL has prothrombotic activity and
increases platelet activation and expression of tissue factor
and PAI-1 (plasminogen activator inhibitor 1) by endothelial
cells [43].

3. Oxidative Stress in CKD

Oxidative stress is a state of imbalance between free radicals
production and their degradation by antioxidant systems
with increased accumulation of the radicals. Reactive oxygen
species (ROS) and reactive nitrogen species (RNS) are
examples of free radicals. Over 90% of ROS formation
occurs “accidentally” in mitochondria during metabolism of
oxygen when some of electrons passing “down” the electron
transport chain leak away from the main path and go directly
to reduce oxygen molecules to the superoxide anion [44].
In addition, ROS could be “deliberately” synthesized in
phagocytic cells, as well as in vascular wall and various other
tissues by enzymes such as NAD(P)H oxidase, myeloper-
oxidase, xanthine oxidase, cyclooxygenase, and lipoxyge-
nase [45]. At low concentrations, ROS (superoxide anion,
hydrogen peroxide, hydroxyl radical, hypochlorite ion, and
hydroperoxyl radical) involved the vast array of physiologic
functions. For example, ROS are known regulators of nitric
oxide synthesis, intracellular signaling cascades, including
cytokines, growth factors, MAPK, and NF-κB, and also
involved in the modulation of immune responses, apopto-
sis, and mutagenesis [46–48]. Additionally, ROS produced
during phagocytic burst is a key defense mechanism against
environmental pathogens. However, when ROS are made
in excess, they can react with various molecules such as
lipids, carbohydrates, proteins, and DNA altering their
structure and function, resulting in cellular damage that
leads to pathologic processes including, but not limited to,
atherosclerosis development. These potentially deleterious
reactions are controlled by a system of enzymatic and
nonenzymatic antioxidants which eliminate pro-oxidants
and scavenge-free radicals. Superoxide dismutase (SOD),
glutathione peroxidase, glutathione reductase, and catalase
are among the main enzymatic antioxidants. Glutathione,
thiols, ascorbic acid, alpha-tocopherol (vitamin E), mixed
carotinoids, and bioflavonoids are among the nonenzymatic
antioxidant defense processes.
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Direct measurement of free radicals in vivo is difficult
due to the highly reactive nature of these compounds
and minute concentrations in biological fluids. Instead, we
rely on measurement of stable end products of oxidation
of different molecules. Numerous biomarkers of oxidative
stress have been shown to be elevated in patients with
CKD. These include products of lipid oxidation (lipid
peroxides, malondialdehyde, and thiobarbituric acid reactive
substances) and oxidized LDL [49, 50], advanced oxidation
protein products (AOPPs) [51], F2 isoprostanes and isole-
vuglandins (a family of reactive γ-ketoaldehydes generated
by free radical oxidation of arachidonate-containing lipids
through the isoprostane pathway) [52, 53], and 8-hydroxyl
2′-deoxyguanosine—marker of oxidative DNA damage [54].
Furthermore, indices of OxStress are increased with severity
of kidney disease. For example, glomerular filtration rate has
been reported to be inversely associated with levels of AOPP
[51], malondialdehyde (MDA) [55], and F2 isoprostanes
[56, 57], suggesting that decline in renal function may have
direct effect on worsening of oxidative stress.

The nature of oxidative stress in chronic kidney disease
remains to be elucidated. Impaired oxidative balance in
CKD is likely to come from a combination of increased
ROS production and reduced clearance as well as an inef-
fective antioxidant defense mechanism. Several important
antioxidant pathways have been reported to be altered in
patients with CKD, including reduced erythrocyte SOD
activity [55], reduced plasma thiol groups [58], diminished
plasma glutathione, and glutathione peroxidase function
[59]. However, total antioxidant capacity (TAC) of plasma
remains normal or even becomes elevated as CKD progresses
[57]. Elevated concentrations of uric acid in CKD patients
have been suggested to account for the high capacity for
peroxyl radicals that constitute the substrate for the in vitro
TAC assay [60].

CKD patients are typically affected by multiple con-
comitant diseases such as diabetes and hypertension (HTN)
which are also associated with oxidative stress [61, 62].
Increased activity of baseline and stimulated NAD(P)H
oxidase are responsible for overproduction of superoxide
anion, in circulating peripheral mononuclear (PMN) cells
isolated from patients with stage I-II CKD [63]. The
presence of CKD appears to further enhance the oxidative
stress independently from underlying conditions. Agarwal
[64] reported that urinary MDA excretion and protein
carbonylation were increased in hypertensive patients with
concomitant CKD as compared with patients with HTN
and no CKD. The renin-angiotensin-aldosterone system
(RAAS) plays an important role in activation of NAD(P)H
oxidase in vascular smooth muscle cells and the kidney
[65, 66]. Additionally, NAD(P)H oxidase could be activated
by cytokines (TNFα), hyperglycemia, and mechanical stress
[65]. Therefore, rigorous studies examining the relation
between oxidative stress, CKD, and underline diabetes and
HTN are needed in humans to clearly establish if oxidative
stress is a marker of severity of underline condition leading to
CKD or that CKD independently further promotes OxStress.

Hemodialysis—a procedure utilized as part of usual care
in the management of terminal chronic kidney disease, has

also been demonstrated to contribute to OxStress. Contact of
blood with dialysis membrane during extracorporeal blood
purification can lead to PMN cell activation and generation
of ROS [67, 68]. Presence of inadequately removed endotoxin
in water used for dialysate preparation also influences PMN
activation and ROS production in hemodialysis patients
[69]. Myeloperoxidase (MPO) activity has been found to
be increased during hemodialysis, especially with the use
of bioincompatible dialysis membranes [70]. Moreover,
heparin that is routinely used for anticoagulation during
hemodialysis is known to activate MPO leading to increased
ROS production [71]. Intravenous administered heparin
can also displace extracellular-superoxide dismutase (EC-
SOD) from vascular endothelium [72] by interfering with
the binding of the antioxidant enzyme to type C heparin
sulfate proteoglycans. It has been suggested that EC-SOD
is the major determinant of nitric oxide bioavailability in
blood vessels, and loss of EC-SOD from vascular wall may
contribute to endothelial dysfunction [73]. Additionally,
plasma ascorbic acid and lipid-soluble alpha-tocopherol,
both potent components of an antioxidant defense system,
were significantly reduced after single hemodialysis session
[74–76]. However, the hemodialysis procedure was also
reported to have beneficial effects on total antioxidant
capacity by increasing plasma thiol content [76, 77].

4. Association between Oxidative Stress
Biomarkers and CVD in CKD Patients

Strong correlation between oxidative markers and the pres-
ence and extent of cardiovascular diseases was found in the
general population as outlined in the recent paper [78].
Moreover, oxidative markers were shown to be important
predictors of cardiovascular outcomes in prospective anal-
yses [79–83]. Unfortunately, the limited number of studies
examined the relationship between oxidative stress markers
and cardiovascular disease in patients with kidney failure.
Drüeke et al. [84] found that levels of AOPP strongly
correlated with carotid artery intima-medial thickness (IMT)
in 79 patients with ESRD. Similar finding was reported by
Yang et al. in 109 patients with CKD [85]. Additionally,
significant positive correlation between carotid artery IMT
and TBARS [86] and MPO [87] and negative correlation
between carotid artery IMT and reduced SOD and plasma
sulfhydryl were reported in patients with ESRD [86]. Shoji
et al. [88] observed a statistical trend in correlation between
carotid artery IMT and autoantibodies against oxidized LDL.
A stronger correlation was observed between femoral artery
IMT and autoantibodies against oxidatively modified LDL in
ESRD [88].

Prospective studies that examine the association between
oxidative stress markers and clinical outcomes in hemodialy-
sis patients are scarce. MPO levels have been shown to predict
all-cause mortality in 356 chronic hemodialysis patients [89]
with a hazard ratio of 1.14 (95% confidence interval 1.03–
1.26) for each 1,000 pmol/L increase in MPO level. Interest-
ingly, MPO gene polymorphism was also demonstrated to
be associated with presence of CVD and higher CVD-related
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mortality in ESRD patients [90]. Levels of autoantibodies
against oxLDL were found to strongly predict cardiovascular
mortality during 4 years of follow up in 94 hemodialysis
patients [91].

5. Antioxidant Interventions
and Cardiovascular Outcomes in
Patients with CKD

Several small studies have examined the impact of antiox-
idant interventions on oxidative stress markers in patients
with CKD [92–94]. Unfortunately, randomized controlled
clinical trials addressing the impact of antioxidant interven-
tions on CVD outcomes in patients with CKD are scarce.
The SPACE (Secondary Prevention with Antioxidants of
Cardiovascular Disease in End-Stage Renal Disease) was a
clinical trial involving 196 patients with ESRD who were
randomized to either 800 IU of alpha-tocopherol per day or
placebo [95]. During a median followup period of 519 days,
statistically significant reduction in the primary composite
outcome, consisting of myocardial infarction (fatal and
nonfatal), ischemic stroke, peripheral vascular disease, and
unstable angina, was observed in patients receiving vitamin
E supplementation [95]. The relative risk (RR) was 0.46 (95%
confidence interval (CI) 0.27–0.78) in the vitamin E group as
compared to the placebo.

In the second randomized controlled trial, N-acetyl-
cysteine at oral dose 600 mg twice daily over a period of
approximately 15 months also significantly reduced primary
composite variable consisting of cardiac events including
fatal and nonfatal myocardial infarction, cardiovascular
disease death, need for coronary angioplasty or coronary
bypass surgery, ischemic stroke, peripheral vascular disease
with amputation, or need for angioplasty [96]. The relative
risk was 0.6 (95% CI 0.38–0.95). However, no beneficial
effects of vitamin E or N-acetylcysteine administration were
observed on all-cause mortality, suggesting that exploration
of additional strategies is needed to improve overall survival
in dialysis patients. Subgroup analysis of some lipid-lowering
studies which have included CKD patients has suggested that
statin therapy may also reduce inflammatory and oxidative
markers [97]. Additionally, subgroup of patients with CKD
taking atorvastatin for a median period of 3.3 years had
a statistically significant decrease in cumulative incidence
for fatal and nonfatal stroke, total coronary events, total
cardiovascular events, and all-cause mortality as compared
to placebo in the Anglo-Scandinavian Cardiac Outcomes
Trial—Lipid Lowering Arm (ASCOT-LLA) [98]. However,
it should also be noted that two large randomized clinical
trials using atorvastatin [99] and rosuvastatin [100] failed
to demonstrate any reduction of CVD events or all-cause
mortality in patients with ESRD. Results from the Study
of Heart and Renal Protection (SHARP) might shed more
light on cardiovascular benefits of statin use in CKD
patients [101]. Additional studies that address the efficacy of
novel antioxidants including endogenous antioxidants such
as hemeoxygenase-1 and bilirubin [102, 103] in reducing
oxidative stress CKD patients are needed.

In summary, cardiovascular disease is an important cause
of morbidity and mortality in patients with impaired kidney
function. Increasing evidence strongly supports oxidative
stress as plausible independent cardiovascular risk factor in
patients with CKD. Nevertheless, several important ques-
tions remain unanswered. The exact processes underlying
increased oxidative stress in CKD remain to be elucidated.
Furthermore, identification of biochemical and/or func-
tional biomarkers that could be used to monitor oxidative
imbalance in CKD may allow the development of optimal
intervention strategy to reduce oxidative stress in CKD.
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