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Failure of cells to process toxic double-strand breaks (DSBs) constitutes a major intrinsic
source of genome instability, a hallmark of cancer. In contrast with interphase of the cell
cycle, canonical repair pathways in response to DSBs are inactivated in mitosis. Although
cell cycle checkpoints prevent transmission of DNA lesions into mitosis under physio-
logical condition, cancer cells frequently display mitotic DNA lesions. In this review, we
aim to provide an overview of how mitotic cells process lesions that escape checkpoint
surveillance. We outline mechanisms that regulate the mitotic DNA damage response and
the different types of lesions that are carried over to mitosis, with a focus on joint DNA
molecules arising from under-replication and persistent recombination intermediates, as
well as DNA catenanes. Additionally, we discuss the processing pathways that resolve
each of these lesions in mitosis. Finally, we address the acute and long-term conse-
quences of unresolved mitotic lesions on cellular fate and genome stability.

Introduction
When cells encounter DNA damage, a series of signal transduction events occur, leading to the concerted
recruitment and activation of various proteins at the DNA lesion, a process known as the DNA damage
response (DDR) [1,2]. In the context of toxic DNA double-strand breaks (DSBs), two canonical DNA
damage repair pathways are active during interphase: non-homologous end joining (NHEJ) and homolo-
gous recombination (HR). Whereas DNA ends are protected and rapidly ligated during NHEJ, HR
involves DNA end resection to initiate strand invasion of the sister chromatid for templated repair [1].
In contrast with interphase, canonical DSB repair is inactivated in mitosis. Although upstream

DDR signaling still occurs in mitosis, including H2AX phosphorylation and MDC1 recruitment,
downstream signaling is inactivated upon mitotic entry [3,4]. The rewired response to DNA breaks
during mitosis has been reviewed previously, but recent studies have shed new light on how DNA
damage is processed in mitosis, including the involvement of alternative repair pathways in facilitating
the resolution of mitotic DNA lesions [2,3,5]. In this review, we discuss how DNA lesions, predomin-
antly originating during DNA replication, are transmitted into mitosis despite the presence of cell
cycle checkpoints. Furthermore, we discuss how the mitotic context drives specific processing of these
lesions. Specifically, mitotic kinases activate dedicated enzymes that act on DNA lesions, and ultim-
ately ensure equal distribution of sister chromatids to each daughter cell. Finally, we discuss the acute
and long-term consequences of unresolved mitotic lesions on cellular viability and genome integrity.
Importantly, we focus on DNA lesions that arise from under-replicated DNA, unresolved HR inter-
mediates and catenanes. We realize that a multitude of other DNA lesions exists, that may also be
transmitted into mitosis [6,7], and may also be differentially repaired during mitosis.

Regulation of the mitotic DNA damage response
In addition to genomic location and chromatin state, cell cycle status greatly influences DNA repair
pathway choice and the toxicity of the DNA lesions [8–11]. To prevent ongoing cell cycle progression
in the presence of unrepaired DNA lesions, cells are equipped with DNA damage-induced cell cycle
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checkpoints that can halt cell cycle progression until DNA lesions are resolved. The G1 checkpoint prevents
damaged cells from initiating DNA replication. When DNA breaks arise during S-phase, the intra-S checkpoint
is activated, which down-regulates CDK activity to restrain further firing of replication origins, thereby limiting
overall replication (Figure 1). Subsequently, the G2/M checkpoint prevents cells from entering mitosis with
DNA lesions [11].
In contrast with interphase, no cell cycle checkpoint is activated by DNA breaks during mitosis in mamma-

lian cells. Instead, the spindle assembly checkpoint (SAC) functions to ensure faithful chromosomal segrega-
tion, suggesting a necessity to control accurate chromosome segregation and genomic stability over structural
chromosome integrity [12]. Unless occurring in centromeric or telomeric regions, mitotic DNA breaks do not
trigger cell cycle arrest [12–14], rendering cells more sensitive to DNA damage in mitosis [15,16]. Indeed,
mitotic progression in the presence of DNA damage contributes to the cytotoxicity of many anti-cancer treat-
ments [17–19].
The DDR kinases ATM and ATR play a key upstream role in damage-induced cell cycle arrest. ATM and

ATR respond to different types of DNA lesions, but mediate converging downstream effects. In response to
stretches of single-stranded DNA (ssDNA), for example at stalled replication forks, TOPBP1 in conjunction
with the 9-1-1 complex activates ATR. Subsequently, ATR activates — among many other substrates — the
CHK1 kinase, preventing mitotic entry and allowing time for cells to repair DNA lesions [20] (Figure 1).
Conversely, the ATM kinase responds primarily to DSBs [21], and mediates cell cycle control through the
downstream kinase CHK2 and p53, although the contribution of CHK2 in regulating cell cycle arrest has been
challenged by several studies [22–24]. Interestingly, while these DDR kinases are triggered rapidly, certain
thresholds for their activation have been described. Specifically, studies using Xenopus laevis egg extracts have

BA

Figure 1. Regulation of DNA damage response throughout the cell cycle.

(A) Cells are equipped with checkpoints that regulate cell cycle progression upon DNA damage. ATR and ATM are key

upstream checkpoint kinases that co-ordinate the DDR in response to single-strand DNA (ssDNA) and double-strand breaks

(DSBs), respectively. Whereas ATM can be activated throughout interphase (orange line), ATR activation is restricted to S/G2

phase (brown line). Contrary to interphase, DNA damage does not halt cell cycle progression in mitosis. (B) In response to

DSBs, cells utilize two canonical pathways to repair DSBs. Whereas canonical non-homologous end joining (c-NHEJ) is active

throughout interphase, homologous recombination (HR) allows for templated repair sister chromatids become present in S/G2

phase. When these canonical pathways are not active due to genetic or experimental perturbations, alternative repair pathways,

including break-induced replication (BIR), single-strand annealing (SSA), and alternative end joining (Alt-EJ), will be employed.

The absence of canonical repair pathways is reminiscent of the mitotic state, in which mitotic kinases CDK1 and PLK1

inactivate many HR and c-NHEJ factors through phosphorylation.
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identified that primed ssDNA gaps as small as ∼35 nucleotides can activate the ATR kinase, with larger ssDNA
gaps strengthening the signaling [25]. Similarly, the ATM-dependent G2/M checkpoint was shown to only be
robustly activated upon induction of 10–20 of DSBs [26]. Interestingly, a single DSB induced by a CRISPR/
Cas9-based system was sufficient to delay cell cycle progression [27], although a possible cause of this delay
could be the persistence of Cas9 to recut the gRNA site until erroneous repair has occurred. These findings
suggest different requirements for cell cycle delay versus full arrest and illustrate context dependence on the
source of DNA breaks and cell type. In line with this notion, ‘leaky’ checkpoints can explain the increased tox-
icity of low-dose radiation in cancer cells, and may contribute to the development of genomic instability in
cancer [3,26,28,29].
Intriguingly, even under physiological circumstances, some DNA lesions go unnoticed by the G2/M check-

point. For example, some replication-born lesions fail to trigger ATR, evading repair and allowing their propa-
gation into mitosis. For instance, perturbed DNA replication upon PARP inhibition or overexpression of the
CCNE1 oncogene lead to DNA lesions that are transmitted into mitosis, and cause mitotic aberrations and
genomic instability [17,30,31]. While the exact nature of these DNA lesions and the underlying mechanism for
slippage of these lesions into mitosis remains unclear, it is tempting to speculate that perhaps the amount of
ssDNA at the junction of a stalled replication fork is not sufficient to trigger the ATR checkpoint, or that no
DSBs arise to activate ATM signaling.
During mitosis, the canonical NHEJ and HR DSB repair pathways are inactivated [2,3]. Specifically, phos-

phorylation of the NHEJ factors RNF8, RNF168, 53BP1, and XRCC4 by the mitotic kinases CDK1 and PLK1
inhibits their function (Figure 1). Likewise, key HR factors, including BRCA1 and RAD51 are not recruited to
DNA breaks during mitosis [2,15,32]. The need to inactivate canonical DNA repair pathways in mitosis was
underscored through forced recruitment of RNF8 and 53BP1 to DSBs, which leads to illegitimate usage of
NHEJ at telomeres and ultimately telomere fusions [33]. Moreover, restoration of mitotic DSB repair through
expression of phosphorylation-defective XRCC4 results in increased formation of anaphase bridges [32].
Whereas downstream NHEJ components are inactivated, upstream components of the DDR response, includ-
ing the MRN complex, are still recruited to mitotic DSBs. As a consequence, mitotic DNA breaks activate
ATM signaling, as well as subsequent phosphorylation of H2AX and recruitment of MDC1 [3,4]. Furthermore,
the NHEJ kinase DNA-PK takes part in H2AX phosphorylation in response to mitotic DNA breaks [34].
Notably, resection of DSB was also reported to occur in mitotic Xenopus egg extract and human mitotic cells
[35], suggesting that mitotic lesions are still actively processed during mitosis.
Beyond detection and initial processing, the DNA ends of DSBs were recently demonstrated to be tethered

in mitosis to prevent mis-segregation of broken chromosomal arms. Mitotic DNA tethering involves MDC1,
TOPBP1, and CIP2A [4,36,37], and possibly other components, since RPA3, Fancd2 and alternative end-
joining DNA polymerase θ (Polθ) were shown to be recruited to mitotic DSBs in Drosophila papillar cells [38].
Moreover, loss of these factors resulted in mis-segregation of acentromeric DNA fragments, possibly reflecting
a role in DNA tethering (Figures 1 and 2).
Incomplete cell cycle checkpoint control, and subsequent transmission of DNA damage into mitosis, is a

common feature of cancer cells. It is, therefore, relevant to investigate which mechanisms respond to unresolved
DNA lesions in mitosis, and whether these mechanisms impact on genome maintenance and cancer cell sur-
vival. Recent studies showed that POLθ, in conjunction with RAD52, repairs breaks originating from S-phase
in HR-deficient cells at the onset of mitosis, suggesting that targeting mitotic DNA repair may potentiate the
therapeutic effects of PARP inhibition, a clinically relevant treatment for HR-deficient tumors [39]. These find-
ings provide early evidence that residual processing of mitotic DNA damage through alternative repair
pathways occurs, and that targeting these processes may have therapeutic value.

Endogenous DNA lesions in mitosis and their processing
pathways
Mitotic DNA lesions can originate from exogenous sources, including DNA-damaging treatments such as ion-
izing radiation, or in experimental settings using nuclease-mediated cleavage [40–44]. Under physiological con-
ditions, however, mitotic DNA lesions predominantly result from endogenous factors (Table 1). In this section,
we will discuss various sources of endogenous DNA lesions in mitosis along with the pathways that process
them.
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Figure 2. Processing of DNA lesions in mitosis.

DNA lesions that end up in mitosis are processed by distinct pathways. (Left) Under-replicated DNA originating from perturbed

replication in S-phase are subjected to DNA synthesis in early mitosis (MiDAS), involving TRAIP-mediated disassembly of the

replisome complex, cleavage of the stalled replication fork by the MUS81 endonuclease, RAD52-mediated homology search

and POLD3-dependent DNA synthesis. (Center) Unresolved homologous recombination (HR) intermediates are processed by

structure-specific nucleases upon mitotic entry. Dissolution via the BTR (BLM, TOP3A, RMI1/2) complex results in a

non-crossover repair product, whereas resolution either via GEN1 or the MUS81–EME1–SLX1–SLX4 complex gives rise to a

repair product with the possibility of crossover. Dotted lines indicate possible cleavage patterns by structure-specific

nucleases. (Right) Intertwined DNA molecules in the form of catenanes are resolved by topoisomerase IIα (TOP2A) during the

metaphase–anaphase transition.
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Under-replicated DNA
To faithfully segregate sister chromatids during mitosis, DNA needs to be completely replicated. However, there
are many processes that might interfere with the progression of replication forks. These processes are collect-
ively termed ‘replication stress’ (RS), a phenomenon frequently observed in cancer [46,54,55]. Among other
processes, replication can be perturbed by transcription occurring at nearby genomic regions, leading to colli-
sions between the replication and transcription machineries [56]. Additionally, oncogene overexpression (e.g.
CCNE1, MYC, and RAS), induces de novo firing of replication origins in gene-coding genomic loci [47]. Such
unscheduled DNA synthesis exhausts the available pool of nucleotides and interferes with ongoing replication.
Moreover, oncogene-induced de novo origin firing further increases collisions between replication and tran-
scription machineries [57].

Table 1. Different types of lesions in mitosis
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Failure to complete DNA replication is more likely to occur at difficult-to-replicate loci, including common
fragile sites (CFSs) [58,59]. When cells are treated with replication inhibitors, such as aphidicolin [60], CFSs
appear as gaps or breaks in metaphase spreads, referred to as ‘CFS expression’ [45,61]. CFSs have an AT-rich
sequence composition, which makes them prone to the formation of secondary DNA structures, potentially
hindering replication fork progression [62]. The majority of CFSs lie within large genes that require more than
one cell cycle to be transcribed and are therefore more likely to encounter transcription–replication collisions
[63–65]. In line with oncogene expression leading to perturbed replication, CFS expression and recurrent copy
number alterations (CNAs) at CFSs has been linked to oncogene expression in cancers [48,58,59,66,67].
The majority of DNA replication occurs in S-phase, although replication of some genomic regions extends

into G2 phase. Intriguingly, increasing evidence demonstrated that processing of late-stage replication inter-
mediates occurs after cells enter mitosis [68,69]. Mitotic DNA synthesis (MiDAS) has been described as a last
resort pathway to complete DNA replication early in mitosis, thereby preserving genomic integrity. MiDAS
resembles break-induced replication (BIR) as it requires the POLD3 polymerase, the MUS81–EME1 endonucle-
ase complex, and the RAD52 recombinase (Figure 2) [61,70,71]. Additionally, the TRAIP ubiquitin ligase,
which drives replisome disassembly, is essential for the recruitment of MiDAS factors [72]. BIR is highly muta-
genic [73], and it remains to be determined whether MiDAS is equally prone to induce mutations and whether
it contributes to tumor mutational signatures. More recently, the concept of mitotic DNA replication has been
challenged by the discovery that the commonly used CDK1 inhibitor RO-3306 non-specifically interferes with
DNA synthesis. As a result, MiDAS detection in early mitosis may be a consequence of the off-target activity
of RO-3306 [74], warranting the need to reassess experimental contexts to study MiDAS.
Fanconi anemia (FA) proteins FANCD2 and FANCI are recruited to CFSs in mitosis upon perturbed DNA

replication [65]. Their role in resolving under-replicated DNA, however, is incompletely clear. During mitosis,
FANCD2 localizes to adjacent foci on each sister chromatid [75]. FANCD2-positive lesions that remain unre-
solved in prophase persist during mitotic progression, where in anaphase they ultimately flank DAPI-positive
chromatin bridges or DAPI-negative ultrafine DNA bridges (fragile site (FS)-UFBs, Figure 3) [75,76]. In cancer
cells, FANCD2 was reported to be essential for MiDAS [77]. Additionally, FANCD2 has been reported to
co-operate with the Bloom’s syndrome helicase (BLM) to prevent chromosome mis-segregation upon mitotic
transmission of RS-induced DNA lesions, pointing to a role in DNA repair beyond S-phase [45,78].

Figure 3. Unresolved lesions in mitosis are processed into ultrafine DNA bridges.

Failure to process joint DNA molecules in mitosis leads to persistent entangling of sister chromatids, generating ultrafine DNA

bridges (UFBs) as cells progress into anaphase. Pulling force from mitotic spindle stretches the DNA, initiating binding of the

PICH translocase to double-stranded DNA (dsDNA) regions of the UFB, and subsequent recruitment of the BTR (BLM, TOP3A,

RMI1/2) complex and RIF1. RIF1 may interact with its effector protein phosphatase 1 (PP1), dephosphorylating PICH and BLM.

The BLM helicase becomes activated and unwinds dsDNA into ssDNA, triggering localization of the RPA trimeric complex.

Topoisomerase TOP3A may in turn decatenate ssDNA stretches to mediate resolution of UFBs. ‘C-UFB’ = centromeric UFB,

‘HR-UFB’ = homologous recombination UFB, ‘FS-UFB’ = fragile site UFB.
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HR intermediates
HR involves strand invasion of a RAD51-coated DNA end into an undamaged sister chromatid, in order to allow
DNA synthesis with the sister chromatid as a template. When there is second-end capture at the DSB site, these
sister chromatids can form covalently linked four-way DNA junctions known as holliday junctions (HJs) (Figure 2)
[79]. HJs represent joint DNA molecules that need to be removed prior to chromosome segregation during
anaphase to ensure equal distribution of DNA to both daughter cells, which is required to prevent genomic instability.
HJs can be processed through ‘dissolution’ of double HJs or ‘resolution’ of both double and single HJs.

Dissolution of double HJs involves the BTR complex, consisting of BLM, topoisomerase IIIα (TOP3α), RMI1,
and RMI2, and it is the preferred mechanism for resolving double HJs because it generates non-crossover
repair products (Figure 2) [49,79]. While it was long thought that HJs are resolved before the onset of mitosis,
recent work showed that HJs can be resolved by BLM at the G2/M transition upon activation of BLM by
CDK1 and PLK1 [80–82].
Resolution of both single and double HJs either results in non-crossover or crossover products. Crossovers

are also known as sister chromatid exchanges (SCEs), and can be visualized via differential BrdU incorporation
[50,80]. Resolution is conducted by the structure-specific nucleases MUS81–EME1, SLX1-SLX4, and GEN1
(Figure 2) [49,79]. The MUS81–EME1 and SLX1-SLX4 complexes have the highest activity in prometaphase of
mitosis when these proteins associate with XPF to form the multimeric SMX complex [49,50]. The formation
of the SMX complex is enhanced by phosphorylation of EME1 and SLX4 by the mitotic kinases CDK1 and
PLK1 [49,50,83,84]. Upon mitotic activation, the SMX complex makes incisions on both sides of the HJs and
ultimately generates an ssDNA overhang on one side of the DNA strand. This ssDNA overhang needs to be
processed before the two DNA strands from the same sister chromatid can be ligated to generate an intact
chromatid (Figure 2) [79].
In contrast with the SMX complex, GEN1 can cut the HJ without generating an ssDNA overhang. GEN1 is

excluded from the nucleus during interphase, restricting the resolution of HJs by GEN1 until after nuclear
envelope breakdown at onset of mitosis [68,85]. After its recruitment to HJs, GEN1 first makes a nick at one
side of the HJ and will subsequently make a second nick at a symmetrical position on the other strand. These
broken ends can be immediately ligated by a DNA ligase without any further processing. While this allows
chromatid separation during mitosis, GEN1 utilization does result in SCEs (Figure 2) [79,86].
Elevated levels of SCEs are observed in cells with BLM-deficiency obtained from Bloom’s syndrome patients,

as these cells rely on resolution of HJs via the SMX complex or GEN1, instead of dissolution via the BTR
complex. As a consequence, Bloom’s syndrome patients develop cancer early in life due to genomic instability.
Conversely, depletion of MUS81, SLX1, SLX4, or GEN1 results in a decrease in SCEs [50,80]. If HJs are not
resolved by either the SMX complex or GEN1, they can end up as ultrafine bridges (UFBs), specifically
HR-UFBs [68]. Interestingly, increased numbers of UFBs and SCEs were found in 53BP1-hypomorphic cells,
which were suggested to originate from HR intermediates caused by the excessive level of HR in these cells [87].

Catenanes
Intertwined DNA molecules can also end up in mitosis as a consequence of normal DNA replication. During
DNA replication both centromeres become topologically linked by double-strand catenanes (Figure 2, Table 1) [53].
These catenanes originate from S-phase and are carried over to mitosis to be resolved [81]. Apart from being
intertwined DNA molecules that need to be untangled before anaphase can occur, catenanes may also be bene-
ficial in supporting sister chromatid cohesion during early mitosis [88,89].
Topoisomerase IIα (TOP2α) resolves DNA catenanes during the metaphase–anaphase transition by generat-

ing a DSB that releases tension and uncouples the two sister chromatids [51,52,81]. TOP2α subsequently ligates
the two broken ends to ensure untangling of the catenanes, and is essential for correct segregation of the sister
chromatids at the beginning of anaphase (Figure 2) [90]. As expected, TOP2α inhibition impedes untangling of
centromeric catenanes, leaving sister chromatids connected during anaphase and resulting in the formation of
centromeric ultrafine DNA bridges (UFBs) (Figure 2) [45,68,78,87,91].

Consequences of unprocessed mitotic DNA damage
Ultrafine DNA bridges
When joint DNA molecules persist — either due to defective processing of catenanes, under-replicated DNA
or HJs — UFBs emerge in anaphase. UFBs are DNA linkages undetected by conventional DNA dyes, and they
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can only be visualized by immunofluorescence staining of UFB-localizing proteins including BLM,
PLK1-interacting checkpoint helicase (PICH), Rap1-interacting factor (RIF1), and replication protein A (RPA)
(Figure 4) [5,6,68]. As discussed previously, UFBs occur frequently at centromeres (C-UFBs) due to centro-
meric catenanes [81], at under-replicated DNA at fragile sites (FS-UFBs), or originate from unresolved HR
products (HR-UFBs) [45,68,92]. Interestingly, these various kinds of UFBs arise during mitosis in unchallenged
conditions, albeit to a different extent. This observation indicates that catenated DNA and covalently linked
sister chromatids remain undetected by checkpoint signaling [6,7]. Apparently, these structures are not sensed
by cell cycle checkpoints, perhaps because cells have evolved effective mechanisms to resolve these structures in
mitosis.
PICH recruitment depends on tension and is recruited early to UFBs [93], which is required for both the

recruitment of the BTR complex and RIF1 [6,7,81,82] (Figure 4). Both BLM and PICH are phosphorylated by
CDK1 and PLK1 at the onset of mitosis [80–82]. The role of RIF1 at UFBs might be to recruit Protein
Phosphatase 1, which can counteract PLK1 and CDK1 activity at UFBs (Figure 4) [94]. Conversely, BLM and
PICH were suggested to function together with TOPIIIα and TOP2α to resolve C-UFBs during mitosis, in a
process that requires topoisomerase-binding protein-1 (TOPBP1) [68,81]. Interestingly, CIP2A was recently
shown to be essential for TOPBP1 recruitment to DNA breaks during mitosis, where it was demonstrated to

Figure 4. Tethering of DSB ends in mitosis.

(Top right) DSBs arising in mitosis can originate from ionizing radiation, experimental approaches using nuclease-mediated

cleavage, as well as from mitotic processing of DNA lesions. (Zoom in, bottom left) At the damage site, recruitment of MDC1

mediates accumulation of TOPBP1 and CIP2A complexes, resulting in the tethering of two broken DNA ends in mitosis.

TOPBP1 and CIP2A possibly form tethering complexes through interaction between its own homodimers and/or each other.

Nucleases, including MRE11, may perform resection of broken DNA ends, allowing the loading of RPA onto ssDNA stretches,

subsequently protecting them from nucleolytic degradation. Altogether, assembly of these factors forms a tethering structure

that prevents the mis-segregation of broken, acentric, chromosomal arms, and formation of micronuclei. (Bottom right) DSB

ends may remain tethered until cells progress to the next cell cycle in which canonical repair pathways are active. Alternatively,

tethering may be an intermediate step prior to further processing by non-canonical repair factors activated in mitosis.
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function in the tethering of DNA breaks (Figure 3) [4]. While not formally shown, CIP2A might also be
required for TOPBP1 recruitment at UFBs. Taken together, UFB-localizing proteins clearly are required to
resolve the joint molecule, resulting in a single DNA stretch. The ssDNA-binding protein RPA, detected at
UFBs in later stages of anaphase, binds the unwound ssDNA to protect it from degradation, which is counter-
acted by RIF1 [5,6,20].
Contrary to other UFBs, FS-UFBs are marked by FANCD2 foci which flank BLM- and PICH-positive UFBs

[45,78,92]. While the FA pathway was shown to be dispensable for the resolution of centromeric UFBs, it
appears important for proper accumulation of BLM at non-centromeric UFBs [78]. In line with these observa-
tions, a functional FA pathway and proper BLM recruitment to non-centromeric UFBs was demonstrated to be
required for UFB dissolution and for preventing chromosome mis-segregation [45,78].
While rare, unresolved UFBs can still be detected in telophase as nucleoplasmic bridges, and their frequency

is increased upon depletion of UFB factors. Indeed, depletion of PICH, RIF1, or BLM causes an increase in
number of bulky bridges in telophase [6]. Subsequently, impaired UFB resolution increases micronucleation
and 53BP1 body formation in the following G1 phase [6]. As DNA damage in mitosis can have major conse-
quences for daughter cells, UFB resolution acts as a last barrier to process DNA damage in mitosis.

Outcomes of mitotic DNA repair and consequences of unresolved mitotic
DNA lesions
Entry into mitosis in the presence of unresolved DNA lesions may result in cell death, known as ‘mitotic catas-
trophe’ [95]. This phenomenon, at least in part, explains why therapeutically forcing cells into mitosis in the
presence of unresolved DNA lesions could be utilized as anti-cancer strategies. This concept has been effectively
demonstrated by targeting cell cycle checkpoint kinases, including Wee1, CHK1, and ATR, either alone or in
the presence of DNA-damaging agents [17,30,96,97].
Intriguingly, even when cells are able to process DNA lesions during mitosis, mitotic DNA repair can still

negatively impact genome integrity in several ways. For example, processing of under-replicated DNA by
MiDAS may cause mutagenic scars. These scars could be similar to those generated from BIR, involving frame-
shifts and duplications, and are possibly caused by usage of low-fidelity polymerase POLD3 [73,98].
Alternatively, stalled replication forks may collapse and lead to different genomic scars if MiDAS is not func-
tional. Specifically, exposed ssDNA becomes vulnerable to nuclease-mediated cleavage when the CMG replica-
tive helicase is removed from stalled replication forks flanking an under-replicated locus [99]. Subsequent
ligation of these cleaved DNA ends has been shown to cause deletions with microhomology at the break sites,
reflecting the usage of POLθ [39,99,100]. Similar genomic scars were observed in BRCA-deficient tumors and
HR-deficient cells, which experience perturbed replication and show increased numbers of mitotic DNA
lesions [101]. Scars associated with BRCAness are also characterized by small tandem duplications, insertions,
and deletions with flanking microhomology sequences [20]. These combined observations raise the question
whether these genomic scars could result from mitotic processing of DNA lesions, rather than from aberrant
repair in S and G2 phase of the cell cycle [20,58]. Notably, similar scars were observed at CFSs [59,62], and
were linked to CNAs and recurrent breakpoints in cancer, underscoring the important role of resolving under-
replicated DNA in tumor suppression [58,59,62].
When joint DNA molecules persist until late mitosis, they may rupture due to spindle-mediated tension and

can be repaired by mutagenic repair through NHEJ in the next cell cycle [68]. For example, when the number
of joint DNA molecules was elevated due to increased HR usage, tension-induced rupture was observed leading
to persistent UFBs and ultimately DNA breakage [87]. Rupture of these UFBs may fuel breakage–fusion-bridge
cycles that subsequently lead to both numerical chromosome alterations and structural rearrangements
[87,102].
Finally, when DNA lesions are not properly repaired or remain tethered during mitosis, chromosome frag-

ments can end up in the cytosol as micronuclei [4,103]. Lack of proper DNA metabolism components within
micronuclei leads to perturbed replication and replication fork collapse, ultimately giving rise to chromosome
shattering (i.e. chromothripsis) [104,105]. Mechanistically, micronuclei have been shown to contain high levels
of RNA-DNA hybrids, which are processed by ADAR enzymes [106]. ADAR-mediated processing forms
abasic sites and ssDNA nicks, which are converted into DSBs during replication. ADAR enzymes, which were
described to be overexpressed in certain cancers, can therefore cause fragmentation of micronuclear chromo-
somes [106].
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Combined, processing mitotic DNA lesions (or failure thereof ) may lead to loss or gain of chromosome frag-
ments. Single gains or losses can have major consequences when they affect tumor suppressors or oncogenes.
This may promote malignant transformation and fuel genetic heterogeneity within tumors, and ultimately
could accelerate tumor development or drive treatment failure [107]. Therefore, mitotic processing of DNA
damage likely represents an important but understudied part of tumorigenesis.
To better understand the mitotic DDR and determine which genomic signatures arise when tumor cells

utilize mitotic DDR, we need to uncover which DNA repair proteins are active during mitosis. Additionally, it
is important to study the cellular consequences when DNA lesions are induced specifically in mitosis, and to
pinpoint more precisely when the processing of DNA lesions occurs; at the end of G2, or during early or late
mitosis. Such knowledge may be achieved by inactivating DNA repair proteins or disrupting repair complexes
specifically during mitosis, using targeted degradation methods [108]. Examples hereof are POLθ and RAD52,
which were recently shown to repair mitotic DNA breaks that originated from S-phase in HR-deficient cells [39].
These studies also suggested that targeting mitotic DNA repair could be a valuable tool to improve PARP
inhibitor therapy for HR-deficient cancers [39]. Similarly, proteins like CIP2A and GEN1 that are excluded
from the nucleus during interphase, may provide mitosis-specific targets to therapeutically target mitotic DNA
processing [4,37,85]. Lastly, a significant step forward would be to determine the genomic scars associated with
mitotic repair of DNA lesions. As a starting point, genomic scars induced by targeted depletion of mitotic
DDR proteins (e.g. GEN1, CIP2A, RAD52, and POLθ) could provide a framework to build a mitotic muta-
tional signature. Such a signature could be used to gain insight into the genetic consequences of (defective)
mitotic repair. Also, genomic signatures associated with mitotic repair could be used to discover mitotic DDR
proteins causing similar signatures and may be instrumental for the analysis of clinical samples to identify
tumor types that are dependent on mitotic DDR for their survival.

Perspectives
• Transmission of unresolved DNA lesions into mitosis, a common feature of cancer cells,

poses a cellular threat as most canonical repair pathways are inactive in mitosis. Insight in
mitotic processing of DNA lesions is essential to understand its contribution to genome main-
tenance and tumor survival.

• While canonical DNA repair pathways are inactivated during mitosis, cells are equipped with
various alternative repair systems that resolve joint DNA molecules and thereby prevent
chromosome mis-segregation to maintain genomic stability.

• Focused analysis of DNA repair in specific cell cycle phases, particularly mitosis, will help to
elucidate the extent to which mitotic DNA repair contributes to the landscape of mutational
scars observed in cancers, and whether mitotic DNA repair is therapeutically actionable.
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