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Abstract: Glucosinolates (GSs) are common anionic plant secondary metabolites in the order
Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained
much attention due to their biological activities and mechanisms of action. We review herein the
health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and
bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved
from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic,
and derivatives) play an important role in human/animal health (disease therapy and prevention),
plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall,
much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels
improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone
application. Their availability and bioactivity are directly proportional to their contents at the source,
which is affected by methods of food preparation, processing, and extraction. This review concludes
that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be
emphasized to obtain natural bioactive compounds/active ingredients that can be included among
synthetic and commercial products for use in maintaining and promoting health. Furthermore,
the development of advanced research on compounds pharmacokinetics, their molecular mode
of action, genetics based on biosynthesis, their uses in promoting the health of living organisms
is highlighted.

Keywords: glucosinolates; glucosinolate hydrolysis products; natural compounds;
secondary metabolites; bioactivity; improvement; bioavailability
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1. Introduction

Glucosinolates (GSs) are natural, sulfur-rich anionic secondary metabolites, widely distributed in
plants of the order Brassicales [1], mainly in the angiosperms families like Brassicaceae. Together with
glucosinolate hydrolysis products (GSHPs), they are collectively described as mustard oil glucosides [2].
Only about 137 GSs have been characterized so far in plants [3]. Their core structure is composed of
a β-D-glucosyl residue linked by a sulfur atom to a cis-N-hydroxyminosulfate ester, and a variable
R group derived from a modified amino acid chain (which is the precursor used to group GSs into
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distinct classes). In plants, GS/GSHP compounds determine the distinct aroma, pungent flavors,
and taste of foods [1].

GSs normally exist as intact compounds localized in vacuoles of different cell types. They are
degraded to GSHPs by an endogenous glycosylated thioglucosidases enzyme known as myrosinase,
which is physically separated in vacuoles of myrosin cells [4]. Myrosinase is activated upon cell
disruption (e.g., during plant injury, feeding by herbivore/insects), metabolism by gut bacteria [5],
usually in the presence of water. The enzyme hydrolyzes GSs thioglucoside bond producing glucose,
sulfate and unstable aglycone moieties which are spontaneously rearranged to either isothiocyanates
(ITCs), thiocyanates, epithionitriles, nitriles and oxazolidines, among others [1,3]. The type of GSHP
compounds formed depends on the nature of the GS, reaction conditions (e.g., pH, presence of ions)
and other compounds such as ascorbic acid and epithiospecifier proteins [6].

As natural chemicals that facilitate defense responses against different types of stresses (biotic and
abiotic) in plant [7], GSs/GSHPs, have other diverse functions that have caused them to quickly gain
in popularity as a subject of growing scientific interest. Plants utilize the GSs-myrosinase system,
the “mustard oil bomb” [8] as a self-defense system against microbes and herbivores [9], and lowering
of myrosin cell activity makes plants more susceptible to predators and insects like aphids [4].
In addition, compounds released from the hydrolysis of intact GSs by myrosinase enzymes are used as
biocides/biofumigants in agriculture. Pharmacological studies have also shown that GSs/GSHPs have
supplemental health promoting/beneficial properties as anti-inflammatory, antimicrobial, antioxidant,
cholinesterase inhibitors and as cancer preventive agents in humans, while in the food industry these
compounds are used in food preservation owing to their microbial inhibitory ability [10].

The majority of the biological activities of GSs are linked to their GSHPs [11], however, intact GSs
also have the capability of modulating and impacting some biological systems [12]. These activities
may be enhanced by the availability of more than one compound which display synergetic mode of
action between or with other compounds [13]. Certain other factors which affect the bioactivity of
these compounds include the plants’ GSs profiles (concentration and composition) [14] and hydrolysis
enzyme actions [15]. Variations in plants’ GSs profiles and enzyme activity may occur among
genotypes [16], cultivars, organs [17], accessions [18], varieties [19,20], growth stage and depending on
environmental or growth conditions like photoperiods [21], temperature, water, nutrient availability.

Besides the naturally available sources of GSs, recently, the prediction of new, efficient bioactive
GSs/GSHPs and their derivatives have been evaluated. Among them include ITC derivatives
with higher antimicrobial activity [22], chemopreventive properties [23], herbicidal activity [24],
antimicrobial activity [25], anti-tumor activity [26], ITCs with moderate anti-inflammatory [27–29] and
ITCs with similar anti-proliferative activity as natural ITCs [30].

Furthermore, improvement strategies of natural GSs/GSHPs compounds using elicitors or biotic
and abiotic stresses; which influence concentration, biological activity, GSs-myrosinase enzyme action,
have also been assessed. In response to such factors, it has been shown that the expression profiles of
various transcription factors related to GSs biosynthesis differ in various genotypes, which can be used
to provide genetic diversity as well as phenotypic diversity in the GSs content [31].

Through the exploration of several studies, this review aims at providing up to date information
on health benefits of different types of GSs/GSHPs, and the factors that affect their natural occurrence
and bioavailability, for the various beneficial health roles they possess; so as to help in investigating
the therapeutic values of these compounds in future.

2. Results

The search identified a total of 2198 articles that were retrieved from various databases, out of
which 467 were considered potentially relevant based on their titles and abstracts in the initial screening.
In a second screening, 282 articles were excluded after a thorough search through the text. Finally,
185 articles met the inclusion criteria, as shown in the PRISMA flow diagram (Figure 1).
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Figure 1. This figure shows the flowchart used in the article selection process.

A majority of these GSs identified from natural sources, were in plants of the Brassicaceae/Cruciferae
family. Specifically, a large number belonged to the aliphatic group, followed by the aromatic/benzyl
and then the indole group. The analysis of GSs/GSHPs was performed using high performance liquid
chromatography (HPLC) analysis of desulfo-GSs derivatives according to the ISO-9167-1 method [32].
Among other GSs compounds mentioned, we identified that some only occur in specific families like
glucocapparin in Capparaceae and glucomoringin (GMG) (4-α-L-rhamnopyranosyloxy) benzyl GSs in
Moringaceae plant species.
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Herbal preparations of GSs-rich extracts mostly focused on seeds and fully mature stages
(flowers, leaves and roots) of the plants however some studies considered the utility of sprouts such as
cabbage, broccoli, cauliflower, kale, brussels, radish and leaf mustard, probably due to their increased
use as side dishes and salads in many countries.

The seeds, sprouts and young plant extracts, predominantly contained aliphatic groups of GSs
(such as broccoli (Brassica oleracea) [14,33,34]), whose contents decreased with plant maturity whereas
indole GSs contents increased. Furthermore, most of the plant, roots had higher concentration of total
GSs than shoots.

Seed extracts that portrayed such benefits as chemopreventive, cytotoxic and antimicrobial
include: - seed extracts of Brassica juncea L. containing 3- butenyl ITCs [35], Lobularia libyca [36],
Carica papaya L. rich in benzyl GS [37], mustard seed powder [38], Sinapsis alba L. and Sinapsis nigra
L. with high content of sinalbin and sinigrin, respectively [39]. GMG isolated from Moringa oleifera
L. seeds possessed chemopreventive [40–42], insect larvae deterrence [43], antibacterial [44] and
anti-inflammatory activity [45]. Volatiles in Lunaria annua L. seed extracts displayed cytotoxicity
activity against lung cancer cells [46].

Seed meal of Brassica juncea suppressed Meloidogyne incognita nematodes individually and in
specific combination with Sinapsis alba [47] while Camelina sativa L. seed meal exhibited anticancer
activity [13]. Elsewehere, meadowfoam (Limnanthes alba) seed meal and extracts had photoprotective
properties [48] biopesticidal activity against soil borne pathogens [49] and phytotoxic activity [50].

Volatiles in leaves extracts of Degenia velebitica [51], in aerial parts extracts of
Cardaria draba L. [52] and in Aurinia leucadea [53] possessed antimicrobial activity and leaves extracts of
Lepidium latifolium L. [54] had cytotoxic activity. The leaves extract from Brassica species displayed
nematicidal activity [55] and chemopreventive ability [11,56,57]. The Wasabi japonica leaf extracts
showed anti-neuroinflammatory effects [58], while those in horseradish (Armoracia rusticana) had
antimicrobial, spasmolytic, cytotoxic activities [59,60]. Essential oils extracted from caper leaves and
flower buds had anticarcinogenic activity [61]. Tumor growth inhibition and cytotocicity effects on
human cancer cells were also seen in leaf extracts of Brassica carinata [62] and Eruca sativa [63] and
GMG from leaves extracts of M. oleifera exhibited antioxidant activity [64].

Root extracts of horseradish exhibited nematicidal activity against Meloidogyne incognita [65],
while those from turnip (Brassica rapa L.) had a stimulatory effect in bone formation in rats [66],
while from Bunias erucago showed chemopreventive activity [67]

Sprouts extracts of Raphanus sativus L. induced apoptosis and cytotoxicity in human
hepatocarcinoma cells [68] and human breast cancer cells [69]. The sprout extracts of Chinese
kale (B. oleracea var. alboglabra) exhibited antioxidant activity [70]. Raphasatin in radish sprouts was
also identified to be more potent as a chemopreventive compound than its corresponding GSHP [71].
Table 1 summarizes the health benefits of GSs including the herbal extracts mentioned above.
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Table 1. Various health benefits of GSs and GSHPs.

GSs Hydrolysis Product Biological Activity Source Organism/Pathogen/ Cell Reference

Aliphatic GSs
Biocidal/ Biofumigation Activity

Glucoraphanin, glucoiberin
glucobrassicanapin, glucoerucin

Sulforaphane
4-pentenyl ITCs Biocide Synthetic [72]

Sinigrin Allyl ITCs/2-propenyl ITCs Herbicidal
Larval feeding deterrent

Synthetic L.
latifolium L.

Cyperus esculentus weed
Plutella xylostella pest [73,74]

Nematicidal activity A. rusticana M. incognita [65]
Insecticidal synthetic Helicoverpa armigera [75]

Biocide Synthetic [72]
Nematicidal activity B. juncea L. Globodera pallida [55]

Biofumigation A. thaliana Verticillium longisporum [76]
Fungitoxic activity Synthetic Sclerotinia sclerotiorum [77]

Gluconapin Butyl ITCs Fungitoxic activity Synthetic S. sclerotiorum [77]
Biocide [72]

Glucocapparin Methyl ITCs Fungitoxic activity Synthetic S. sclerotiorum [77]
Weed germination

inhibition B. senegalensis [78]

Antimicrobial activity

Sinigrin Antimicrobial S. alba L. and S. nigra L.
S. aureus, Streptococcus pyogenes, Bacillus

cereus, Escherichia coli, P. aeruginosa, Candida
albicans

[39]

Antibacterial B. oleracea Bacillus cereus, E. coli, Salmonella typhimurium,
Methicilin resistant S. aureus [79]

Antifungal A. rusticana
Trichophyton rubrum, Trichophyton
mentagrophytes, Microsporum canis,

Epidermophyton floccosum
[80]

Antimicrobial A. rusticana C. albicans, Fusobacterium nucleatum [81]
Antimicrobial Cruciferous plant methicillin resistant S. aureus [82]

Antimicrobial
and cytotoxic L. latifolum L.

Listeria monocytogenes, Acinetobacter
baumannii, C. albicans, S. aureus, S.
Typhimurium, E. coli, P. aeruginosa

[54]

Synthetic

Haemophilus influenzae, Moraxella catarrhalis,
Serratia marcescens, Proteus vulgaris, and

Candida species
E. coli, P. aeruginosa, S. aureus and L.

monocytogenes
P. aeruginosa

[10,83–85]

Antimicrobial Synthetic E. coli [86]
Antimicrobial activity B. oleracea E. coli, Klebsiella pneumoniae [87]

Antimicrobial A. rusticana C. albicans, F. nucleatum [81]
Bactericidal synthetic Campylobacter jejuni [88]
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Table 1. Cont.

GSs Hydrolysis Product Biological Activity Source Organism/Pathogen/ Cell Reference

Glucoraphanin 4-(Methylsulfanyl)butyl ITCs &
5-(methylsulfanyl)pentanenitrile Antimicrobial C. draba L.

E. coli, K. pneumonia, Enterobacter sakazakii, P.
aeruginosa, Cronobacter spp., S. aureus,

Rhizopus stolonifer
[52]

Antibacterial Synthetic Pig aeromonas intestinal bacteria [89]

Gluconapin 3-Butenyl ITCs Antimicrobial A. leucadea Bacillus cereus, C. albicans, Penicillium sp., R.
stolonifera, P. aeruginosa [53]

Antimicrobial activity B. oleracea E. coli, K. pneumoniae [87]
Antimicrobial A. rusticana C. albicans, F. nucleatum [81]

Glucoerucin 4-(Methylsulfanyl)butyl ITCs,
5-(methylsulfanyl)pentanenitrile Antimicrobial C. draba L. E. coli, K. pneumonia,E. sakazakii, P. aeruginosa,

Cronobacter spp., S. aureus, R. stolonifer [52]

Antimicrobial activity B. oleracea E. coli, K. pneumoniae [87]
Antimicrobial L. libyca C. albicans and P. aeruoginosa [36]

Glucobrassicanapin Antimicrobial Aurinia sinuate Gram positive, negative bacteria and fungi [90]

A. leucadea B. cereus, C. albicans, Penicillium sp., R.
stolonifera, P. aeruginosa [53]

Glucoalyssin Antimicrobial A. leucadea B. cereus, C. albicans, Penicillium sp., R.
stolonifera, P. aeruginosa [53]

Glucoiberverin Antimicrobial activity B. oleracea E. coli, K. pneumoniae [87]
Glucoberteroin 6-(Methylsulfanyl) hexanenitrile Antimicrobial D. velebitica [51]

aliphatic ITCs and their derivatives Antimicrobial Synthetic Mycobacterium tuberculosis [22]
Antioxidant activity

Sinigrin Allyl ITCs Antioxidant B. juncea L. [91]
B. rapa L. [19]

Curly kale leaves [92]

Gluconapin Antioxidant B. juncea L.
B. rapa L. [19,91]

Glucoalyssin, progoitrin,
glucobrassicanapin, Antioxidant B. rapa L. [19]

Glucoiberin Antioxidant Curly kale leaves [92]
Anti-inflammatory activity

Sinigrin Allyl ITCs Anti-inflammatory Synthetic [93]
W. koreana [58]

Glucoraphanin Sulforaphane Inflammatory
Prophylactic Broccoli sprouts [94]

Anti-inflammatory Broccoli sprouts [95]
Tuscan blackkale [96]

B. oleracea [97]
Neoglucobrassicin Anti-inflammatory synthetic [28]
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Table 1. Cont.

GSs Hydrolysis Product Biological Activity Source Organism/Pathogen/ Cell Reference

Cholinesterase Inhibitory Activity
Gluconapin,
Glucoerucin

Glucoraphanin

But-3-enyl ITCs
erucin

sulforaphane

Acetylcholinesterase
inhibitory activity Alyssoides utriculata [98]

Cytotoxic Activity and chemoprevention

Sinigrin Allyl ITCs Quinone reductase
activity A. rusticana Hepa1c1c7 murine hepatoma cells [18]

Cytotoxicity Synthetic MCL-5 cells [99]

Anti-cancer, radical
scavenging ability and

increase ROS
B. juncea var. raya

human breast cancer (MCF-7,
MDA-MB-231), prostate cancer (PC-3), lung
cancer (A-549), cervical cancer (HeLa) and

colon cancer (HCT 116) cells

[100]

Anti-cancer Mustard seed powder bladder cancer cell lines and orthotopic rats
model bladder [38]

Cytotoxic L. latifolum L. Glioblastoma LN229 cells [54]
Anti-cancer,

anti-melanoma E. sativa seed oil HepG2 human liver carcinoma and BB16F10
mice melanoma cells [101]

Anti-tumor Collard Human MCF-7, HeLa cells [102]
Anti-proliferative S. alba L. and S. nigra L. colon HCT 116 and HT-29 cells [39]

Anti-tumor Collard Human MCF-7 and HeLa cells [102]
Glucoraphanin Sulforaphane Chemoprevention B. oleracea Liver and lung cells [103]

Chemoprevention Japanese Daikon Rats liver and lung [104]
Anti-multiple myeloma

activity Synthetic Myeloma cells [105]

Chemoprevention B. oleracea Human HepG2 hepatoma cells [11]
Anti-cancer,

anti-melanoma E. sativa seed oil HepG2 human liver carcinoma, BB16F10
mice melanoma cells [101]

Quinone reductase
activity Chinese kales Hepa 1c1c7 murine hepatoma cells [106]

Quinone reductase
activity E. sativa Mill murine hepatoma Hepa1c1c7 cells [107]

Anti-metastatic Synthetic MDA-MB-231(breast), Caski (cervical), A549
(lung), and U2OS (osteosarcoma) cell lines [108]

Anti-cancer Synthetic breast cancer cell [109]
inhibit cancer cells DNA

replication Synthetic PC-3 prostate cancer cells [110]

upregulating
detoxification enzymes Synthetic Mouse cortical neurons [111]

Chemoprevention Japanese Daikon Rats liver and lung [104]
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Table 1. Cont.

GSs Hydrolysis Product Biological Activity Source Organism/Pathogen/ Cell Reference

Chemoprotection Synthetic Human colon cancer cells [112,113]
histone deacetylase

activity
Broccoli

sproutssupplement Dog [114]

Glucoraphenin Sulforaphene Cytotoxic and cell
apoptosis R. sativus seeds Human hepatocarcinoma HepG2 cells [115]

Glucoraphasatin Raphasitin Enzyme detoxification R. sativus HepG2 cells [71]
Chemoprevention Human breast MCF-7 cells [69]
Chemoprevention Japanese Daikon Rats liver and lung [104]
Chemo preventive Daikon sprouts Rats’ hepatic enzymes [116]

Gluconapin 3-Butenyl ITCs Cytotoxicity B. juncea L. Human prostate cancer cells [35]
Cytotoxicity Synthetic MCL-5 cells [99]

Anti-cancer, radical
scavenging ability and

increase ROS
B. juncea var. raya

human breast cancer (MCF-7,MDA-MB-231),
prostate cancer (PC-3), lung cancer (A-549),

cervical cancer (HeLa) and colon cancer
(HCT 116) cells

[100]

Glucoiberin Cytotoxic activity B. oleracea colon cancer cells [56]
Glucocapparin Methyl ITCs Chemoprevention Capparis spinosa L. HT-29 cell [61]

Glucoarabin, Glucocamelinin
phase II detoxification

enzyme induction,
quinone reductase

C. sativa L. Crantz Hepa1c1c7 cells [13]

α-4-Rhamnopyranosyloxy-benzyl
GSs, & isomers

Induction of detoxifying
enzymes M. oleifera human hepatocellular carcinoma cell line

-HepG2 cells [117]

Glucoiberverin, Glucoerucin
Glucoiberin

Tumor growth inhibition,
Antimicrobial L. libyca

HL60 (human promyelocytic leukaemia cell
lines)

C. albicans, P. aeruoginosa
[36]

Other activities
Sinigrin Allyl ITCs Antifibrotic activity Synthetic [118]

Antiglycation Synthetic [119]
Glucoraphenin,

Glucoraphasatin Sulforaphene, Raphasatin Blood sugar control R. sativus [120]

Glucoraphanin, Glucoerucin Sulforaphane,
Erucin Suppress mutagenecity Synthetic [121]

progoitrin, glucoraphanin,
glucoalyssin, gluconapin,

glucoerucin, glucoberteroin,
glucobrassicanapin

Bone formation B. rapa L. [66]
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Table 1. Cont.

GSs Hydrolysis Product Biological Activity Source Organism/Pathogen/ Cell Reference

Indole GSs
Biocidal activity

Glucobrassicin Indole-3 carbinol Biocide Synthetic [72]
Antioxidant activity

Glucobrassicin Antioxidant B. rapa L. [19]
Curly kale leaves [92]

Isatis canescens [122]
Chemoprevention

Glucobrassicin Indole-3-carbinol Chemoprevention Synthetic Rats’ hepatic and kidney
mice bone marrow cells [123,124]

3,3′-Diindolylmethane Enhances level of
reduced-glutathione Synthetic Rats heart and bone marrow [125]

Other activities
Glucobrassicin,

neoglucobrassicin Bone formation B. rapa L. [66]

Aromatic GSs
Gluconasturtiin Phenethyl ITCs Biocide Synthetic [72]

Larvicidal Barbarea verna and
Barbarea vulgaris Mamestra brassicae [126]

Glucotropaeolin,
Sinalbin

Benzyl ITCs Biocide Synthetic [72]

Glucolimnanthin 3-ethoxybenzyl ITCs Bio-herbicide
Biopesticide L. alba

Lettuce
Meloidogyne hapla, Pythium irregulare and

Verticillium dahliae
[49,50]

GMG Moringin Insect deterrence M. oleifera
seeds Pieris napi, Athalia rosae, Pieris brassicae [43]

Phenyl ITCs Herbicidal Synthetic C. esculentus weed [73]
Antimicrobial activity

GMG Moringin Antimicrobial M. oleifera P. aeruginosa, S. aureus [44]

Gluconasturtiin Phenylethyl ITCs Antifungal A. rusticana T. rubrum, T. mentagrophytes, M. canis, E.
floccosum [80]

Antimicrobial A. rusticanaroots C. albicans, F. nucleatum [81]
Antibacterial Synthetic E. coli, S. aureus [10,127]
Antimicrobial Cruciferous plant methicillin resistant S. aureus [82]

Antimicrobial
Synthetic

Tropaeoli majoris, A.
rusticanae

Pig aeromonas intestinal bacteria
P. aeruginosa

H. influenzae, M. catarrhalis, S. marcescens, P.
vulgaris and Candida species

[83–85,89]

Antifungal Synthetic S. sclerotiorum [77]
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Table 1. Cont.

GSs Hydrolysis Product Biological Activity Source Organism/Pathogen/ Cell Reference

Glucotropaeolin Benzyl ITCs Bactericidal Synthetic C. jejuni [88]
Antimicrobial Synthetic Antimicrobial [82]
Antimicrobial Pig aeromonas bacteria [89]

Antifungal Synthetic S. sclerotiorum [77]
Glucobarbarin Larvicidal B. verna and B. vulgaris M. brassicae [126]

p-Methoxybenzyl,
p-hydroxybenzyl GS Antifungal Tropaeolumtuberosum Phytophthora infestans, R. solani [128]

5- Phenylpentyl ITCs Antimicrobial, cytotoxic &
antispasmodic A. rusticana

S. aureus, B. subtilis, B. cereus, S. enterica, P.
vulgaris, E. coli, C. albicans Aspergillus

brasiliensis
[59]

Antioxidant activity
GMG Antioxidant M. oleifera [64]

Anti-inflammatory activity
Phenyl ITCs Anti-inflammatory Synthetic [129]

Gluconasturtiin Phenethyl ITCs Anti-inflammatory Synthetic [130]
GMG Moringin Anti-inflammatory M. oleifera [96,131,132]

3,4-Dimethoxyphenyl Anti-inflammatory Synthetic [27]
3-methoxyphenyl ITCS Anti-inflammatory synthetic [129]

Cytotoxicity and chemoprevention
GMG cytotoxicity M. oleifera human colon adenocarcinoma grade II cells [133]

Inhibit cells proliferation Hep3B Liver Cancer Cells [41]
Anticancer human malignant astrocytoma cell [40]

Gluconasturtiin Phenethyl ITCs
Anti-cancer, radical

scavenging ability and
increase ROS

B. juncea var. raya

human breast cancer (MCF-7 and
MDA-MB-231), prostate cancer (PC-3), lung
cancer (A-549), cervical cancer (HeLa) and

colon cancer (HCT 116) lines

[100]

Chemoprevention Synthetic Rats’ hepatic and kidney [123]
Chemoprevention Synthetic prostate cancer cells [134]

Anti-cancer,
anti-melanoma E. sativa seed oil HepG2 human liver carcinoma and BB16F10

mice melanoma cell line [101]

Inhibit multiple myeloma
growth Synthetic multiple myeloma cells [135]

Glucotropaeolin Benzyl ITCs Anticancer activity Carica papaya L. human lung cancer H69 cell [37]
Inhibit growth Synthetic multiple myeloma cells [135]
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Table 1. Cont.

GSs Hydrolysis Product Biological Activity Source Organism/Pathogen/ Cell Reference

Benzyl and Phenyl ITCs Antimetastatic Synthetic MDA-MB-231 (breast), Caski (cervical), A549
(lung), and U2OS (osteosarcoma) cell lines [108]

A, β-dialkoxyphosphoryl
alkyl & aralkyl ITCs Antiproliferative activity Synthetic Lung cancer cells [30]

3-Methoxybenzyl ITCs, Photoprotective L. alba human skin cells [48]

5- Phenylpentyl ITCs Antimicrobial, cytotoxic &
antispasmodic A. rusticana S. aureus, B. subtilis, B. cereus, S. enterica, P.

vulgaris, E. coli, C. albicans A. brasiliensis [59]

Other activities
Gluconasturtiin Bone formation B. rapa L. [66]

Phenethyl ITCs Suppress mutagenecity Synthetic [121]

Phenyl ITCs Anti-inflammatory,
cholinesterase inhibitory Synthetic [129]
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3. Benefits of Natural and Synthetic GSs and GSHP

3.1. Biofumigation/ Biocidal Activity and Pest Management

Natural GSs and their derivatives possess biocidal activity and show toxicity to a range of
soil borne as well as plant pathogens and pests [55]. GSs rich plant sources and extracts with
the ability to inhibit the growth of pathogens, offer the opportunity to explore them in controlling
many plant diseases and as potential bio fumigants [72]. GSs and GSHPs volatiles, too, such as
ITCs, have at low concentrations been used to control plant pathogens and/or are included as active
ingredients among synthetic commercial nematicidal compounds [6]. These compounds possess
bioherbicidal, larvicidal, soil fungicidal, insect feeding deterrence, nematicidal activities, and growth
retardation [49,50,65,73–77,126,128]. Their activity and effectiveness mainly increase with exposure
time and in a dose-dependent manner [73,126].

Disease suppression in soil has been done using rotations of GSs-rich green manure.
Brassica juncea L. seed meal soil supplement displays greater nematotoxicity to Meloidogyne incognita
pathogens and in combination with Sinapsis alba seed meal, the manure helps deter nematodes and
suppresses weeds in pepper plants [47]. A similar combination displays potential in managing
Verticillium wilt and soil-borne diseases [136]. B. juncea L. leaf green manure rich in 2-propenyl GSs
also exhibit high nematicidal activity both In vitro and in soil microcosms [55]. Boscia senegalensis
seed wastewater, rich in methyl ITCs, has allelopathic effects which cause inhibition of germination of
weeds seeds [78] while non-volatile ITCs like moringin facilitates feeding deterrence of Brassicales
specialists by exhibiting antifeedant activities [43].

Besides, synthetic ITCs also display potential fungicidal structure-activity relationship and they
have prospective acceptability as alternatives to traditional fungicides. They include p-nitrophenyl
which inhibits Rhizoctonia solani and Erwinia carotovora pathogens [25].

The bioprotective role of some GSs is successively promoted by the action of other compounds
present in the plant. For instance, indole GSs together with the phytoalexin camalexin cause
Arabidopsis thaliana resistance to the oomycete pathogen Phytophthora brassicae. While indole GSs
individually inhibit host penetration and play initial defensive roles, the phytoalexin camalexin
enhances the defense at later stages by adding to this initial protection [137].

3.2. Antimicrobial Activity

Microbial drug resistance, pathogen resistance, food spoilage, clinical and oral microbial pathogens
are becoming a global problem. Thus, there have been increasing efforts to evaluate natural products
as a source of compounds against these agents. GSs/GSHPs are among the most important natural
products whose antimicrobial mode of action has been characterized [10,36,82–84].

The antimicrobial activity of plant extracts possessing therapeutic potential relies on the
presence of volatiles, among which GSs and GSHP compounds have been well identified.
Studies focusing on these compounds and their antimicrobial activities show that active compounds
affect pathogens’ membrane integrity [127], intracellular potassium release [10], inhibit growth in
pathogens [22,36,39,51–54,79,80,83,87,89,90], kill pathogens [81,82,88] and change physiochemical
surface properties and charges. Inhibitory effects of GSs and GSHPs can be non-selective [59] or may
vary between different pathogens, as illustrated by allyl and phenylpentyl ITCs in A. rusticana which
has higher antifungal activity than antibacterial activity [80].

Natural and synthetic volatile ITCS compounds have also been shown to inhibit the growth
of drug-susceptible and multidrug-resistant (MDR) pathogens at concentrations comparable to the
commonly used antimicrobial drugs [22]. Furthermore, they show even higher activity against MDR
strains compared to susceptible strains, as in the case of Mycobacterium tuberculosis [22].

The effectivity of GSHPs as antimicrobial compounds can be increased by combining them with less
efficient antibiotics [84,127], (which results in synergism) and/or having a mixture of several ITCs that
display a broad-spectrum antimicrobial activity even to MDR pathogens [83,85]. Bioactivation of GSs
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with myrosinase enzyme also maximizes their effectiveness and antimicrobial activity, as demonstrated
by enzyme bioactivated GMG activity against Pseudomonas aeruginosa and Staphylococcus aureus [44].
Food-borne bacteria synthesize myrosinase enzyme, which also influences the conversion of GSs to
their GSHPs and increases their potency as antimicrobials [86].

3.3. Antioxidant Activity

Reactive oxygen species and free radicals produced by several metabolic processes have very
high potential to harm cells through oxidation. Their continued presence speeds up aging resulting
in age-related illnesses [138]. Several antioxidants studies show that GSs/GSHPs can scavenge and
eliminate the damaging effects of the reactive oxygen species directly or indirectly [64].

The various GSs abundant plants showing potential antioxidant activity include Chinese cabbage
(B. rapa L.) varieties [19], B. juncea L. (kimchi) [139], Isatis canescens flower buds [122], leaves of Eruca
sativa Mill [140], Brassica olerecea L. sprouts [141], B. juncea L. leaves and seeds extracts [91], and curly
kale leaves juice [92]. Plant extracts with antioxidant activity can be optimized by choosing appropriate
conditions for their processing and storage, as demonstrated in fermented kimchi [139]. Elsewhere,
synthetically obtained phenyl ITCs and their derivatives also display good antioxidant activity [129].

3.4. Anti-Inflammatory Activity

GSs and GSHPs have shown great potential as anti-inflammatory agents through their ability
to suppress inflammatory mediators independently or with other substances [131]. Phenethyl ITCs
down-regulate the nuclear factor κB pathway, subsequently inhibiting transcription of genes involved in
inflammatory effects, on a mouse ear topically applied with an inflammation-inducing substance [130].
In combination with 3-methoxyphenyl ITCs, phenyl ITCs cause approximately 99% inhibition on the
human cyclooxygenase-2 enzyme [129].

The anti-inflammatory activity of GSs/GSHPs is presented in various ways for different cells.
Plant extracts of Wasabi koreana, containing allyl ITCs, protect neuronal cells from activated microglia
induced toxicity by inhibiting activation of nuclear factors [58] while sulforaphane isolated from broccoli
sprouts improve cognitive function among schizophrenic patients [95]. Myrosinase- activated GMG [45]
and glucoraphanin [97] act as potent anti-inflammatory agents by inducing inflammatory pathways.

Anti-inflammatory activity may be established in a concentration-dependent manner, as shown
by sinigrin which suppress the production of inflammatory mediators in activated macrophages
by inhibiting lipopolysaccharide-induced nitric oxide pro-inflammatory mediators [93]. To achieve
maximal activity it is worth activating compounds as in the case of bioactive glucoraphanin that
preserves tight junctions’ integrity preventing dysfunctional blood-brain barriers in autoimmune
encephalomyelitis, causing multiple sclerosis [96]. Furthermore, synthetically produced GSHPs are
worth evaluating for their activity like indole GSs [28], and aromatic GSs [27] which have an inhibitory
effect in the secretion of tumor necrosis factor-α in human monocytic leukaemia T peripheral helper-1
cells stimulated with lipopolysaccharides.

3.5. Cholinesterase (ChE) Inhibitory Activities

GSHPs, mainly volatile ITCs, demonstrate potential in anti-hepatotoxic activity. They include
gluconapin, glucoerucin, and glucoraphanin that display above 53% acetylcholinesterase (AChE)
inhibitory activity in a dose-dependent manner [98]. Hydrodistillate extract from Bunias erucago
flowers, rich in glucosinalbin, shows a best AChE inhibition of 40.9% while roots extract displays a
butyrylcholinesterase inhibition activity of 54.3% [67].

In addition to natural GSs, synthetic GSHPs and their derivatives also show good cholinesterase
inhibitory activity. This has been illustrated in phenyl ITCs and its derivatives that display the most
promising inhibitory activity with potential applications in treating Alzheimer’s disease [129].
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3.6. Cytotoxic and Anti-Cancer Activity

The mechanisms contributing to the anti-tumor and/or chemopreventive properties of GSs/
GSHPs are varied, as shown in various studies included in this review. Compounds may act
by inducing/modulating systems of carcinogen detoxifying/metabolizing enzymes [103,117] which
include increased detoxification, they may also act by upregulating phase II enzymes such as
glutathione-S-transferase [104,123,125] and quinone reductase [11,13,18,71,106,107]. These mechanisms
may be organ specific [123], may depend on the compound enantiomer involved [103], on the amounts
of compounds [142], and on the availability of various compound which produce synergistic action [13].

GSHPs-ITCs may inhibit enzyme activity, as evidenced in 2-propenyl and 3-butenyl ITC that
inhibit cytochrome P450 1A enzyme activity [99]. The compounds may also display selective anticancer
activity that results in the inhibition of deoxyribonucleic acid replication in cancer cells as shown by
sulforaphane and phenethyl ITCs, causing more double strand breaks in prostate cancer cells [110].

Furthermore, GS/GSHP compounds exhibit radical scavenging ability and cytotoxic effects in
various cancer cells. Compounds like butenyl thiocyanates, allyl, phenethyl ITCs [100], and GMG
GSs [133] reveal such effects. The compounds’ effectivity lies in their ability to inhibit cell
proliferation, [37,39,61] arrest the cell cycle [38], causing morphological changes, cytotoxicity, and cell
apoptosis [35,36,40,41,54,56,59,69,101,113,115,119]. These activities may be dose dependent [37] and
may also be defined by the chemical nature of the compound [143]. Sometimes, the dynamism of these
activities occurs through synergic effects [105] of various compounds present in an extract and the
particular extract’s vigor is affected by the method of preparation [102].

Some GSs/GSHPs display their potential by possibly inhibiting compounds or activities related
to cancers. Among them include, phenyl ITCs that inhibit transcriptional activity regulated by
androgen receptor modulating growth of prostate cancer cells through down-regulation of an androgen
receptor-regulated gene [134]. ITCs may influence changes and activity of compounds that are normally
overexpressed during cancer such as histone deacetylase [112,114] or compounds which may cause
intoxication such as doxorubicin [124].

GSs/GSHPs exhibit the ability to suppress healthy cell invasion and abolish the growth of tumors
by affecting pathways that adjust carcinogen metabolizing compounds. These include sulforaphane
ITCs, which down regulates the expression of matrix metalloproteins [108]. Such ITCs may activate
the antioxidant response element electrophile response element/antioxidant responsive element,
modulating estrogen signaling in different tissues that leads to induction of the inhibitory effects
of estrogen in breast cancer cells [109], while in cortical neurons, they activate the extracellular
signal regulated kinase pathway, transcriptional factors, and upregulate detoxification enzymes [111].
Benzyl and phenethyl ITCs show significant inhibition of the proteasome activity and also suppress
the growth of multiple myeloma cells [135].

The photoprotective properties of 3-methoxybenzyl ITCs and 3-methoxyphenyl acetonitrile, in
Limnanthes alba, display their anti-photocarcinogenic and anti-photoaging properties. These ITCs
induce human skin cell proliferation activity against ultraviolet B rays and prevent hyperplasia induced
by these rays in reconstructed skin epidermal tissue [48].

3.7. Other Activities

Sulforaphene and raphasatin ITCs reduce the risks of sugar-related diseases. In addition,
these compounds cause spargel expression, which modulates energy metabolism, inhibiting α-amylase,
and α-glucosidase in vitro [120]. Elsewhere, sulforaphane and phenethyl ITCs suppress urinary
mutagenicity activity as illustrated on rats treated with oral doses of heterocyclic amine
2-amino-3-methylimidazo[4 ,5-f]quinoline, a food carcinogen. Long term intake of the ITCs decreases
urinary mutagenic activity, implying enhanced/modulation of the metabolism of the quinoline [121].

Sinigrin, a common GS in most cruciferous vegetables, exhibits the great potential of
inhibiting non-enzymatic aglycation [119], while its GSHP allyl ITCs has hepatoprotective roles
(reduction of hepatic fibrosis). In rats exposed to carbon tetrachloride (CCl4), the ITCs reduce alanine
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aminotransferase and aspartate aminotransferase activity, activate macrophages and regulate Kupffer
cells [118].

The potential stimulatory effect of GSs in bone formation, and as natural sources of promising
neutraceutical agents has been shown in B. rapa L. roots GSs, that show stimulatory effects on human
osteoblast-like MG-63 cell differentiation. Administration to young rats increases serum osteocalcin as
well as some bone microstructural parameters [66]. In addition, 5-phenylpentyl ITCs isolated from
A. rusticana exert significant spasmolytic activity on rats’ distal colon [59].

Functional foods based on GSs display parasiticidal potential against Lepeophtheirus salmonis lice,
ectoparasites that infect Atlantic salmon. In an in vivo study that involved various feeding trials on fish,
beneficial effects on expression of genes functioning in detoxification and regulation of iron metabolism
in several tissues are shown. Such properties affect the availability of heme to lice, deterring them
from infesting the fish [144].

3.8. Effects of GSs/GSHPs Used in Preclinical and Clinical Studies

Clinical and preclinical studies evaluating GSs/GSHPs components and diets provide the basis for
further explaining the mechanism of action of these components. Broccoli sprouts, rich in sulforaphane
administered in a pilot study on melanoma patients display chemoprevention ability [145] and shows
favorable effects in reduction of serum insulin while at the same time enhances insulin resistance in
type 2 diabetes patients, therefore improving their glycaemic control and decreasing risk factors of
cardiovascular diseases [146]. Broccoli soup consumption also reduces the risk of prostate cancer
progression [147] and daily administration of free sulforaphane shows promising evidence in managing
biochemical recurrence after radical prostatectomy in patients with prostate cancer [148]. Similarly,
in asthmatics, sulforaphane enhanced bronchoconstrictor effect, improving major defects and even mild
asthma [149] and in schizophrenic patients, sulforaphane from broccoli sprouts helped in improving
their cognitive function [95].

Clinical studies, however, require a good design that follows a standardized protocol which
includes selecting a representative sample size and various doses [148] of the phytochemicals
to minimize bias and allow generalization. Likewise, masking and the duration of
treatments [146,150]/interventions/exposure/supplementation [151] should be well considered to
confirm specific effects of the components. Variabilities in concentrations of GSs/GSHPs consumed
need to be minimized in the diet within these studies. Furthermore, research on the mechanism
of action, probably in the biomarker-based approach of GSs/GSHPs is highly recommended to
understand various relationships between exposure and risks of the phytochemicals as reported in
some studies [152,153]. Table 2 summarizes some preclinical and clinical studies evaluating the health
benefits of GSs and GSHPs.

3.9. Improving Plant GSs, GSHPs Content, Their Bioavailability, and Bioactivity

There are several factors that affect GSs contents/composition as well as their biological activities.
These include (a) post-harvest treatment of GSs rich plant [154–156], (b) preparative activities like boiling
and nature of vegetables (like those with thick waxy tissues have minimal leaching of GSs into the boiling
medium) [157]; (c) extraction solvent polarity [46,158]; and (d) extraction technique [39,60,132,159,160].
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Table 2. Summary of some preclinical and clinical studies evaluating the health benefits of GSs and GSHPs.

Patient’s Condition Participants Enrolled Groups and Doses Duration Analysed Clinical Outcomes Results Reference

Melanoma 17

3 groups, 3 oral doses (50,100,
200 µmoles) of broccoli sprouts
extract containing sulforaphane

(SFN)

28 days 17

sulforaphane levels in
plasma and skin, plasma
cytokines, Safety, tissue

proteomics

Detectable SFN in plasma,
cytokines decreased,

extracts tolerated up to
200 µmol, increased tumor

suppressors

[145]

Type 2 diabetes patients 81

3 groups (2 received 10 g/day (d)
broccoli sprout powder (BSP) and

5 g/d BSP and the third received the
placebo

4 weeks 72

Insulin concentration,
fasting serum glucose,
glucose: insulin ratio,
homeostasis model of

insulin resistance index

10 g/d BSP significantly
decreased serum insulin

concentration, and
improved insulin resistance

in patients

[146]

Low and intermediate
risk prostate cancer

patients
61

3 groups received each 300 mL of
different broccoli soup (rich in

glucoraphanin) weekly
12 months 48

Tissues
examination/prostate
pathology and RNA

sequencing analysis for
gene expression

Reduction of prostate
cancer progression. Soups
with high glucoraphanin

content caused suppression
in expression.

[147]

Patients with recurrent
prostate cancer 20 200 µmoles/day of sulforaphane rich

extract broccoli sprouts 20 weeks 16
Safety of doses, Prostate
specific antigen (PSA)%

levels

Treatment was safe,
exhibited anti-tumor
potential, majority of

patients didn’t get reduced
PSA levels

[148]

Asthmatic patients 51 100 µmoles/day of sulforaphane rich
broccoli sprouts extract 14 days 45

Pulmonary functions,
NAD(P)H quinone

dehydrogenase-1 gene
expression, safety

Enhanced
bronchoconstrictor effects,
increased gene expression

also enhanced
broncho-protection

[149]

Women with abnormal
mammograms 54

2 groups; group1: (2 pills,
3 times/day of 30 mg glucoraphanin),

group 2 placebo
2 to 8 weeks 48 Sulforaphane in blood and

urine, tissue biomarkers

Safe but not efficient to
produce the changes in

breast tissue tumor
biomarkers

[151]

Schizophrenia 10 3 tablets/30 mg of Sulforaphane per
day 8 weeks 7

Evaluation of Symptoms
using positive and

negative syndrome scale
and cognitive function

Sulforaphane potentially
improved cognitive

function
[95]
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Salt stress, in a concentration-dependent manner, is a potential inducer of producing these
health-promoting compounds. Sodium chloride treatment increases glucoraphasatin on radish
sprouts [161], and sulforaphane in broccoli sprouts [162]. Salt stress in combination with elevated carbon
dioxide increasing sulphur cellular partitioning and metabolism which affects the GSs-myrosinase
system [163]. Similarly, sulphur salts supplementation during the cultivation of vegetables increases
GSs content and their biological activities [68].

Exogenous application of phytohormones triggers/manipulates GSs, GSHPs, and their related
gene expression profiles. Among the phytohormones used include methyl jasmonic acid (MeJA) [164],
gibberellic acids (GA3) in combination with glucose [70] and jasmonic acid (JA) [165]. A 250 µM MeJA
spray treatment on Brassica napus var. pabularia seedlings [166] and B. oleracea var. green magic before
harvesting [164] induces GSs. As GSs content increase during MeJA treatment, there is a simultaneous
enhancement of biological activity [57,167–170]. The GSs content changes observed in plant may be
cultivar specific [171]. A combination of 5 µM GA3 and 3% glucose in Chinese kale sprouts increases
GSs content and enhances their biological activities [70]. Also, JA treatments enhance the accumulation
of aliphatic GSs, increase myrosinase activity and GSHP production [165].

Overexpression of genes involved in the breakdown of GSs defends plant against pathogens.
In A. thaliana, overexpression of myrosinase gene TGG1, affects the metabolism of GSs compounds
enhancing plant stomatal defense against Pseudomoas syringae bacteria [172].

The treatment of plants with trace/essential elements affects the GSs-myrosinase system.
Selenium treatment for instance, increases sulforaphane in broccoli cultivars sprouts, enhancing their
myrosinase activity [34] while in R. sativus an increment in glucoraphanin is observed [173]. In A. thaliana
and B. oleracea Var. italica, ammonium nutrition stimulates the accumulation of GSs and induces
myrosinase activity as well [174]. Managing plants using chemicals and light may increase GSs content,
for instance 6-benzylaminopurine [175] alone and in combination with 1-methyl-cyclopropene [176]
increases GSs in broccoli and green light emitting diode lights increase broccoli’s florets’ total
GSs content and sulforaphane [177]. Elsewhere, GSs in plants may accumulate through natural
occurrences, in response various stresses like yearly seasonal variations that cause increased
temperatures, water stress [168], larval/herbivore infestation [166,178,179], ozone fumigation [180],
and biotechnological transformations [172,181].

Dietary intake of GSs rich products is positively correlated to their health benefits and biological
activity. Their bioavailability can be enhanced by increasing the hydrolysis enzyme activity and/or
treating extracts in mild heat [182]. Continuous consumption of GSs rich foods is exogenously
treated with myrosinase [183–186] or intake of diverse GSs rich foods which increase the activity
of the GSs degradation enzyme in the gut results into the bioavailability of GSs/GSHPs [187].
The content of these compounds in prepared and processed food is essential and therefore, post-harvest
processing techniques, food processing, and treatment methods that affect the contents of GSs and the
biological activities should be carefully chosen. Pasteurization [92], high pressure [188,189] treatments
and freezing [190,191], thermal boiling [133,157,192], steaming [193], microwaving [46,194,195],
storage time [139], storage temperatures [196] affect to GSs contents. On the other hand, blanching is
considered to prevent loss of phytochemicals [102] in vegetables. Tables 3 and 4 summarize the
factors and treatments which affect the availability and activity of GSs/GSHPs in plant or diet and the
hydrolysis activity of myrosinase enzyme. Several substances that have been used in the elicitation of
GSs/GSHPs have shown not only to induce physiological changes but also stimulate various biological
activities, as illustrated.
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Table 3. Improving GSs/ GSHPs and bioactivity in plant.

Treatment/Factor Plant GSs Biological Activity Reference

Sodium chloride Radish sprouts
Broccoli sprouts

Total GSs, Glucoraphasatin
Sulforaphane

Antioxidant
activity

-
[161,162]

Salinity and carbon
dioxide B oleracea Indolic GSs, aliphatic GSs

respectively - [163]

Sulphur salt
supplementation

B. oleracea Var.
capitata, R. sativus

Total GSs, progoitrin,
glucoerucin, glucobrassicin,

glucohirsutin and 4-
methoxybrassicin

Antioxidant, anti-
proliferative [68]

MeJA B. napus, B.oleracea

gluconasturtiin,
glucobrassicin,

neoglucobrassicin,
glucoraphanin

Quinone reductase [164]

Broccoli florets
glucobrassicin,

neoglucobrassicin,
gluconasturtiin

Quinone reductase [169]

B. rapa ssp.
Chinensis
B. rapa L.

B. napus var.
pabularia

B. oleracea

1-methoxy-3-indolylmethyl
GSs

Indole GSs
Total GSs, sulforaphane

glucobrassicin,
neoglucobrassicin,

gluconasturtiin

Mutagenecity
-
-
-

[57,166,170,171]

MeJA, high
temperature, water

stress
Broccoli cultivars Total GSs Quinone reductase [168]

GA3 with glucose B. oleracea Indolic GSs Antioxidant [70]

JA B. oleracea var.
italica Glucoraphanin Not evaluated [165]

Selenium Broccoli sprouts
R. sativus

Sulforaphane
Glucoraphanin Not evaluated [34]

[173]
Nitrogen nutrition

(Ammonium)
A. thaliana and B.

oleracea Var. italica GSs Not evaluated [174]

Ozone Brassica oleracea var.
capitata f. alba Sinigrin Antioxidant [180]

6-benzylaminopurine B. oleracea Total GSs and sulforaphane Antioxidant [175,176]
Green LED light B. oleracea Total GSs [177]

Larval infestation
Delia radicum root

herbivory
D. radicum and

Delia floralis

B. napus var.
pabularia
B. rapa L.

B. rapa varieties

Indole GSs
Benzyl and indole GSs in roots
Aliphatic, indole and benzyl

GSs in roots of high GSs
varieties

[166,178,179]

BoTGG1 Gene A. thaliana GSs Bacterial pathogens
attack [172]

Table 4. Improving GSs/ GSHPs bioavailability and bioactivity.

Treatment Source Effects Biological Activity

Mild heat treatment B. rapa L. Myrosinase enzyme activity [182]
Continuous

consumption Broccoli Total ITCs in colon and
caecum levels of male mice

Quinone
oxidoreductase [187]

Exogenous myrosinase
treatment

Broccoli sprouts
Cooked broccoli
Mustard powder

Sulforaphane in diet
Sulforaphane in cooked

vegetables
Enzyme activity

Sulforaphane
Plasma levels

Urinary
sulforaphane levels

Antimicrobial

[183,184,186]

Powdered mustard seeds B. oleracea var.
italica

Sulforaphane in processed
vegetables - [185]
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4. Materials and Methods

Search Strategy and Selection Criteria

Peer-reviewed articles were searched using keywords in various scientific databases, including
PubMed, ResearchGate.net, Wiley Online Library, and Google Scholar, between March 2010 and
March 2020. The search terms used to obtain articles for this review were “glucosinolate” OR
“glucosinolate extract” OR “plant glucosinolate” OR “glucosinolate isolate” OR “pure glucosinolate”
OR “synthetic glucosinolate” OR “glucosinolate hydrolysis product” OR “Glucosinolate degradation
product” OR “mustard oil glucoside” OR “myrosinase end product” OR “isothiocyanate” OR “benzyl
glucosinolate” OR “indole glucosinolate ” combined with “profile” OR “availability” OR “variability”
AND “activity” OR “Bioactivity” OR “health benefits” OR “specific biological activities” AND
“improvement” OR “elicitor”. Data extraction included the specific glucosinolate/ glucosinolate
hydrolysis products, their sources, biological activities, mode of action, availability, strategies used
to increase their content availability and activity. Articles published in a non-English language,
before and/or after the set period, retracted from the databases, having self-reported outcomes,
and reviews and editorials, were excluded. The review focused on the peer-reviewed original studies
with a particular outcome of interest, depending on the study objective.

5. Conclusions

GSs/GSHPs offer a wide variety of health benefits, including disease prophylactic and therapeutic
effects. This review shows the usefulness of these compounds in preventing and reducing disease
progression in humans and animals, their biocidal, biofumigation capabilities in plants, and their
antimicrobial use in the food industry as food preservatives.

Although their composition and concentration vary in various crop species, organs, cultivars,
and at different stages of development, sometimes in response to both abiotic and biotic factors,
strategies to improve specific compounds have been successful, leading to improved crop varieties
with both nutritional and pharmacological benefits. Biological activity assays on GSs-rich extracts
exhibit a positive correlation between concentrations of GSs/GSHPs-related benefits in organisms.
Taking this into consideration, the bioavailability of these compounds should be well maintained in
their sources through choosing and having handling, preparative techniques, extraction methods that
maintain them.

This review also reveals the necessity to maintain GSs content as bioactive compounds, to explore
and improve GSs rich plant as a source of these natural compounds, which have potential as
active ingredients among synthetic and commercial products to maintain and promote health.
Considering that most research evaluating these natural compounds mainly focuses on the plant
of Brassicaceae family, there is furthermore a need to probe the compounds even more in vivo
studies, to understand their primary mechanism of actions and their molecular targets should also
be emphasized.
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