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abstract

PURPOSE Precision medicine requires an understanding of individual variability, which can only be acquired
from large data collections such as those supported by the Cancer Imaging Archive (TCIA). We have undertaken
a program to extend the types of data TCIA can support. This, in turn, will enable TCIA to play a key role in
precision medicine research by collecting and disseminating high-quality, state-of-the-art, quantitative imaging
data that meet the evolving needs of the cancer research community

METHODS Amodular technology platform is presented that would allow existing data resources, such as TCIA, to
evolve into a comprehensive data resource that meets the needs of users engaged in translational research for
imaging-based precision medicine. This Platform for Imaging in Precision Medicine (PRISM) helps streamline
the deployment and improve TCIA’s efficiency and sustainability. More importantly, its inherent modular ar-
chitecture facilitates a piecemeal adoption by other data repositories.

RESULTS PRISM includes services for managing radiology and pathology images and features and associated
clinical data. A semantic layer is being built to help users explore diverse collections and pool data sets to create
specialized cohorts. PRISM includes tools for image curation and de-identification. It includes image visual-
ization and feature exploration tools. The entire platform is distributed as a series of containerized microservices
with representational state transfer interfaces.

CONCLUSION PRISM is helping modernize, scale, and sustain the technology stack that powers TCIA. Re-
positories can take advantage of individual PRISM services such as de-identification and quality control. PRISM
is helping scale image informatics for cancer research at a time when the size, complexity, and demands to
integrate image data with other precision medicine data-intensive commons are mounting.
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INTRODUCTION

The Precision Medicine Initiative in Oncology is
envisioned to “encourage and support . . . new ap-
proaches for detecting, measuring, and analyzing
a wide range of biomedical information—including
molecular, genomic, cellular, clinical, behavioral, phys-
iological, and environmental parameters.”1(p794) Pre-
cision medicine requires the ability to classify patients
into specialized cohorts that differ in their suscep-
tibility to a particular disease, in the biology of the
disease, response to therapy,2 and so on. Imaging data
and, in particular, quantitative imaging features have
been identified as a critical source of information when
creating such cohorts for precision oncology. Radio-
mics and pathomics, where quantitative features are
extracted from radiology3-5 and digital pathology,6,7

provide valuable diagnostic and prognostic indica-
tors of cancer.8-13 Identifying such quantitative im-
aging phenotypes across scale through the use of

radiomics, deep learning, and so on also provides an
alternative approach to improve our understanding of
cancer biology.14,15 However, these methodologies of
leveraging quantitative imaging for clinical and basic
research require large collections of well-curated di-
verse data sets for reproducible development and
validation.

Although a growing number of cancer imaging and
precision medicine information resources are coming
on line,16-18 the Cancer Imaging Archive (TCIA) has
been the primary resource of the National Cancer
Institute (NCI) for acquiring, curating, managing, and
distributing images and related data to support cancer
research since its creation in 2011. TCIA radiology and
pathology images are collected from. 46,500 human
subjects as well as associated clinical data, image-
derived features, and annotations.19 TCIA also man-
ages a growing number of preclinical image collec-
tions, including patient-derived xenograft models. It is
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visited by approximately 20,000 users per month from
approximately 130 countries, exports . 1 PB of data per
year and has provided data to . 900 peer-reviewed
publications and graduate theses. It is the primary image
repository for several NCI programs,20-24 clinical trials,25

and various challenges.20,26-30

Even though TCIA has been highly successful, it has some
inherent challenges that limit its ability to support the
growing field of precision oncology and data sciences.
These challenges are not only inherent to TCIA but also
observed in institutional data repositories and other large
data-sharing activities. In response to these challenges, in
2017 we began work on the Platform for Imaging in Pre-
cision Medicine (PRISM). This article summarizes our
ongoing developments in PRISM, in particular: novel so-
lutions for managing radiomics and pathomics data sets,
managing and integrating clinical data sets, supporting
semantic search to ease data discovery, and evolving the
curation pipelines to improve throughput. Finally, although
TCIA remains the primary driver of PRISM, one of the
primary objectives of PRISM is also to modernize and
modularize the underlying technology stack so that indi-
vidual components can be adopted piecemeal.

CHALLENGES

The design and development of PRISM stem from the core
premise that well-curated data repositories, with semanti-
cally linked collections that permit researchers to integrate
information across scale, are essential to cancer imaging
and precision medicine research. Simply archiving images
is no longer sufficient in today’s precision medicine ap-
proach to cancer treatment. Researchers have identified
the need to analyze integrated data sets consisting of tightly
coupled radiology and pathology images with clinical
context and features extracted from the images. Through
a variety of discussions, TCIA feature requests, surveys,

and so on, the following challenges were identified. These
challenges have been instrumental in guiding and priori-
tizing the design and development of PRISM:

• Comprehensive data management and curation to in-
clude clinical data, a full range of imaging modalities,
pathology images, and radiomic and pathomic features.

• Better tools for curating high-quality data sets at large
scales.

• Integration across clinical, radiology, pathology images,
and derived feature sets to support queries involving
interrelationships between clinical course, response to
treatment, and the acquired images and computed
features.

• Semantic search that links images, clinical data, and
derived features and helps in data discovery and
interoperability.

• Tools to encourage data sharing and promote repro-
ducible research.

• Amodular architecture that allows piecemeal adoption of
capabilities as well as a near-seamless ability to move
between cloud and an on-premise deployment.

PRISM

PRISM is taking a systematic approach to address these
challenges via a new architectural framework that builds on
the principles of microservice architecture and a rich
ecosystem of application programming interfaces (APIs).
As illustrated in Figure 1, it targets a better modularization of
existing software and more efficient incorporation of new
services, extensibility, and scalability.

Applications in the top layer may use any of the underlying
services to accomplish a task. Multiple applications may
perform similar functions but targeted to different user
communities. All functions in the top two layers are
interconnected by APIs. In the PRISM architecture, we

CONTEXT

Key Objective
Open access information repositories advance cancer research by enabling the creation of new study cohorts and reuse of

data to address new research questions. The Cancer Image Archive has served as the National Cancer Institute’s open
image repository for the past decade, and through the Platform for Imaging in Precision Medicine project its technology
base and capabilities are being greatly enhanced.

Knowledge Generated
Advanced research into imaging phenotypes and quantitative image analyses in both radiology and pathology are generating

a new type of data: image-derived feature sets. The tools for semantic integration of clinical and quantitative image data
across scale we are developing will enable new research directions and support advanced machine learning algorithm
development.

Relevance
Quantitative imaging and omics data (eg, radiogenomics) are proving to be essential new tools to advance our understanding

of cancer mechanisms and improve our ability to diagnose and track response to cancer therapy. State-of-the-art, open-
access information repositories are essential to enable these techniques to produce actionable clinical knowledge.
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have chosen to enhance this framework with an API
Gateway,31 which can also deal with user authentication
for services. The middle layer includes server-side func-
tions supported by databases and Resource Description
Framework triple stores32 and accessed via the API gateway
(except landing pages, wiki, and service desk). Finally, the
bottom layer comprises the object stores and external
services. The PRISM architecture is explicitly designed to
manage data housed in an object store and accessed by
standard interfaces such as S3 and OpenStack Object
Storage.33

Image and Feature Management

The design and development of PRISM are driven to
support “image-omic studies,” a research design that in-
volves the integration of clinical data, imaging data,
quantitative features extracted from the images, and mo-
lecular data. Such studies enable a highly data- driven
approach to diagnosis and outcome prediction34 and are
a key component of precision medicine. Indeed, many
research groups have developed methods for linked char-
acterizations of imaging features, clinical outcome, and
omics signatures and studied their relevance in clinical
research.6-12,35-47

Locating and accessing data cohorts with the relevant in-
formation requires that besides imaging metadata, any
associated clinical and demographic data be indexed and
part of the data query process. Although it would be de-
sirable to index and search across imaging features, it
becomes difficult to harmonize features and make them
part of the query process. It is much easier to index the
availability of features and their provenance, so users can
make that information part of the query process. However,
imaging features must be part of a data cohort. To maintain
linkages across the various data types andmanage the data

across multiple collections, PRISM builds on the TCIA data
model, as shown in Figure 2.

Image data management. The PRISM data model organizes
data as collections. A collection typically includes studies
from several subjects (patients), and each subject has data
of multiple data types, such as radiology and pathology
images, radiomic and pathomic features, and clinical data.
Radiology image data are represented as Digital Imaging
and Communications in Medicine (DICOM) objects and
are managed using the open-source National Biomedical
Imaging Archive (NBIA) software package.48 NBIA func-
tions as an application layer that sits over a MySQL re-
lational database. PRISM is expanding the radiology data
management capabilities and adding support for the
new DICOMweb49 representational state transfer (REST or
RESTful) APIs. The use of such standardized APIs will allow
the adoption of off-the-shelf DICOM viewers and directly
query and retrieve DICOM data.

Unlike radiology, there are no common standards for pa-
thology image data. Therefore, PRISM includes PathDB,
a pathology data management system that manages and
organizes whole slide images and pathomic features and
the provenance of the features. Included with PathDB is
a web application called FeatureMap. FeatureMap allows
users to view and interact with feature maps. A feature map
is a composite representation in the form of a low-resolution
image of one or more classification probability maps;
probability maps are generated on whole-slide tissue im-
ages by deep learning methods.50

Access control for image data and associated nonimaging
data, such as features and any available clinical data,
are managed at the collection level. If a user has access
to a particular collection, then all data under that collec-
tion are also made available. User access information is
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FIG 1. A high-level Platform for Imaging in Precision Medicine (PRISM) architecture diagram illustrating the key
functional microservices, a representational state transfer interface, and an underlying object store where all raw
data are stored. A set of cross-cutting security services are available for user authentication and access control. API,
application programming interface; DOI, Digital Object Identifier.
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managed in a Lightweight Directory Access Protocol
server, though plans are underway to migrate the user
authentication and authorization information to an open-
source system called Keycloak51 that uses modern se-
curity standards.

Radiomics and pathomics features. FeatureBase is re-
sponsible for storing and indexing large volumes of imaging
features so that user-facing query and visualization appli-
cations can efficiently interact with them. Pathomic fea-
tures can include individual segmented nuclei/cells and
their morphology as well as features indicating patterns and
the likelihood of macro structures, such as lymphocyte
patterns, or characterization of tumoral and stromal re-
gions. Pathomics can become very large. For example,
segmenting nuclei in a data set of 1,000 images can easily
generate more than a billion segmented objects and tens
of billions of imaging features. To address the complexity
and scale of pathomics data, PRISM has adapted the
FeatureDB service of QuIP52 to implement FeatureBase.

Although FeatureBase was developed to support patho-
mics features, there is a significant overlap between the 2
data types and how researchers interact with features.
FeatureBase can index individual objects and store them as
polygons, whereas features computed for segmented ob-
jects are stored as feature vectors, spatial patterns, or
probability maps. A probability map partitions an image
into a uniform mesh of image patches. Each image patch
is assigned a probability value (by a machine/deep learn-
ing method), which indicates the probability of the image
patch belonging to a class (eg, grade 3 tumor). For
pathomic features, the various imaging features are
represented as GeoJSON-compliant JSON documents

that are then managed and indexed in a MongoDB data-
base. Unlike pathology, in radiology, the DICOM com-
munity has standards for representing segmentations
and probability maps, as well as structured represen-
tations of computed features. Therefore, instead of using
GeoJSON, we are adopting DICOM standards for repre-
senting radiomic features but indexing and managing them
in MongoDB. The use of a shared environment for radiomic
and pathomic features is expected to improve linkages
between radiomics and pathomics data for integrated ex-
ploration and analysis.

MAKING THE DATA FAIR

The stewardship of image data needs to adhere to the FAIR
(findable, accessible, interoperable, reusable) principles,53

to achieve its full potential as a scientific resource. This is
a key design tenet of PRISM. PRISM-based resources have
to be agile to meet the changing needs and technologies
that are in use by the community, such as the increasing
reliance on REST APIs and advanced computational sta-
tistics engines to support programmatic interoperability at
scale. In particular, data assets produced and consumed
by image analysis need to be available as components of an
“API ecosystem” as part of the overarching normalization of
Research Data Commons.54 The fluid nature of these new
software engineering environments comes with its own
challenges, such as the need for continuous API design
and distributed authorization.55

Findable: Semantic Integration and Search

Semantic integration in PRISM aims to make image col-
lections and associated nonimage data more findable,
accessible, interoperable, and reusable. Our approach
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FIG 2. Simplified data model illustrating the linkages between various data types and the organization of data as
collections. Subjects are identified consistently within a collection, and all data for that subject are properly linked.
Because data are de-identified before leaving the submitting site, it is possible for the same subject to appear in
multiple collections, with different subject identifiers. Because the collections have limited overlap, this probability is
considered to be low. DICOM, Digital Imaging and Communications in Medicine.
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goes beyond the specific need to make data findable by
also addressing the underlying challenge of integrating and
managing diverse nonimage data associated with image
collections. PRISM integrates and manages nonimage data
using ontology-based representation patterns that account
for explicit and implicit connections among the data across
the source data sets.56 Instances in the data are linked
to ontology classes that define and represent the entities
that the data are about (eg, anatomic locations, disease
types, diagnosis). The Open Biomedical Ontologies (OBO)
Foundry57 is a collection of axiomatically rich ontologies
adhering to common design principles and using a con-
sistent shared representational strategy based on Basic
Formal Ontology58 to achieve interoperability across subject
areas. OBO ontologies are available for reuse under
a permissive license (CC BY 4.0). PRISM uses many OBO
resources, including the Human Disease Ontology,59 the
Ontology for Biomedical Investigations,60 and the Uber
Anatomy Ontology (Uberon).61

Work is ongoing to develop ontology-driven semantic
search tools that make use of the representations un-
derlying our semantic integration efforts. Richer user-facing
tools for search and exploration of nonimage data in image
collections will allow queries across collections that com-
bine demographics, tumor location, disease types, and
other similar data. We have developed a proof-of-concept
query interface that allows users to identify records
matching criteria on the basis of fields in nonimage data
that were previously not queryable—for instance, finding
records across head and neck cancer collections for male
patients . 55 years of age with a positive HPV diagnosis
and a primary tumor in the oropharynx. Figure 3 illustrates

the ontology-driven semantic search strategy, in which
a simple search interface populated using ontologies and
linked instances generates SPARQL queries to search the
ontology-linked nonimage data (stored in a triple-store
database), as well as structured query language (SQL)
queries for image metadata stored in a relational database.
The results link directly to downloadable/viewable images
from matching records. ARIES (Arkansas Image Enterprise
System),62 a PRISM instance hosting neuroimaging data for
University of Arkansas for Medical Sciences researchers,
provides an early testbed to deploy and refine the PRISM
approach to semantic integration.

Accessible: Visualization and Data Exploration Apps

PRISM includes a variety of user-facing web applications
that allow researchers to explore a repository and create
and examine cohorts. Web applications enabled by the
modern browser have the advantage of being assembled in
the browser’s sandbox, which comes with significant ad-
vantages when operating cloud resources safely. Such web
applications, often described as progressive web apps, are
an ideal environment to engage PRISM’s APIs to drive the
various web viewers and data exploration tools.

PRISM now includes the Open Health Imaging Foun-
dation viewer63 for visualizing radiology objects and the
caMicroscope viewer50,52 for visualizing digital pathology
images. These viewers interface with the respective image
management systems (Fig 4). A high-speed bulk download
mechanism is available to help users reliably download
large amounts of radiology data. A similar mechanism to
support the download of pathology data is under devel-
opment. For interactive data exploration, a suite of task-
specific data portals, such as the Clinical Proteomic Tumor

Simple search interface SQL - image metadata Search results

Image viewer
SPARQL queries

Triple store - graph DB with
ontologies and instance data

4

2

3

1

FIG 3. Ontology-driven semantic search utilizing both structured query language (SQL) and SPARQL queries against
Platform for Imaging in Precision Medicine (PRISM) data management components. DB, database; SPARQL,
SPARQL Protocol and RDF query language.
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Analysis Consortium Pathology Portal,64 have been built
using a declarative visualization tool called DataScope.65

These provide the foundation for a series of generic data
exploration environments that are being built and will be
released in the coming months as part of the PRISM tech
stack. Finally, the accessibility to PRISM-managed data, via
APIs, has allowed third parties to develop integrations with
research frameworks such as BioConductor,66 third-party
applications such as 3DSlicer,67 and data science envi-
ronments such as Jupyter notebooks.68

Interoperable: Data Curation

Careful curation and strict quality-control processes have
been instrumental activities that have led to the success of
TCIA. PRISM builds on the TCIA experience and includes
tools that are capable of curating diverse data sets at large
scales. The modular design of PRISM allows us to dissem-
inate these capabilities and make them available as stand-
alone modules that can be used as drivers of individual
research imaging repositories. This includes dissemination
of knowledge to the wider research community in areas of
DICOM de-identification69 and open data.70

PRISM is adopting and modernizing the suite of ad-
vanced tools, procedures, and scalable workflows for semi-
automated data curation, quality control, and enhancement,
which have allowed the repository to continuously grow. Data
curation in PRISM uses the Posda tool suite71 to implement
its curation workflows. Posda is a set of curation workflow
tools developed to provide a mechanism to ensure the

scientific utility of data and to eliminate protected health
information as well as improving the scalability of curation
workflow. Posda supports a single curation pipeline dealing
with all object types defined by the DICOM standard (im-
ages, radiation therapy objects, structured reports, seg-
mentation, and so on). This pipeline performs integrity
checks automatically on a bulk basis, applies revisions to
data sets, tracks all changes in a revision tracker permitting
rollback if needed, and rapidly identifies potential duplicate
data sets on the basis of stored hash codes, without
identifying the individual.

PRISM is extending Posda with new workflows to support
pathology and pathomic features. Curation tools are being
interfaced with semantic integration and ontology toolkits as
new Posda pipelines and curation procedures. The over-
arching objective of curation is to ensure compliance
governing disclosure of protected health information and
ensure that data formats are reusable and have enough
semantic metadata so that researchers can unambiguously
find the data they need.

Reusable: Digital Object Identifiers

To incentivize data sharing and promote research re-
producibility, many publishers now encourage authors to
provide data citations. PRISM leverages the popular Dig-
ital Object Identifier (DOI) management system called
DataVerse72 for “publishing” user-generated results and
issuing and managing DOIs. DOIs are well-recognized
mechanisms to make the provided data unique, persistent,

Image and Feature Management System

B

C

A

A

B

(radiology) (radiomic, pathomic) (pathology)

FIG 4. The various data management systems interfacing with applications for (A) data exploration, (B) visualization,
and (C) bulk download. (A) DataScope graphical analytics data exploration tools and the PathDB query interface (an
equivalent interface exists for radiology images). (B) Left image is the Open Health Imaging Foundation image viewer
for radiology image visualization, and the right image is the caMicroscope pathology image viewer. (C) One of the
download mechanisms based on a shopping cart model. NBIA, National Biomedical Imaging Archive.
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and citable.73 DataVerse is being integrated with FeatureBase
to better support image-omic features and the various other
data-management systems. The metadata schema used by
DataVerse allows PRISM to include attributes that facilitate
versioning and others that capture the relationships between
the data set being registered and related publications/data sets.

OPERATING AT SCALE: THE PRISM TECH STACK

TCIA was originally implemented as a collection of mirrored
and load-balanced virtual machines (VMs) and shared bulk
storage for all of the VMs. This has allowed TCIA to main-
tain a 99.5% uptime. The main headache with using VMs
is that the collection of systems making up TCIA is diffi-
cult to deploy and requires intimate knowledge of the in-
terconnections between systems to keep TCIA updated
and running. More importantly, the tech stack is tightly
coupled, and this makes it difficult to distribute and adopt
piecemeal individual capabilities.

In PRISM, the tech stack is being modularized and driven
as a set of RESTful web services, including data services,
that interface with data stored on a modern object storage
system. These services are accessed via APIs that are
made available through a centralized API gateway. Addi-
tional core services, such as load balancers and cen-
tralized security services, are also made available. PRISM
will rely on Kubernetes,74 an orchestrated container man-
agement environment where the interconnections and in-
terfaces between containers making up subsystems, as
well as the interconnections between subsystems, are au-
tomatically configured using scripts. This simplifies deploy-
ment and maintenance of PRISM-based sites regardless
of whether the sites are hosted locally on dedicated hard-
ware or in virtualized or cloud-based environments.

All PRISM components developed by our team are released
open source under the BSD 3-Clause “New” or “Revised”
License or theApache2.0 License. Available examples include
the Posda curation toolkit,75 the QuIP Pathology and patho-
mics management services,76 and the caMicroscope pathol-
ogy viewer.77 Additional modules are similarly distributed.

Components such as the Kubernetes orchestration soft-
ware and API gateway78 are open-source tools developed
by others.

In conclusion, realizing the promise of precision medicine
in enabling better treatment strategies for cancer, a com-
plex multifactorial disease state, will largely depend on how
well we synthesize information across multiple scales from
the patient down to the molecular level. Today, treatment
strategies are often developed by gleaning information
through qualitative and subjective interpretations of images
combined with molecular characterizations and clinical
data. Although molecular characterizations inform prog-
nosis and targeted therapy decisions, image information is
a crucial component in the overall decision-making pro-
cess. Radiomics and pathomics studies provide highly
detailed, quantitative, and reproducible descriptions and
characterizations of tumor structure and function at
complementary biologic scales. The complexity and sizes of
primary and derived data sets in radiomics and pathomics
dictate scalable and extensible software infrastructures to
curate, manage, and share said data sets. PRISM provides
capabilities that allow researchers to address these issues
of data management and integration, thus allowing them to
quantitatively incorporate imaging data. These capabilities
will enable the cancer research community to synthesize
information across multiple scales, a key tenet of precision
medicine for cancer.

Consider a research team studying lung cancer. A PRISM-
based repository will allow the team to use semantic query
capabilities to pool data from multiple collections to create
the requisite cohort of, say, patients with lung adenocar-
cinoma, with linkages across various images, features,
feature provenance, and molecular characteristics. The
research team can manage, explore, and refine results from
their analyses within their collaboration. They will be able to
upload their analysis results and images to the community
PRISM instance if they would like to share them with the
research community at the completion of their study.
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