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Abstract

Previous research has demonstrated a lack of neuroplasticity induced by acute exercise in

low fit individuals, but the influence of exercise intensity is unclear. In the present study, we

assessed the effect of acute high-intensity (HI) or moderate-intensity (MOD) interval exer-

cise on neuroplasticity in individuals with low fitness, as determined by a peak oxygen

uptake (VO2peak) test (n = 19). Transcranial magnetic stimulation (TMS) was used to assess

corticospinal excitability via area under the motor evoked potential (MEP) recruitment curve

before and following training. Corticospinal excitability was unchanged after HI and MOD,

suggesting no effect of acute exercise on neuroplasticity as measured via TMS in sedentary,

young individuals. Repeated bouts of exercise, i.e., physical training, may be required to

induce short-term changes in corticospinal excitability in previously sedentary individuals.

Introduction

Transcranial magnetic stimulation (TMS) provides a unique opportunity to non-invasively

assess neuroplasticity within the motor system. Single-pulse TMS to the primary motor cortex

(M1) can be used to acquire motor-evoked potentials (MEPs), an indicator of corticospinal

excitability [1]. One goal of rehabilitation is to alter corticospinal excitability, and this can be

measured by changes in the MEP amplitude. Exercise is both cost-effective and can be com-

bined with other rehabilitation protocols to augment the effects of motor re-learning [2].

Numerous studies have used TMS to assess neuroplasticity within the motor system after an

acute session of aerobic exercise in healthy individuals (Table 1). These studies have reported

either no change [3–7] or an increase [6,8,9] in MEP amplitude following exercise. The dis-

crepancy may relate to either the fitness level of the participants tested, or the intensity of the

exercise performed. However, the discrepancy may also relate to the method by which fitness

is assessed. For example, the International Physical Activity Questionnaire (IPAQ) is com-

monly used to assesses physical activity and not fitness per se, whereas a peak oxygen uptake

(VO2peak) test provides an indication of cardiorespiratory fitness. Studies reporting an increase

in MEP amplitude after acute exercise were generally performed using highly fit individuals as

gauged by a VO2peak test [8,9] or in highly active individuals as gauged by the IPAQ [6]. In
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contrast, research performed in low fit, young adults generally found no change in corticosp-

inal excitability following exercise [3–6,10]. Therefore, it appears that fitness level may influ-

ence the mechanism by which exercise induces short-term neuroplasticity.

There is also evidence that the magnitude of neuroplastic change may be related to the

intensity of acute exercise. For example, higher-intensity exercise seemingly induces a greater

increase in brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-

1), markers of neuroplasticity [13], compared to lower-intensity exercise [14–19]. Further,

improvements in motor skill retention are greater following high- versus low-intensity acute

exercise [20]. Opie & Semmler [12] reported an increase in MEPs following both low-intensity

continuous and high-intensity interval cycling exercise whereas MacDonald et al. [9] demon-

strated increased MEP amplitude following moderate-intensity but not low-intensity continu-

ous cycling. In contrast, other studies have found no change in MEPs following lower versus

higher intensity cycling [3,5,11]. These conflicting results demonstrate the discrepancies in the

literature relating the effects of exercise intensity on corticospinal excitability. To date, no

study has demonstrated changes in MEPs in low fit individuals, providing the incentive to test

the effects of exercise intensity in this population. A direct comparison of high- versus moder-

ate-intensity exercise is necessary to examine this question and has yet to be performed. Low

fit individuals are at a higher risk for experiencing stroke [21]. Therefore, it is important to

identify exercise regimes that increase corticospinal excitability this population. Rehabilitation

can capitalize on the post-exercise increases in corticospinal excitability, as this can prime the

motor system for improvements in motor learning or re-learning [2,22].

In the present study, we tested whether an acute bout of high-intensity (HI) or moderate-

intensity (MOD) interval exercise altered corticospinal excitability in low fit individuals. Inter-

val exercise involves short bouts of relatively higher intensity exercise interspersed with brief

Table 1. Effects of acute cycling on upper limb neurophysiology.

Reference Population Exercise MEPs

Singh et al. [4] n = 12 (5 females, fitness/activity level not reported) MICT (65–70% age-predicted HRmax) ;�

Lulic et al. [6] n = 14 active (9 females, IPAQ: 7631 ± 6120) n = 14 sedentary (8

females, IPAQ: 1305 ± 773)

MICT (60% age-predicted HRmax) " in fit group only#

Smith et al. [5] n = 9 sedentary (4 females, IPAQ: 1784 ± 361) LICT (40% HRR) M-HICT (80% HRR) ; following both

interventions�#

Stavrinos & Coxon

[10]

n = 24 sedentary (10 females, IPAQ: 2770 ± 1602) HIIT (90% HRR, 50% HRR) ;�

McDonnell et al.

[3]

n = 25 sedentary (16 females, IPAQ: 1630 ± 906) LICT (55–65% age-predicted HRmax) MICT (75%

age-predicted HRmax)

; following both

interventions�

El-Sayes et al. [8] n = 34 fit (17 females, VO2peak: 46.4 ± 6.6 mL/kg/min) MICT (65–70% HRmax
) "#

MacDonald et al.

[9]

n = 15 sedentary-fit (8 females, VO2peak: 33.7 ± 7.0 mL/kg/min

[range of 22.1–48.2])

LICT (30% HRR) MICT (40–50% HRR) " after MICT only�

Neva et al. [7] n = 12 active (6 females, IPAQ: 5112 ± 686) MICT (65–70% VO2peak) ;�

Andrews et al. [11] n = 20 sedentary-active (11 females, IPAQ: 4681 ± 2287 MICT (50% HRR) HIIT (90% HRR, 50% HRR) ; following both

interventions#

Opie & Semmler

[12]

n = 13 (5 females, fitness/activity level not reported) LICT (50% HRR) HIIT (77% HRR, 25% HRR) " following both

interventions�

MEPs: motor-evoked potentials; IPAQ: International Physical Activity Questionnaire; VO2peak: cardiorespiratory fitness; MICT: moderate-intensity continuous

exercise; LICT: low-intensity continuous exercise; HICT: high-intensity continuous exercise; HIIT: high-intensity interval exercise; HRR: heart rate reserve; HRmax:

maximum heart rate; #: reductions, ;: no change; ": increases; N/A: not applicable.

�indicates results were obtained immediately post-exercise.
#indicates results were obtained 10-15min post-exercise.

https://doi.org/10.1371/journal.pone.0227581.t001
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recovery periods [23] and is a potent stimulus for increasing BDNF levels [24]. We chose to

use a moderate intensity interval exercise rather than the more commonly used continuous

exercise in order to isolate the effect of exercise intensity and remove effects due to the inter-

vallic structure of the exercise. Further, fluctuations in metabolic stress (i.e. an intermittent

pattern of exercise) have been shown to influence acute skeletal muscle responses to exercise,

independent of exercise intensity [25]. In addition, a recent editorial called for future research

to compare physiological responses to moderate-intensity interval exercise and high-intensity

interval exercise to better understand the influence of intensity independent of the exercise

stimulus pattern (i.e. intermittent) [26]. It was hypothesized that HI would increase corticosp-

inal excitability compared to MOD in low fit young adults, as higher intensity exercise evokes

increased BDNF [16–18,27] and IGF-1 [14] levels more so than moderate-intensity exercise.

Methods

Participants

Nineteen individuals (22.1 ± 2.6 years; 7 females) participated in three sessions, with a mini-

mum of 48 h between each session. Results from Lulic et al. [6] were used to provide an esti-

mate of the required sample size. The reported effect size for finding a change in MEPs was

Cohen’s d of 0.5, and assuming a two-tailed alpha of 0.05 and power of 0.8, this yielded a sam-

ple size of 22 participants. All individuals reported no history of neurological disease or illness

and were right-hand dominant as determined by the modified version of the Edinburgh Hand-

edness Scale [28]. All participants were of low cardiorespiratory fitness, as determined by a

VO2peak test, and classification in the “poor” category as defined by the Canadian Society for

Exercise Physiology (below 41.6 ml/kg/min for males and 35.0 ml/kg/min for females) [29].

Participants had an average VO2peak of 34.1 ± 4.0 ml/kg/min (coefficient of variation is 11.7%),

height of 171.5 ± 9.5 cm, and weight of 69.9 ± 12.6 kg. Participants were also screened for con-

traindications to TMS [30] and exercise, using a Physical Activity Readiness Questionnaire

[31]. Participants were asked to refrain from physical activity on the day of each session, and

from consuming alcohol or nicotine for 12 h prior to each session. Written informed consent

was obtained prior to participation. This study was approved by the McMaster Research Ethics

Board and conformed to the Declaration of Helsinki.

Experimental design

VO2peak was determined during the first session on an electronically braked cycle ergometer

(Lode Excalibur Sport V 2.0, Groningen, the Netherlands) and an on-line gas collection system

(Moxus modular oxygen uptake system, AEI Technologies, Pittsburg, PA, USA), as previously

described [32]. The VO2peak test began with a warm-up at 50 W for 2 minutes, then the work-

load was increased by 1 W every 2 seconds until volitional fatigue occurred or until partici-

pants could no longer cycle at 60 r.p.m. The VO2peak corresponded to the highest value

achieved over a 30 second period. To determine if a valid maximal effort was achieved during

the VO2peak test, participants were required to meet two out of four of the following criteria:

HRmax within 10 bpm of their predicted maximum, respiratory exchange ratio > 1.1, plateau,

and/or volitional exhaustion [33]. All participants exerted maximal effort according to these

criteria.

Sessions 2 and 3 followed the experimental timeline in Fig 1. Dependent measures were

obtained before exercise (T0) and beginning 10 minutes following the end of the exercise

intervention (T1). Post-intervention assessments were obtained 10 minutes post-exercise to

ensure that heart rate returned to resting levels before data was collected. The order of depen-

dent measure acquisition within each time block was pseudorandomized using the William
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Square Counterbalance. Ten participants (3 females, 7 males) underwent HI in session 2 and

MOD in session 3 (described below), while nine participants (4 females, 5 males) underwent

MOD followed by HI. Physical activity levels were assessed using the International Physical

Activity Questionnaire (IPAQ; [34]) on both experimental sessions to ensure similar physical

activity levels were maintained throughout the duration of the study.

Acute exercise interventions

HI and MOD were performed via lower limb cycling on an electronically braked cycle ergome-

ter (Ergo Race, Kettler, Germany). Both exercise protocols included a 3 minute warm up at 50

W, ten 1 minute bouts interspersed by 1 min recovery periods, and a 2 minute cool down (Fig

1). The intensity bouts was 80–100% of maximum heart rate (HRmax) for HI and 60–79%

HRmax for MOD [35] and participants were instructed to cycle between 80–100 r.p.m. The

recovery periods for both interventions involved light cycling at 50 W [36], and participants

were instructed to cycle at a self-selected pace. Heart rate was monitored using telemetry

(Polar A3, New York, USA) to obtain continuous data for the 25 minute exercise period and

the 10 minute rest period following the exercise. Ratings of perceived exertion (RPE) were

acquired at the end of each interval during the intervention using the 0–10 Borg scale [37].

Throughout the exercise, electromyography (EMG) activity of the right first dorsal inteross-

eous (FDI) muscle (EMGexercise) was recorded to ensure that the FDI muscle was inactive.

Electromyography recording

EMG was recorded from the right FDI using surface electrodes (9 mm diameter Ag-AgCl)

placed in a belly tendon montage, with a wet ground electrode placed around the forearm.

EMG signals were amplified (x1000), bandpass filtered between 20 Hz and 2.5 kHz (Intronix

Technologies Corporation Model 2024F with Signal Conditioning; Intronix Technologies

Corporation, Bolton, Canada), and digitized at 5 kHz (Power1401, Cambridge Electronic

Design, Cambridge, UK). EMG data were collected using Signal software version 6.02 (Cam-

bridge Electronic Design, Cambridge, UK).

Maximum M-wave (M-Max)

M-Max was used to normalize MEPs before and after exercise and defined as the maximum

response elicited from the right FDI following ulnar nerve stimulation at the wrist. Nerve

Fig 1. Experimental timeline. All dependent measures were acquired before (T0) and beginning ten minutes post-exercise (T1).

Dependent measures included maximum M-wave (M-Max), resting motor threshold (RMT), and motor evoked potential (MEP)

recruitment curves (RC). The exercise protocols included a 3 minute warm up at 50 W, ten 1 minute bouts interspersed with 1

minute of recovery, and a 2 minute cool down. The intensity of the bouts was 80–100% of maximum heart rate (HRmax) for HI 60–

79% HRmax for MOD. Recovery periods involved light cycling at 50 W.

https://doi.org/10.1371/journal.pone.0227581.g001
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stimulation was delivered using a bar electrode (cathode proximal) and a constant current

stimulator (Digitimer DS7AH) delivering 200 μs square wave pulses. Stimulation intensity was

increased by 1 mA at each trial until the M-wave ceased to increase in 3 consecutive trials. The

peak-to-peak amplitude of the M-wave (mV) was defined as M-Max.

Transcranial magnetic stimulation

Single and paired monophasic TMS pulses were delivered using a custom-built 50 mm diame-

ter figure-of-eight branding coil connected to a Magstim Bistim stimulator (Magstim, Whit-

land, UK). The TMS coil was positioned 45 degrees in relation to the parasagittal plane to

induce a posterior-to-anterior current in the cortex. The motor hotspot for the right FDI was

determined within the left motor cortex and defined as the location that elicited large and con-

sistent MEPs. The motor hotspot was digitally registered using Brainsight Neuronavigation

(Rogue Research, Canada). RMT was defined as the lowest intensity required to evoke a

MEP� 50 μV in 5 out of 10 consecutive trials in the relaxed FDI muscle [30]. MEP recruit-

ment curves were obtained from the right FDI muscle at rest by delivering seven TMS pulses

at 100–140% RMT in 10% increments in a randomized order (35 pulses total).

Data analyses

All MEP trials were assessed for background muscle activity. Trials were excluded if the EMG

activity immediately before the TMS stimulus artifact exceeded 50 μV [38]. The mean peak-to-

peak MEP amplitude at each intensity (100–140% RMT) of the recruitment curve was calcu-

lated by averaging the MEPs of the seven trials at each intensity. The Area Under the Recruit-

ment Curve (AURC) was obtained by calculating the trapezoidal integration of the recruitment

curve (AURC ¼ ððMEP100%þMEP110%Þ

2
þ
ðMEP110%þMEP120%Þ

2
þ
ðMEP120%þMEP130%Þ

2
þ
ðMEP130%þMEP140%Þ

2
Þ � 10,

where MEP100% is the MEP amplitude at 100% RMT, etc.). AURC was normalized to M-Max

(i.e. AURC/M-Max) at T0 and T1 to account for altered electrode conductance that may follow

exercise [39].

Group-level analyses included normality testing using the Shapiro-Wilk’s test. Outliers

were identified using IBM SPSS Software as data points 3 times above or below the interquar-

tile range. No outliers were observed in the data. AURC at T0 was assessed using a Wilcoxon

Signed-Rank to determine if AURC at T0 was different between HI and MOD. Since no base-

line difference was observed (i.e. T0 in HI was not different than T0 in MOD), AURC was

assessed using a repeated-measures ANOVA with factors INTERVENTION (2 levels: HI,

MOD) and TIME (2 levels: T0, T1). HI versus MOD effects on IPAQ, RPE, EMGexercise, and

heart rate were assessed using paired t-tests in cases were data was normally distributed or Wil-

coxon Signed-Rank tests in cases where data was not normally distributed. The significance

level was set to p� 0.05 and effect sizes were calculated using Hedge’s g.

Results

All participants were classified as low fit with a mean VO2peak of 34.1 ± 4.0 ml/kg/min (Fig 2).

Physical activity levels, assessed via IPAQ, did not differ between the two experimental sessions

(HI: 2302.1 ± 2172.3; MOD: 2245.7 ± 2062.5; Wilcoxon: p = 0.65). Exercise details are pre-

sented in Table 2. The average HR during the “on” and “off” intervals were significantly differ-

ent in both the HI (paired t-test, p< 0.001, g = 0.85) and MOD exercises (paired t-test,

p< 0.01, g = 0.41). Further, the %HRmax was significantly different between the “on” and “off”

intervals for both the HI (paired t-test, p< 0.001, g = 0.86) and MOD exercises (paired t-test,

p< 0.01, g = 0.38). The HI protocol was more intense than MOD as demonstrated by higher
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heart rate during bouts (HI: 87.1 ± 6.4% HRmax; MOD: 70.4± 7.0% HRmax, paired t-test,

p< 0.001, g = 2.44) and the greater RPE (HI: 5.5 ± 1.3; MOD: 3.5 ± 1.7, paired t-test,

p< 0.001, g = 1.13).

RMT was not different between T0 and T1 for HI (Wilcoxon: p = 0.74, g = 0.02) or MOD

(Wilcoxon: p = 0.27, g = 0.04). To assess corticospinal excitability, MEP recruitment curves

were obtained and the AURC was calculated. Neither HI or MOD induced a significant change

in AURC (Fig 3A; INTERVENTION(1,18) = 1.07, p = 0.31, η2 = 0.056, TIME(1,18) = 0.50,

p = 0.49, η2 = 0.027, INTERVENTION�TIME(1,18) = 0.01, p = 0.92, η2 = 0.001) and there were

no differences between HI and MOD at T0 (Wilcoxon: p = 0.42, g = 0.23). There was high

between-subject variability in AURC, as shown by the coefficient of variation (HI T0: 67.3%,

HI T1: 53.0%, MOD T0: 69.7%, MOD T1: 78.5%). Percent change in AUC (i.e. T0 to T1) for

HI and MOD were not different (Fig 3B; Wilcoxon: p = 0.66, g = 0.03). Individual data are

depicted in Fig 3C showing variable responses in AURC to HI and MOD.

Fig 2. Fitness distribution of participants. All participants were classified as sedentary with an average VO2peak of 34.1 ± 4.0 ml/kg/

min. Our inclusion criteria for ‘low fitness’ was to achieve a score of “poor” as defined by the Canadian Society for Exercise

Physiology (below 41.6 ml/kg/min for males and 35.0 ml/kg/min for females).

https://doi.org/10.1371/journal.pone.0227581.g002

Table 2. Exercise details.

HI MOD Bouts

“on” “off” “on” “off”

Heart rate (bpm) 161.5 ± 10.8 151.5 ± 12.3 130.5 ± 12.0 125.5 ± 12.0 p = 0.001�, g = 2.66 (Wilcoxon)

% HRmax 87.1 ± 6.4 81.6 ± 6.0 70.4 ± 7.0 67.7 ± 7.0 p < 0.001�, g = 2.44 (paired-t-test)

RPE (0–10) 5.5 ± 1.3 3.5 ± 1.9 3.5 ± 1.7 2.7 ± 1.9 p < 0.001�, g = 1.13 (paired t-test)

Power (W) 144.9 ± 28.8 50 78.5 ± 15.6 50 p < 0.001�, g = 4.26 (Wilcoxon)

% of Wpeak 68.6 ± 5.5% 24.3 ± 4.3% 37.3 ± 4.3% 24.3 ± 4.3% p < 0.001�, g = 6.18 (Wilcoxon)

EMGexercise 62.9 ± 7.6 62.6 ± 6.0 p = 0.55, g = 0.05 (Wilcoxon)

Data are means ± SD. N = 19. g: Hedge’s g effect size; HI: Hight-Intensity interval exercise; MOD: Moderate-Intensity interval exercise; bpm: beats per minute; RPE:

Ratings of Perceived Exertion; EMGexercise: EMG of right FDI during exercise intervention; “on”: on intervals; “off”: off intervals; Wpeak: peak power

� indicates significance.

https://doi.org/10.1371/journal.pone.0227581.t002
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Fig 3. MEP recruitment curves. Data are shown as mean ± standard error. A) HI and MOD did not induce a

significant change in AURC. B) Percent change in AURC (i.e. T0 to T1) was not different between HI and MOD.

C) Individual data showing variable responses in AURC to HI and MOD.

https://doi.org/10.1371/journal.pone.0227581.g003
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Discussion

This is the first study to directly compare the effect of acute HI or MOD on exercise-induced

neuroplasticity in low fit, young adults. The results suggest that, regardless of intensity, acute

exercise does not alter corticospinal excitability.

Our results show that corticospinal excitability was unaltered by either MOD or HI. This is

in line with previous work showing no change in corticospinal excitability following moderate-

[3–6] and high-intensity exercise [10] in low fit individuals. Increases in corticospinal excit-

ability following exercise have only been observed in high fit individuals after moderate inten-

sity exercise [6,8,9], although some studies have reported to change after moderate intensity

exercise [7,11]. Opie and Semmler (2019) also recently showed increased MEP amplitude after

both high-intensity interval training and low-intensity continuous exercise, although fitness of

the participant sample tested was not reported. There are physiological differences between

high and low fit groups that may explain these effects. Compared to low fit groups, high fit par-

ticipants have greater brain volume [40–42], cerebral blood flow [43–45], and muscle adapta-

tions which may reduce fatigue [46]. Further, high fit individuals show greater levels of IGF-1

[47] and are believed to have greater BDNF uptake into the central nervous system [17],

thereby promoting neuroplasticity.

Although we observed no change in corticospinal excitability following HI or MOD in low

fit, young adults, it is important to note that these protocols are capable of inducing functional

changes in this population. For example, in this population, high-intensity exercise has been

shown to improve motor skill consolidation [10], while moderate-intensity exercise reduces

reaction time [48], improves memory [49], motor skill acquisition [2,50], and improves

motor memory [51]. We note that our findings are limited to the effects of a single session of

exercise. It is possible that multiple sessions of MOD or HI may provide a stronger stimulus

capable of evoking neuroplasticity in the motor cortex that was not observed following a sin-

gle bout. However, we note that 6-weeks of high-intensity interval training in low fit individu-

als did not alter MEPs [52]. Further, it is important to note that these data were obtained

from healthy, low fit, young adults. Li et al. [22] recently showed that fast treadmill walking

increases MEPs from the lesioned hemisphere in those with chronic stroke. This suggests that

high-intensity exercise is a feasible method to increase motor output in stroke rehabilitation.

This is in line with research showing that exercise can be used to prime the motor system to

facilitate motor learning [53]. While the present study did not show an increase in motor out-

put following high- or moderate-intensity interval exercise, this highlights the importance for

research to determine exercise protocols that are capable of increasing motor output in this

population.

Although we intended to acquire data from 22 participants, only 19 were available to us.

However, a recent study from MacDonald et al. [9] observed an increase in MEPs after moder-

ate intensity cycling in a sample of 15 participants who ranged from sedentary to fit. Therefore,

it is unlikely that the lack of effect we observed is due to a limited sample size. One factor that

may contribute to the variability in AURC is biological sex. We did not recruit an equal ratio

of male to female participants to investigate the effect of biological sex on our data. However,

a recent study has reported no effect of biological sex on exercise-induced neuroplasticity.

Another factor that may introduce variability is genetic variation. Those with the BDNF val66-

met polymorphism show reduced BDNF secretion [54] that is linked to attenuated exercise-

induced neuroplasticity responses following high-intensity interval exercise [11] and motor

training [55]. We did not determine the distribution of participants presenting the val66met

polymorphism, and this is a limitation of the study.
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Conclusions

The present study investigated the effects of exercise intensity on neuroplasticity in young, low

fit adults. Corticospinal excitability was assessed before and after HI and MOD. Results

revealed that acute exercise did not alter corticospinal excitably, regardless of exercise inten-

sity. Therefore, we conclude that low fit adults do not demonstrate exercise-induced neuro-

plasticity as measured herein.
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