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Abstract
Most solid cancers are characterized by chromosomal instability (CIN)—an elevated 
rate of large‐scale chromosomal aberrations and ploidy changes. Chromosomal insta‐
bility may arise through mutations in a range of genomic integrity loci and is com‐
monly associated with fast disease progression, poor prognosis, and multidrug 
resistance. However, the evolutionary forces promoting CIN‐inducing alleles (hereaf‐
ter, CIN mutators) during carcinogenesis remain poorly understood. Here, we de‐
velop a stochastic, individual‐based model of indirect selection experienced by CIN 
mutators via genomic associations with fitness‐affecting mutations. Because muta‐
tions associated with CIN affect large swaths of the genome and have the potential 
to simultaneously comprise many individual loci, we show that indirect selection on 
CIN mutators is critically influenced by genome organization. In particular, we find 
strong support for a key role played by the spatial clustering of loci with either ben‐
eficial or deleterious mutational effects. Genomic clustering of selected loci allows 
CIN mutators to generate favorable chromosomal changes that facilitate their rapid 
expansion within a neoplasm and, in turn, accelerate carcinogenesis. We then exam‐
ine the distribution of oncogenic and tumor‐suppressing loci in the human genome 
and find both to be potentially more clustered along the chromosome than expected, 
leading us to speculate that human genome may be susceptible to CIN hitchhiking. 
More quantitative data on fitness effects of individual mutations will be necessary, 
though, to assess the true levels of clustering in the human genome and the effec‐
tiveness of indirect selection for CIN. Finally, we use our model to examine how 
therapeutic strategies that increase the deleterious burden of genetically unstable 
cells by raising either the rate of CIN or the cost of deleterious mutations affect CIN 
evolution. We find that both can inhibit CIN hitchhiking and delay carcinogenesis in 
some circumstances, yet, in line with earlier work, we find the latter to be consider‐
ably more effective.
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1  | INTRODUC TION

Genomic instability is a hallmark of carcinogenesis and may account 
for much of the extensive genetic heterogeneity of solid tumors 
(Bedard, Hansen, Ratain, & Siu, 2013; Burrell, McGranahan, Bartek, 
& Swanton, 2013; Marusyk, Almendro, & Polyak, 2012; Salk, Fox, & 
Loeb, 2010; Vogelstein et al., 2013). Genomic instability can be cate‐
gorized as nucleotide instability (NIN), microsatellite instability (MSI), 
or chromosomal instability (CIN). Nucleotide instability manifests 
as an elevated rate of single nucleotide alterations and arises from 
defects in the nucleotide and base excision repair pathways (Pikor, 
Thu, Vucic, & Lam, 2013). Microsatellite instability is associated with 
an elevated rate of nucleotide mismatches and short deletions and 
insertions (Boland & Goel, 2010; Thibodeau, Bren, & Schaid, 1993) 
and usually results from defects in the mismatch repair system (Vilar 
& Gruber, 2010). Most commonly, solid tumors exhibit chromosomal 
instability—an elevated rate of large chromosomal aberrations, 
such as somatic copy number alterations (SCNAs) and aneuploidies 
(Bakhoum & Compton, 2012; Hanahan & Weinberg, 2011; Heng et 
al., 2013). Unlike NIN or MSI, molecular mechanisms of CIN—es‐
pecially in sporadic cancers—remain poorly defined. Mutations in a 
number of different pathways have been implicated in CIN, including, 
among others, mitotic checkpoints (Cahill et al., 1998), chromatid co‐
hesion (Solomon et al., 2011), and double‐strand break repair (Lord 
& Ashworth, 2012). Chromosomal instability has been observed in 
most high mortality cancers including colon (Fearon, 2011; Lengauer, 
Kinzler, & Vogelstein, 1998), breast (Kwei, Kung, Salari, Holcomb, & 
Pollack, 2010), and lung (Masuda & Takahashi, 2002) and has been 
linked with poor prognosis (Carter, Eklund, Kohane, Harris, & Szallasi, 
2006; McGranahan, Burrell, Endesfelder, Novelli, & Swanton, 2012; 
Walther, Houlston, & Tomlinson, 2008) and multidrug resistance (Lee 
et al., 2011). Despite its clinical importance, the evolutionary forces 
favoring the emergence of CIN and its role in cancer progression 
have long been a subject of debate in the literature and remain poorly 
understood (Cahill, Kinzler, Vogelstein, & Lengauer, 1999; Datta, 
Gutteridge, Swanton, Maley, & Graham, 2013; Loeb, 2011; Michor, 
2005; Negrini, Gorgoulis, & Halazonetis, 2010; Nowak et al., 2002).

Current theories for the evolution of CIN, and, in fact, the evo‐
lution of genomic instability in general, usually invoke two distinct, 
yet not mutually exclusive, mechanisms of selection on instability‐
inducing mutator alleles. Chromosomal instability mutators may 
intrinsically raise a neoplastic cell’s chances of survival and repro‐
duction, that is, its Darwinian fitness. As a result, CIN mutators may 
be directly favored by natural selection. For example, it has been 
suggested that CIN may originate from directly beneficial oncogenic 
mutations that simultaneously induce genomic instability [the on‐
cogene‐induced DNA replication stress hypothesis] (Halazonetis, 
Gorgoulis, & Bartek, 2008; Negrini et al., 2010).

Alternatively, mutators may be favored not for their own intrin‐
sic effects on a cell’s fitness but through genetic association with 
intrinsically beneficial mutations elsewhere in the genome. In other 
words, CIN mutators may evolve via so‐called indirect selection by 
hitchhiking (Smith & Haigh, 1974) with selectively favored oncogenic 

and tumor‐suppressing mutations they generate (Loeb, 2001; 
Sprouffske, Merlo, Gerrish, Maley, & Sniegowski, 2012). Indirect se‐
lection on alleles that increase the genomic mutation rate (e.g., CIN‐
inducing mutators) is expected to be particularly effective in asexual 
populations, such as cancers, in which the genetic association be‐
tween mutators and beneficial mutations can never be disrupted 
by recombination. In fact, numerous theoretical and experimental 
studies in microbes have already shown that mutators may spread 
through non‐recombining populations by hitchhiking if beneficial 
mutations are readily available (reviewed in: Raynes & Sniegowski, 
2014; Sniegowski, Gerrish, Johnson, & Shaver, 2000).

Importantly, while genomic instability may increase the rate of ben‐
eficial mutations, it necessarily also increases the rate of deleterious mu‐
tations, which are generally more common (Cahill et al., 1999). However, 
alleles that elevate the point mutation rate (i.e., NIN‐ or MSI‐inducing 
mutators) generate DNA changes confined to only a few nucleotides. 
As a result, beneficial and deleterious mutations are likely introduced 
independently from each other by separate mutational events. Thus, 
while such mutators may be frequently lost to selection against the 
increased load of deleterious mutations, they may also occasionally 
expand within a neoplasm by hitchhiking with a rare beneficial muta‐
tion. In contrast, CIN mutators generate large‐scale SCNAs that are not 
confined to single loci. Instead, SCNAs may disrupt many neighboring 
loci, thereby simultaneously introducing both beneficial and deleterious 
changes. For example, a single SCNA may delete a tumor suppressor 
and a neighboring housekeeping gene. Genetic linkage between the 
relatively rare beneficial loci and the more common deleterious ones 
may drastically limit the availability of SCNAs with net beneficial effects 
(needed to facilitate CIN hitchhiking) and, thus, inhibit CIN evolution.

We have hypothesized that indirect selection could, neverthe‐
less, favor CIN given a spatial organization of the genome that min‐
imizes co‐occurrence of beneficial and deleterious loci in SCNAs. 
Specifically, we wanted to test the hypothesis that CIN would be 
favored by indirect selection in genomes in which either beneficial 
or deleterious loci were spatially clustered along the chromosome. 
To do so, we developed an individual‐based stochastic population 
model of clonal evolution in spatially organized genomes. In simula‐
tion, we investigated the effect of the spatial distribution of bene‐
ficial and deleterious loci on CIN evolution and cancer progression. 
We also tested the effectiveness of therapeutic strategies that aim 
to raise the deleterious costs of CIN in order to inhibit CIN evolution. 
Finally, we examined the spatial distributions of candidate human 
oncogene and tumor suppressor loci (identified in Davoli et al., 2013) 
for evidence of spatial clustering that could facilitate indirect selec‐
tion for CIN in real cancers.

2  | METHODS

2.1 | Stochastic simulations

To model the evolutionary progression of a neoplastic cell popu‐
lation to cancer, we developed and simulated an individual‐based 
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computational model of clonal evolution based on the earlier work 
of Beerenwinkel et al. (2007) and Datta et al. (2013). Like these 
earlier studies, we employed a Wright–Fisher model (Ewens, 2004), 
in which a population of neoplastic cells evolves in discrete, non‐
overlapping generations with the probability of each cell’s re‐
production being proportional to its relative fitness. As in earlier 
studies, cells in the model could acquire beneficial and deleterious 
fitness‐affecting mutations upon reproduction. Unlike these earlier 
studies, however, we also allowed for the evolution of CIN by add‐
ing SCNA‐type mutations (described below) and introducing CIN 
mutator alleles.

As in the work of Beerenwinkel et al. (2007) and Datta et al. 
(2013), simulations here start with a tumor population of initial 
size N0 = 106 cells and end when the tumor develops into a cancer. 
Following Datta et al. (2013), we defined cancer as a tumor in which 
10% of all cells have acquired at least 20 beneficial mutations.

The total size of the neoplastic population is constrained to grow 
exponentially at a rate proportional to the average fitness of the 
population. The size of the population at generation t + 1 is defined 
as Nt+1=Nt ⋅ (1+ w̄𝛽), where w̄ is the average fitness of the tumor 
population (see below) and β is a constant that governs the rate of 
population growth; as in Datta et al. (2013), we set β = 0.0016.

Neoplastic cells can acquire single‐locus mutations that either 
change fitness or induce CIN. Chromosomal instability‐inducing mu‐
tations result in a mutator phenotype which allows cells to generate 
SCNA mutations (described below). In order to explicitly explore the 
role of indirect selection and genetic hitchhiking in the evolution of 
CIN, CIN‐inducing mutations are assumed to have no intrinsic direct 
effect on a cell’s fitness. Furthermore, a single CIN mutator mutation 
is assumed to be sufficient for the mutator phenotype; additional 
CIN mutations have no effect on the mutation rate and so cannot 
affect the dynamics of the mutator lineage.

Among the fitness‐affecting mutations, beneficial mutations in‐
crease a cell’s fitness by sben while deleterious mutations decrease a 
cell’s fitness by sdel. Since sben and sdel are held constant, fitness of 
a cell with x beneficial mutations and y deleterious mutations can 
be computed as wxy=1+x ⋅sben−y ⋅sdel. Correspondingly, if fxy is the 
fraction of cells with x and y beneficial and deleterious mutations, 
respectively, in a tumor, then the average fitness of the tumor pop‐
ulation is w̄=

∑

x

∑

y

fxywxy. Unlike in the earlier work (Beerenwinkel 
et al., 2007; Datta et al., 2013), the effect of multiple mutations 
in our model is additive rather than multiplicative. Note that there 
is little difference between additive and multiplicative fitness for 
genotypes containing a small number of mutations. (Algebraically, 
(1+sben)

x(1−sdel)
y≈1+x ⋅sben−y ⋅sdel for small x and y.) However, for 

genotypes containing many mutations (like some CIN genotypes 
in our model), multiplicative fitness, which increases exponentially 
with the number of mutations, results in unrealistically high values.

The tumor population is composed of genetic lineages of neo‐
plastic cells defined by the counts of fitness‐affecting and CIN mu‐
tator mutations they carry. As per the Wright–Fisher model, the size 
of a lineage with x beneficial mutations and y deleterious mutations 
at generation t + 1 is drawn from a multinomial distribution with 

expectation given by Nt+1fxywxy∕w̄, where fxy is the frequency of the 
lineage in generation t, and wxy∕w̄ is its relative fitness.

Upon reproduction, every surviving lineage acquires a random 
number Mben of beneficial mutations, Mdel of deleterious mutations, 
and MCIN of mutator mutations drawn from a multinomial distribu‐
tion with expectations given by NiUben, NiUdel, and NiUCIN, respec‐
tively. Here, Ni is the size of the lineage, and Uben, Udel, and UCIN are 
the per cell rates of beneficial, deleterious, and CIN mutator muta‐
tions. Thus, as a result of mutation, a lineage with x beneficial and 
y deleterious mutations gives rise to a new lineage with Mben indi‐
viduals carrying x + 1 beneficial mutations, a new lineage with Mdel 
individuals carrying y + 1 deleterious mutations, and a third lineage 
with MCIN individuals carrying the CIN mutator allele.

Genetic lineages carrying CIN mutator mutations also acquire a 
Poisson‐distributed number of SCNAs, MSCNA with mean NiUSCNA, 
where USCNA is the per cell rate of SCNA production in CIN mutators. 
Each new SCNA mutation contains a randomly generated number of 
beneficial, BSCNA, and a randomly generated number of deleterious 
mutations, DSCNA. Each new SCNA mutation in a lineage with x ben‐
eficial and y deleterious mutations, thus, gives rise to a new lineage 
with a single individual carrying x + BSCNA beneficial and y + DSCNA 
deleterious mutations.

To model spatial clustering of fitness‐affecting loci, we use dis‐
crete distributions with a constant mean number of mutations (µ) 
but increasing variance (σ2) to draw the values of BSCNA and DSCNA for 
each new SCNA. Thus, we assume the infinite sites model for new 
SCNAs. Note that while the available supply of large chromosomal 
aberrations, such as aneuploidies, in real cancers is relatively small, 
shorter SCNAs will be plentiful. In fact, the supply of SCNAs con‐
taining about 100 loci (~0.5% of the human genome) like the ones in 
our model should be extremely high, justifying our assumption of the 
infinite sites model. Furthermore, consider that in our model a tumor 
samples and substitutes only an infinitesimal fraction of the available 
SCNA distribution, similar to real cancers that have been shown to 
contain a median number of only about 20 SCNAs (Beroukhim et 
al., 2010).

Because we assume the infinite sites model for new SCNAs, spa‐
tially organized genomes are not explicitly modeled, which allows 
increased computational efficiency. Instead, clustering of loci in 
the model is controlled by the variance in the distributions of BSCNA 
and DSCNA. As can be seen from Figure 1, distributions of BSCNA and 
DSCNA characterized by lower variance result in less clustering of fit‐
ness‐affecting loci across potential SCNAs with most SCNAs con‐
taining relatively similar numbers of loci. On the other hand, higher 
variance in either BSCNA or DSCNA distributions produces more clus‐
tering in fitness‐affecting loci across potential SCNAs with relatively 
few SCNAs containing large clusters of loci and many SCNAs with‐
out any.

The model was parameterized as follows. Based on earlier theo‐
retical studies of Beerenwinkel et al. (2007), Bozic et al. (2010), Datta 
et al. (2013), and McFarland, Korolev, Kryukov, Sunyaev, and Mirny 
(2013), we set Uben = 10‐5. Because estimates of the deleterious mu‐
tation rate and effects are limited, we set sdel = 0.01 and we assumed 
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that deleterious mutations outnumber the beneficial ones one hun‐
dred‐fold and set Udel = 10–3. Note that higher Udel or sdel would 
raise the deleterious load of SCNAs, reinforcing the importance of 
genomic clustering in promoting CIN; on the other hand, lower Udel 
or sdel would lessen the role of genomic clustering in facilitating CIN 
evolution. UCIN has no effect on the role of genomic clustering and 
was set at UCIN = 10‐5. We set USCNA = 0.01 SCNA mutations per cell 
per generation after Lengauer, Kinzler, and Vogelstein (1997) in lin‐
eages carrying CIN mutators. Finally, we set sben = 0.1, based on the 
estimates of beneficial effects of ~0.004 to ~0.6 obtained from ear‐
lier theoretical studies (Beerenwinkel et al., 2007; Bozic et al., 2010; 
McFarland, Mirny, & Korolev, 2014).

The mean number of mutations (µ) of all BSCNA distributions is 
set to 1 (i.e., on average a single beneficial mutation per SCNA), 
while µ of all DSCNA distributions is set to 100: The ratio of the two 
is thus the same as the ratio of Uben and Udel above. To generate 
BSCNA values, we use either a Dirac delta function with a single 
value (i.e., no clustering, µ = 1, σ2 = 0), a Poisson distribution (mini‐
mal clustering, µ = 1, σ2 = 1; Figure 1a), a geometric distribution (in‐
termediate clustering, µ = 1, σ2 = 2; Figure 1b), or a beta‐binomial 
distribution (high clustering, parameters of the beta distribution: 
n = 50, α = 0.1, β = 4.9; µ = 1, σ2 ≈ 8.98; Figure 1c). Similarly, DSCNA 
is randomly drawn from either a Dirac delta function (µ = 100, 
σ2 = 0), a Poisson distribution (µ = 100, σ2 = 100; Figure 1g), a geo‐
metric distribution (µ = 100, σ2 = 10,100; Figure 1i), or a beta‐bi‐
nomial distribution (parameters of the beta distribution: n = 500, 
α = 0.1, β = 0.4; µ = 100, σ2 ≈ 26,693; Figure 1j). Figure 1 also il‐
lustrates how changing the variance in the physical distribution of 
beneficial and deleterious loci affects the distribution of available 
SCNA fitness effects (calculated for an SCNA with B beneficial and 

D deleterious mutations as wSCNA=B ⋅sben−D ⋅sdel). It is important to 
note that while the expected number of loci in an SCNA is constant 
for all distributions (100 deleterious plus 1 beneficial), the realized 
number of loci in an SCNA is not constant unless both BSCNA and 
DSCNA are drawn from the Dirac delta function. Consequently, at 
higher variance in either BSCNA or DSCNA, some SCNAs may com‐
prise more loci than others. Moreover, while we model SCNAs of 
a given mean size (101 loci), it is certainly not the case that SCNAs 
of such size are representative of actual SCNAs in cancer (in fact, 
based on Beroukhim et al. (2010), it is likely that most focal SCNAs 
comprise fewer loci). We explore these assumptions in the simu‐
lation in Supporting Information Figures S1 and S2, respectively, 
and find that the effect of clustering on CIN evolution is robust to 
both of them.

Since all simulations end with cancer, to assess the influence 
of genomic clustering and CIN evolution on carcinogenesis, we 
calculate the mean waiting time required for a tumor to evolve 
into cancer. To assess whether CIN mutators are favored by indi‐
rect selection or not, we calculate the mean waiting time to CIN 
establishment. We assume that a mutator mutation becomes es‐
tablished if it reaches the frequency of 10% of the population. 
We then compare the probability of mutator establishment (PCIN

10%

) to the probability of a neutral mutation reaching the frequency 
of 10% (Pneutral

10%
).Pneutral

10%
 is calculated as the frequency (over 106 

runs of simulation) at which a neutral mutation appearing at the 
same rate as the mutator (UCIN) reaches 10% of the population in 
control simulations without CIN. Correspondingly, mutators are 
favored by indirect selection when PCIN

10%
> Pneutral

10%
 and disfavored 

when PCIN
10%

<Pneutral
10%

 (e.g., Raynes, Wylie, Sniegowski, & Weinreich, 
2018).

F I G U R E  1  Spatial clustering of fitness‐affecting loci in the model. Beneficial loci of effect sben = 0.1 were distributed across SCNAs 
using either Poisson (a; low clustering), geometric (b; intermediate clustering), or beta‐binomial (C; high clustering) distributions with µ = 1. 
Deleterious loci of effect sdel = 0.01 were distributed using the Dirac delta function with µ = 100. These distributions of beneficial loci 
produced the distributions of SCNA fitness effects shown in panels d, e, and f, respectively, calculated as wSCNA=B ⋅sben−D ⋅sdel (where B and 
D are the counts of beneficial and deleterious mutations, respectively). Likewise, deleterious mutations were distributed across SCNAs using 
Poisson (g; low clustering), geometric (i; intermediate clustering), or beta‐binomial (j; high clustering) distributions with µ = 100. Beneficial 
loci were distributed using the Dirac delta function with µ = 1. These distributions of deleterious loci produced the distributions of SCNA 
fitness effects shown in panels k, l, and m, respectively, calculated as above. See Methods for distribution details

(a)

(d)

(b)

(e)

(c)

(f)

(g)

(k)

(i)

(l)

(j)

(m)
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2.2 | Genomic analysis

To examine the spatial distribution of the carcinogenic mutations 
in the human genome, we focused on the candidate oncogene and 
tumor suppressor loci identified by the TUSON algorithm of Davoli 
et al. (2013). The TUSON algorithm predicts the likelihood that a 
given gene acts as a tumor suppressor or an oncogene based on 
its mutational status in sequenced tumors versus normal tissue. To 
identify the most reliable mutational parameters for prediction of 
tumor suppressors and oncogenes, Davoli et al. compiled a data set 
of ~1,200,000 mutations from more than 8,200 tumor samples of 
>20 different tumor types and developed 22 different parameters 
based on the different classes of mutations. The algorithm was 
tested on three different training sets of known tumor suppressors 
and oncogenes from the Cancer Gene Census (Futreal et al., 2004). 
In the original study, TUSON predictions were used to rank every 
gene in the genome based on its potential as a tumor suppressor or 
an oncogene (Davoli et al., 2013). For our analysis, we used the top 
300 tumor suppressors and 249 oncogenes identified by TUSON in 
the original study. One of the potential tumor suppressors (C3orf27) 
from the original top 250 list of Davoli et al. have since been shown 
to be a long intergenic non‐protein‐coding RNA and was excluded 
from the present analysis. As in Davoli et al., each potential tumor 
suppressor and oncogene was assigned a weight, hereafter wDavoli 
(to differentiate from fitness notation in our model), calculated as 
wDavoli=T− r where T is the total number of genes in the respective 
list (300 for suppressors and 249 for oncogenes) and r is the rank of 
that gene in the list. wDavoli can thus be thought as proxy for the po‐
tential fitness effect of a gene (most potent tumor suppressors and 
oncogenes have the highest wDavoli scores).

Then, also as in Davoli et al., we quantified the tumor‐suppres‐
sive and oncogenic potentials of human SCNAs based on the den‐
sity and potency (wDavoli) of tumor suppressors and oncogenes they 
encompass. For SCNAs the size of a chromosome or a chromosome 
arm we used Chrom and Charm scores provided in the study of 
Davoli et al. These scores were calculated as the sums of weights 
(wDavoli) of tumor suppressors or oncogenes contained in each chro‐
mosome or a chromosome arm divided by the total number of genes 
contained in that chromosome or arm. In other words, Chrom and 
Charm scores represent the potential beneficial effect that SCNAs 
comprising a given chromosome or chromosome arm may have on a 
neoplastic cell’s fitness.

For focal SCNAs shorter than a chromosome arm, we em‐
ployed a sliding window approach. For computational efficiency, 
we advanced the window from the beginning of each chromosome 
arm, 10,000 nucleotides at a time, up until the centromere or the 
end of the chromosome was reached. The score of each window 
was calculated as the sum of weights of oncogenes or tumors sup‐
pressors contained in the window divided by the total number of 
genes in the window. To quantify spatial clustering of oncogenes 
and tumor suppressors across chromosomes, chromosome arms, 
and focal SCNAs, we calculated the variance in the distributions of 
Chrom, Charm, and focal SCNA scores of each size.

To assess whether human oncogenes and tumor suppressors 
are clustered more than random, we used a permutation approach. 
To create each random permutation of tumor suppressors and on‐
cogenes, weight (wDavoli) values from 1 to 300 (for the tumor sup‐
pressor distribution) or from 1 to 249 (for the oncogene distribution) 
were assigned to 300 (or 249) human loci, randomly sampled from 
the genome. For each such random permutation, we calculated the 
Chrom, Charm, and focal SCNA scores as above. We then calcu‐
lated the variance in the distributions of Chrom, Charm, and focal 
SCNA scores for each permutation. A total of 10,000 permutations 
of weights were performed resulting in distributions of 10,000 vari‐
ance values for each size of potential SCNAs. Observed variance in 
the distribution of Chrom, Charm, and focal scores of all sizes for 
tumor suppressors and oncogenes was then compared to the null 
distributions obtained by permutation. Observed variances were 
considered to be significantly higher than expected if they were 
greater than 95% of variances sampled by permutation.

Ensemble database, release 84 (Yates et al., 2016), was used to 
obtain the genomic locations of all tumor‐suppressing and onco‐
genic genes identified by TUSON as well as the list of 20,837 human 
genes using the following two gene types to filter the results: pro‐
tein‐coding genes and TEC (potential protein‐coding genes that 
require experimental confirmation). Genes on the Y chromosome 
were excluded from the analysis. The UCSC human genome browser 
(Karolchik et al., 2004) (Assembly Dec 2013, GRCh/hg38) was used 
to obtain the lengths of all human chromosomes and the locations 
of centromeres.

3  | RESULTS

3.1 | Spatial clustering of fitness‐affecting loci 
across SCNAs promotes the evolution of CIN

Figure 2 illustrates the dynamics of tumor evolution in represent‐
ative runs of the simulation with and without CIN mutator loci in 
the genome (note the difference in x‐axis scale between panels). 
Consistent with earlier studies (Beerenwinkel et al., 2007; Datta 
et al., 2013), in the absence of CIN mutators, our model exhibits a 
“traveling wave” of clonal expansions and contractions (Figure 2a). 
Clones with increasing numbers of beneficial mutations successively 
expand and replace less adapted clones until a clone with 20 ben‐
eficial mutations appears and expands to 10% of the population (at 
which point the simulation halts). Importantly, each clonal expansion 
is driven by only a single additional beneficial mutation.

When CIN mutators are added to the genome, the dynamics of 
tumor evolution become strongly dependent on the spatial distribu‐
tion of beneficial and deleterious loci across potential SCNAs. Recall 
that in our model, CIN mutators themselves do not affect fitness and 
only experience indirect selection via genetic association with SCNA 
mutations they generate. When neither beneficial nor deleterious 
loci are spatially clustered, that is, distributed across SCNAs with no 
variance, all available SCNAs are deleterious to fitness (Figure 1). As 
a result, CIN mutators are strongly disfavored by indirect selection 
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and have virtually no effect on cancer progression, which remains 
indistinguishable from that in genomes without CIN (Figure 2b).

However, when either beneficial or deleterious loci are highly 
spatially clustered, that is, distributed with the highest possible vari‐
ance in the genome, cancer progression is significantly accelerated 
by CIN, albeit in different ways. In genomes with highly clustered 
beneficial loci, large numbers of beneficial mutations co‐occur 
in a few SCNAs, resulting in some extremely beneficial SCNAs 
(Figure 1c,f). Chromosomal instability mutators rapidly increase in 
frequency by acquiring such SCNAs, which, in turn, allows the tumor 
to very quickly evolve into cancer by substituting only a few SCNAs. 
For example, in Figure 2c, a single CIN mutator lineage acquires a 
cluster of 36 beneficial mutations, which then quickly expands to 
the threshold frequency of 10%. On the other hand, in genomes 
with highly clustered deleterious mutations (Figure 1j,m), large 
numbers of deleterious loci are sequestered into few very harm‐
ful SCNAs, which reduces the deleterious load of other available 
SCNAs. However, spatial clustering of deleterious mutations does 
not affect the number of beneficial mutations in individual SCNAs. 
As a result, CIN mutators are still favored by indirect selection but 
spread by hitchhiking with SCNAs containing fewer than the mean 
number of deleterious mutations and only a single beneficial muta‐
tion. Correspondingly, up to 20 SCNA mutations may substitute in 
the CIN mutator population before the tumor develops into cancer. 
Populations with clustered deleterious mutations exhibit very sim‐
ilar traveling wave dynamics as populations without CIN, although 

the progression is accelerated once CIN mutators become estab‐
lished (Figure 2d).

Figure 3 summarizes the influence of the spatial distribution 
of fitness‐affecting loci across SCNAs on CIN evolution and the 
speed of carcinogenesis. As expected from population dynamics 
seen in Figure 2, cancer progression is slowest in genomes with‐
out CIN mutators. Even in genomes with CIN mutators, cancer 
progression remains unaffected by CIN when both beneficial and 
deleterious loci are distributed with no or even low clustering 
across SCNAs. In these genomes, CIN mutators are strongly dis‐
favored by indirect selection (PCIN

10%
<Pneutral

10%
) and the waiting time 

to cancer is not significantly different than in genomes without 
CIN (Figure 3). However, as beneficial and deleterious loci become 
increasingly clustered, the probability of mutator establishment 
raises dramatically above that of a neutral mutation (PCIN

10%
>Pneutral

10%
). In 

other words, CIN mutators switch from being disfavored to being 
strongly favored by indirect selection. Correspondingly, as se‐
lected loci become increasingly clustered, cancer progression is 
accelerated, with the waiting time to cancer minimized in genomes 
with the most clustered loci.

Note that in genomes with clustered beneficial loci, the wait‐
ing time to CIN establishment is not significantly different from the 
waiting time to cancer. Here, CIN mutators become established by 
hitchhiking with SCNAs containing multiple beneficial mutation. As a 
result, an expanding mutator lineage may already carry enough ben‐
eficial mutations for the tumor to become cancerous as soon as it is 

F I G U R E  2  Clonal dynamics in representative simulated populations. Solid lines represent the size of clones with numbers of beneficial 
mutations indicated. Dashed lines in c and d represent the size of the mutator population within the tumor. (a) Without CIN mutators, 
(b) with CIN mutators; beneficial and deleterious mutations distributed with no clustering (using the Dirac delta function), (c) with CIN 
mutators; beneficial mutations distributed with high clustering (using the beta‐binomial distribution) and deleterious loci not clustered, (d) 
with CIN mutators; deleterious mutations distributed with high clustering (beta‐binomial) and beneficial loci not clustered. See Methods for 
distribution details. Model parameters: Uben = 10−5, Udel = 10−3, UCIN = 10−5 per cell per generation, sdel = 0.01, sben = 0.1, USCNA = 0.01 SCNA 
mutations per cell per generation. µ for all beneficial loci distributions = 1, µ for all deleterious loci distributions = 100

(a)

(b)

(c)
(d)
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established (as seen, for example, in Figure 1c) or can quickly acquire 
additional mutations in large clusters thereafter. On the other hand, 
in genomes with clustered deleterious loci, CIN mutators spread by 
hitchhiking with SCNAs generally containing only a single benefi‐
cial mutation. Consequently, even after CIN is established, multiple 
beneficial mutation must still sweep through the population before 
cancer evolves. Chromosomal instability mutators do, however, sig‐
nificantly accelerate cancer evolution by rapidly producing the nec‐
essary beneficial mutations (albeit still via SCNAs with only a single 
beneficial mutation each).

3.2 | Oncogenic and tumor‐suppressive loci in the 
human genome are distributed with relatively 
high variance

Simulations show that increased variance in either beneficial or del‐
eterious fitness effects of SCNAs, resulting from increased spatial 
clustering of fitness‐affecting mutations, can promote the evolution 
of CIN. To assess the variance in beneficial fitness effects of poten‐
tial SCNAs in the human genome, we examined the spatial distribu‐
tion of tumor suppressor and oncogene loci identified by the TUSON 
algorithm, developed by Davoli et al. (2013). Intriguingly, the work of 
Davoli et al. showed a significant relationship between the genomic 
distribution and potency of tumor suppressors and oncogenes (sum‐
marized as Chrom and Charm scores, see Methods) and patterns of 
chromosomal deletions and amplifications from sequenced tumors.

Using the methodology of their study, we evaluated variance 
in the distribution of oncogenic and tumor‐suppressive effects of 
potential human SCNAs of different size, including focal SCNAs 
shorter than a chromosome arm, as well as SCNAs the length of 
a chromosome arm and a whole chromosome (Methods). We ob‐
served that variance in the distributions of oncogenic (Figure 4a) and 

tumor‐suppressive (Figure 4b) effects was maximized for shorter 
SCNAs and decreased for longer SCNAs. We then evaluated the ob‐
served variance using a permutation approach (Methods). We found 
that the true variance in the distributions of both oncogenes and 
tumor suppressors was consistently higher than the mean variance 
of the permuted distributions across all of SCNA lengths examined 
and significantly higher (above the 95th percentile) for focal SCNAs 
shorter than ~106 nucleotides. Thus, it appears that beneficial on‐
cogenic and tumor‐suppressive effects are, in fact, more clustered 
in potential SCNAs than expected by chance, suggesting that the 
human genome could be organized in a way that could promote CIN 
hitchhiking.

3.3 | Spatial organization of the genome affects the 
success of CIN‐inhibiting therapies

In simulations, we showed that high variance in the spatial distri‐
bution of beneficial loci across SCNAs can promote the evolution 
of CIN, which in turn can significantly accelerate carcinogenesis. 
Furthermore, our analysis of the distribution of known oncogenes 
and tumor suppressors suggested that mutations beneficial to neo‐
plastic cells may be more clustered than random in the human ge‐
nome. In light of these observations, we investigated whether the 
evolution of CIN could be inhibited by either increasing the muta‐
tion rate of CIN mutators or by exacerbating the effects of individual 
deleterious loci. Both therapeutic strategies have been previously 
shown to successfully reduce tumor size by exploiting its deleteri‐
ous mutational load (McFarland et al., 2013). Correspondingly, we 
wanted to test whether these strategies could also inhibit CIN evolu‐
tion by increasing the deleterious load associated with CIN mutators.

Using our model, we assessed the effect of increasing both 
CIN rate (USCNA) and deleterious mutation effects (sdel) in genomes 

F I G U R E  3  Clustering of fitness‐affecting loci promotes CIN evolution and accelerates cancer development. Waiting time to CIN 
establishment (blue) and cancer (red) as a function of genomic organization. For genomes with clustered beneficial mutations (µ = 1), 
deleterious loci were distributed using the Dirac delta function (µ = 100). For genomes with clustered deleterious mutations (µ = 100), 
beneficial loci were distributed using the Dirac delta function (µ = 1). The rest of model parameters are as in Figure 2. Circles are mean 
values calculated over 100,000 runs of simulation (error bars represent ±95% CI, all times are represented with violin plots).PCIN
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characterized by high (beta‐binomially distributed, Figure 1c) and 
intermediate (geometrically distributed, Figure 1b) clustering of 
beneficial mutations. For the most clustered genomes (Figure 5a), 
increasing USCNA 10‐fold was completely ineffective at preventing 
either the establishment of CIN or rapid carcinogenesis. Increasing 
USCNA 100‐fold (to 1 SCNA per cell per generation) produced only 
a minor effect on the probability of establishment of CIN muta‐
tors, although both CIN establishment and carcinogenesis were 
somewhat delayed. Increasing USCNA was considerably more ef‐
fective at inhibiting its establishment and minimizing its role in 
carcinogenesis in genomes characterized by intermediate cluster‐
ing (Figure 5b). In this case, 100‐fold stronger CIN mutators were 
completely inhibited while the probability of establishment of 10‐
fold stronger mutators was reduced by ~30%. On the other hand, 
increasing sdel only five‐fold resulted in CIN mutators becoming 
strongly disfavored by selection in both genomes, while the av‐
erage waiting time to cancer increased to non‐CIN levels seen in 
Figure 3. Thus, while increasing CIN rate may successfully inhibit 
CIN evolution in some spatially clustered genomes, magnifying 
the effects of deleterious mutations appears to be a considerably 

more effective strategy. We speculate on the reasons for this dif‐
ference below.

4  | DISCUSSION

Here, we have developed a stochastic, individual‐based simulation 
model of clonal populations to examine the evolution of chromo‐
somal instability (CIN) via indirect selection on associated beneficial 
variation. The propensity of genomic mutators to spread in clonal 
populations via indirect selection has been extensively studied in 
evolutionary theory (Gerrish, Colato, Perelson, & Sniegowski, 2007; 
Kimura, 1967; Taddei et al., 1997) and demonstrated in experimen‐
tal microbial populations (Chao & Cox, 1983; Raynes & Sniegowski, 
2014). Indirect selection on mutators and their potential role in car‐
cinogenesis have also been investigated in computational and ana‐
lytic models of cancer progression (Beckman & Loeb, 2006; Datta 
et al., 2013). However, whether indirect selection could favor CIN 
mutators during carcinogenesis has remained unclear. The reason is 
that CIN mutators generate SCNAs large enough to simultaneously 

F I G U R E  4  Oncogenes and tumors suppressors are distributed with relatively high variance in the human genome. Variance in the 
distributions of (a) oncogenic and (b) tumor‐suppressive effects of the human SCNAs (circles). Violin plots in a and b: Variances of 10,000 
distributions generated by permutation (see Methods). Percentile ranks of observed variances in (c) oncogenic effect distributions and (d) 
tumor‐suppressive effect distributions among variances of permuted distributions (in panels a and b, respectively). Horizontal dashed line: 
95th percentile rank

1010

1010
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affect multiple loci. As deleterious mutations generally outnum‐
ber beneficial ones, SCNAs with an overall beneficial effect may 
be too scarce to allow for CIN hitchhiking. Thus, we hypothesized 
that indirect selection could only favor CIN in genomes in which 
fitness‐affecting loci were distributed in a way that minimized the 
co‐occurrence of beneficial and deleterious loci in potential SCNAs.

In agreement with our hypothesis, simulations showed that the 
genomic distribution of fitness‐affecting loci can strongly influence 
indirect selection on CIN‐inducing mutators. CIN mutators failed to 
establish or affect carcinogenesis when both beneficial and deleteri‐
ous loci were evenly distributed among potential SCNAs. However, 
spatial clustering of either the beneficial or the deleterious loci pro‐
moted rapid hitchhiking of CIN mutators and accelerated carcino‐
genesis. In genomes characterized by the higher clustering of the 
beneficial loci, CIN mutators succeeded by acquiring SCNAs con‐
taining multiple beneficial mutations, rather than acquiring such mu‐
tations individually (as previously seen in models of MSI mutators, 
(Datta et al., 2013)). On the other hand, in genomes characterized by 
the higher clustering of the deleterious loci, CIN mutators succeeded 
by acquiring SCNAs with few beneficial mutations but a reduced 
load of deleterious ones. Once established, CIN mutators in such ge‐
nomes were able to accelerate carcinogenesis by rapidly producing 
additional beneficial mutations via further SCNAs.

Importantly, in our model, we assume that all single‐locus mu‐
tations have a constant effect on a cell’s fitness. Therefore, the 
availability of beneficial SCNAs that could facilitate hitchhiking in 
simulation depended solely on the variance in the physical distri‐
bution of beneficial and deleterious loci. In a real tumor, however, 

different mutations will likely have different effects on a cell’s fit‐
ness. As a result, the distribution of beneficial effects of real SCNAs 
will be determined by both the physical distribution of individual loci 
and the fitness distribution of their mutational effects. For example, 
the overall beneficial effect of an SCNA could be set by a cluster of 
smaller effect beneficial mutations or, instead, a single mutation of 
large effect. Hitchhiking of CIN mutators should then depend on the 
variance in the distribution of beneficial effects of potential SCNAs 
being sufficiently high to allow for SCNAs whose beneficial effects 
could compensate for their deleterious load.

Unfortunately, while many potential oncogenic and tumor‐sup‐
pressing loci have been discovered, little is known about their fitness 
effects as these have been difficult to measure empirically. Thus, as 
a first approximation of the variance in fitness of potential human 
SCNAs, we used the TUSON algorithm by Davoli et al. (2013), which 
ranks human loci based on the likelihood of their mutations acting as 
either oncogenes or tumor suppressors. Like Davoli and colleagues, 
we assigned each gene a fitness effect corresponding to its rank, 
resulting in a discrete uniform distribution of fitness effects. Given 
this simple scheme, both potential oncogenes and tumor suppres‐
sors appeared to be more spatially clustered than expected, with 
shorter SCNAs up to ~106 nucleotides significantly so. Thus, the 
human genome may be organized in such a way that some of the 
available SCNAs have sufficiently large beneficial effects that over‐
come their deleterious load. If such SCNAs are available, our model 
suggests that alleles that induce CIN may be favored by indirect 
selection even in the absence of any direct benefit to a neoplastic 
cell’s fitness. Furthermore, the relatively high clustering of selected 

F I G U R E  5  Exacerbating deleterious mutations is more effective at inhibiting CIN than increasing the rate of CIN. (a) In genomes 
with high clustering of beneficial mutations (beta‐binomially distributed, µ = 1). (b) In genomes with intermediate clustering of beneficial 
mutations (geometrically distributed, µ = 1). In both panels: deleterious mutations distributed with no clustering (Dirac delta, µ = 100). 
Circles are mean values calculated over 100,000 runs of simulation (error bars represent ±95% CI, all times are shown with violin plots). 
Model parameters as in Figures 2 and 3 except where noted. See Methods for distribution details. PCIN
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loci across the shorter SCNAs suggests that shorter SCNAs are par‐
ticularly likely to be positively selected during carcinogenesis and 
should thus be overrepresented in genomically unstable tumors. 
Intriguingly, a comprehensive survey of focal SCNA length across 
multiple cancer types by Beroukhim et al. (2010) showed an inverse 
relationship between SCNA length and frequency, with a median 
length of 1.8 × 106 nucleotides (Beroukhim et al., 2010) Note that 
this observation is only consistent with the prediction that natural 
selection should favor shorter SCNAs and is not evidence for the 
role of indirect selection in CIN evolution.

It is surprising that the human genome may be organized in a 
way that promotes CIN evolution. After all, natural selection might 
have been expected to eliminate or at least reduce clustering of 
oncogenes and tumor suppressors to lower cancer susceptibility. 
However, it is important to note that such selection would have been 
only one of the determinants of genome organization. It is becoming 
well understood that eukaryotic genes are not randomly distributed 
across the genome. Related genes and gene families that have arisen 
through gene duplication may be expected to co‐localize (Demuth & 
Hahn, 2009). Genes with similar or coordinated expression are also 
frequently clustered (Hurst, Pál, & Lercher, 2004). Importantly, can‐
cer genes identified by Davoli et al. (2013) and used in our analysis 
appear to be significantly enriched for a handful of functions ex‐
pected to aid in carcinogenesis, such as cell‐cycle control and apop‐
tosis. In light of this observation, it seems plausible that many cancer 
genes may be related due to their common origin by duplication or 
share combined regulation and are more clustered than expected as 
a result. For example, two tumor suppressors frequently inactivated 
in colorectal cancer, SMAD2 and SMAD4 (Fearon, 2011), belong to 
the same protein family and are located within several megabases 
of each other. Moreover, we would speculate that the evolution of 
reduced genomic clustering may be less likely than the evolution 
of other, perhaps more accessible, mechanisms to suppress cancer 
(such as additional tumor suppressor genes). As a result, genomic 
clustering of cancer genes may have persisted despite its potential 
role in CIN evolution and carcinogenesis.

Quantifying the true variance in fitness effects of potential 
human SCNAs requires precise fitness measurements of mutations 
beneficial to a neoplastic cell’s fitness. Theoretical studies have 
produced estimates of mean effects of such mutations from ~0.4% 
to ~60% (Beerenwinkel et al., 2007; Bozic et al., 2010; McFarland 
et al., 2014). Vermeulen et al. (2013) were also able to empirically 
measure the selective effects of three mutations in p53, APC, and 
Kras in cells of a mouse intestine. Fitness contributions of muta‐
tions in most of the known oncogenic and tumor‐suppressive loci 
are yet to be estimated empirically. By considering the distribution 
of all known driver mutations discovered in different cancer types, 
we also have implicitly assumed such mutations would be equally 
beneficial in all cancers. However, the fitness contribution of a mu‐
tation in a particular locus should depend greatly on the selective 
environment and the potential interactions with other mutations 
present in the genome and will thus likely differ between cancer 
types. A more rigorous test of the susceptibility of the genome 

to CIN hitchhiking would correlate the distribution of beneficial 
mutations, given their actual fitness contributions in a particular 
cancer, with the rate of CIN in that cancer. The necessary data are, 
however, currently unavailable.

Understanding when and how CIN evolves by indirect selection 
and the potential role of genomic organization in CIN evolution can 
have important practical implications. While the necessity of CIN for 
cancer is debatable, our simulations show that once it evolves, CIN 
can rapidly produce beneficial variation and accelerate carcinogene‐
sis. There is also some evidence that CIN may evolve early in cancer 
progression (Olaharski et al., 2006; Rajagopalan et al., 2004; Shih 
et al., 2001; Tonini, 2017). Thus, a potential therapy to prevent CIN 
evolution in the first place may be able to severely inhibit cancer 
development. Building on the earlier work of McFarland et al. (2013), 
we also used our model to examine whether increasing the rate of 
CIN or the cost of deleterious mutations could prevent evolution of 
CIN. Both therapeutic strategies aim to increase the deleterious mu‐
tational load and may theoretically be expected to inhibit mutator 
evolution. Intriguingly, we discovered that in genomes characterized 
by high variance in the distribution of beneficial mutations, increas‐
ing the deleterious effects of individual mutations was considerably 
more effective than increasing the rate of CIN. The disparity in the 
effectiveness of the two strategies is likely due to the mechanics 
of CIN hitchhiking in these genomes. Stronger CIN mutators can 
still produce the rare but very beneficial SCNAs available in these 
genomes, which allows them to rapidly spread despite the associ‐
ated deleterious load. Correspondingly, in genomes characterized 
by lower variance, stronger CIN mutators become less successful. 
On the other hand, exacerbating the cost of deleterious mutations 
dramatically decreases the fitness effect of all available SCNAs, am‐
plifying the deleterious load associated with any increase in the rate 
of CIN and effectively inhibiting CIN mutators.

In the study of McFarland et al. (2013), both increasing the over‐
all mutation rate of a tumor and magnifying the effects of deleteri‐
ous mutations successfully led to cancer regression. In their model, 
both strategies work by strengthening selection against deleteri‐
ous mutations accumulated by neoplastic populations during car‐
cinogenesis. However, magnifying the deleterious effects of these 
mutations proved to be a more effective therapy in simulation than 
increasing the mutation rate. Our results agree that exacerbating 
deleterious effects could also be a more effective strategy to pre‐
vent CIN evolution and slow carcinogenesis, assuming the poten‐
tially high clustering of carcinogenic beneficial mutations in the 
human genome. In the clinic, exacerbating deleterious mutations 
could be potentially achieved, as suggested by McFarland et al., by 
targeting cellular mechanisms that act to ameliorate their effects in 
newly made proteins; examples of such mechanisms include chap‐
erones that may help proteins destabilized by deleterious mutations 
maintain activity (Karras et al., 2017; Rutherford & Lindquist, 1998) 
and proteosomes that degrade such proteins (Crawford, Walker, & 
Irvine, 2011).

In summary, extending earlier computational models of cancer 
progression, we have developed a new model incorporating both 
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SCNA mutations and CIN‐inducing mutators to investigate the role 
of indirect selection in CIN evolution. Our model predicts that CIN 
mutators are strongly favored by indirect selection in genomes in 
which mutations that affect neoplastic fitness are clustered within 
potential SCNAs. Interestingly, preliminary examination of the dis‐
tribution of human oncogenes and tumor suppressors suggests 
that human genomes may, indeed, be organized in such a way as 
to be susceptible to CIN hitchhiking via indirect selection, although 
more data on actual fitness contributions of these mutations are 
needed. Understanding whether CIN evolves by hitchhiking and the 
role that genome organization plays in CIN evolution may help in 
future therapeutic efforts aimed at selecting against CIN to inhibit 
carcinogenesis.
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