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Abstract
Most	solid	cancers	are	characterized	by	chromosomal	instability	(CIN)—an	elevated	
rate	of	large‐scale	chromosomal	aberrations	and	ploidy	changes.	Chromosomal	insta‐
bility	may	arise	through	mutations	in	a	range	of	genomic	integrity	 loci	and	is	com‐
monly	 associated	 with	 fast	 disease	 progression,	 poor	 prognosis,	 and	 multidrug	
resistance.	However,	the	evolutionary	forces	promoting	CIN‐inducing	alleles	(hereaf‐
ter,	CIN	mutators)	 during	 carcinogenesis	 remain	 poorly	 understood.	Here,	we	de‐
velop	a	stochastic,	individual‐based	model	of	indirect	selection	experienced	by	CIN	
mutators	via	genomic	associations	with	fitness‐affecting	mutations.	Because	muta‐
tions	associated	with	CIN	affect	large	swaths	of	the	genome	and	have	the	potential	
to	simultaneously	comprise	many	individual	loci,	we	show	that	indirect	selection	on	
CIN	mutators	is	critically	 influenced	by	genome	organization.	In	particular,	we	find	
strong	support	for	a	key	role	played	by	the	spatial	clustering	of	loci	with	either	ben‐
eficial	or	deleterious	mutational	effects.	Genomic	clustering	of	selected	loci	allows	
CIN	mutators	to	generate	favorable	chromosomal	changes	that	facilitate	their	rapid	
expansion	within	a	neoplasm	and,	in	turn,	accelerate	carcinogenesis.	We	then	exam‐
ine	the	distribution	of	oncogenic	and	tumor‐suppressing	loci	in	the	human	genome	
and	find	both	to	be	potentially	more	clustered	along	the	chromosome	than	expected,	
leading	us	to	speculate	that	human	genome	may	be	susceptible	to	CIN	hitchhiking.	
More	quantitative	data	on	fitness	effects	of	individual	mutations	will	be	necessary,	
though,	to	assess	the	true	levels	of	clustering	in	the	human	genome	and	the	effec‐
tiveness	 of	 indirect	 selection	 for	 CIN.	 Finally,	we	 use	 our	model	 to	 examine	 how	
therapeutic	strategies	that	 increase	the	deleterious	burden	of	genetically	unstable	
cells	by	raising	either	the	rate	of	CIN	or	the	cost	of	deleterious	mutations	affect	CIN	
evolution.	We	find	that	both	can	inhibit	CIN	hitchhiking	and	delay	carcinogenesis	in	
some	circumstances,	yet,	in	line	with	earlier	work,	we	find	the	latter	to	be	consider‐
ably	more	effective.
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1  | INTRODUC TION

Genomic	instability	is	a	hallmark	of	carcinogenesis	and	may	account	
for	 much	 of	 the	 extensive	 genetic	 heterogeneity	 of	 solid	 tumors	
(Bedard,	Hansen,	Ratain,	&	Siu,	2013;	Burrell,	McGranahan,	Bartek,	
&	Swanton,	2013;	Marusyk,	Almendro,	&	Polyak,	2012;	Salk,	Fox,	&	
Loeb,	2010;	Vogelstein	et	al.,	2013).	Genomic	instability	can	be	cate‐
gorized	as	nucleotide	instability	(NIN),	microsatellite	instability	(MSI),	
or	 chromosomal	 instability	 (CIN).	 Nucleotide	 instability	 manifests	
as	an	elevated	rate	of	single	nucleotide	alterations	and	arises	from	
defects	 in	the	nucleotide	and	base	excision	repair	pathways	 (Pikor,	
Thu,	Vucic,	&	Lam,	2013).	Microsatellite	instability	is	associated	with	
an	elevated	rate	of	nucleotide	mismatches	and	short	deletions	and	
insertions	(Boland	&	Goel,	2010;	Thibodeau,	Bren,	&	Schaid,	1993)	
and	usually	results	from	defects	in	the	mismatch	repair	system	(Vilar	
&	Gruber,	2010).	Most	commonly,	solid	tumors	exhibit	chromosomal	
instability—an	 elevated	 rate	 of	 large	 chromosomal	 aberrations,	
such	as	somatic	copy	number	alterations	(SCNAs)	and	aneuploidies	
(Bakhoum	&	Compton,	2012;	Hanahan	&	Weinberg,	2011;	Heng	et	
al.,	 2013).	 Unlike	 NIN	 or	 MSI,	 molecular	 mechanisms	 of	 CIN—es‐
pecially	 in	sporadic	cancers—remain	poorly	defined.	Mutations	in	a	
number	of	different	pathways	have	been	implicated	in	CIN,	including,	
among	others,	mitotic	checkpoints	(Cahill	et	al.,	1998),	chromatid	co‐
hesion	(Solomon	et	al.,	2011),	and	double‐strand	break	repair	(Lord	
&	Ashworth,	2012).	Chromosomal	 instability	has	been	observed	 in	
most	high	mortality	cancers	including	colon	(Fearon,	2011;	Lengauer,	
Kinzler,	&	Vogelstein,	1998),	breast	(Kwei,	Kung,	Salari,	Holcomb,	&	
Pollack,	2010),	and	lung	(Masuda	&	Takahashi,	2002)	and	has	been	
linked	with	poor	prognosis	(Carter,	Eklund,	Kohane,	Harris,	&	Szallasi,	
2006;	McGranahan,	Burrell,	Endesfelder,	Novelli,	&	Swanton,	2012;	
Walther,	Houlston,	&	Tomlinson,	2008)	and	multidrug	resistance	(Lee	
et	al.,	2011).	Despite	its	clinical	importance,	the	evolutionary	forces	
favoring	 the	 emergence	 of	 CIN	 and	 its	 role	 in	 cancer	 progression	
have	long	been	a	subject	of	debate	in	the	literature	and	remain	poorly	
understood	 (Cahill,	 Kinzler,	 Vogelstein,	 &	 Lengauer,	 1999;	 Datta,	
Gutteridge,	Swanton,	Maley,	&	Graham,	2013;	Loeb,	2011;	Michor,	
2005;	Negrini,	Gorgoulis,	&	Halazonetis,	2010;	Nowak	et	al.,	2002).

Current	theories	for	the	evolution	of	CIN,	and,	in	fact,	the	evo‐
lution	of	genomic	instability	in	general,	usually	invoke	two	distinct,	
yet	not	mutually	exclusive,	mechanisms	of	selection	on	 instability‐
inducing	 mutator	 alleles.	 Chromosomal	 instability	 mutators	 may	
intrinsically	 raise	a	neoplastic	 cell’s	 chances	of	 survival	 and	 repro‐
duction,	that	is,	its	Darwinian	fitness.	As	a	result,	CIN	mutators	may	
be	 directly	 favored	 by	 natural	 selection.	 For	 example,	 it	 has	 been	
suggested	that	CIN	may	originate	from	directly	beneficial	oncogenic	
mutations	 that	 simultaneously	 induce	 genomic	 instability	 [the	 on‐
cogene‐induced	 DNA	 replication	 stress	 hypothesis]	 (Halazonetis,	
Gorgoulis,	&	Bartek,	2008;	Negrini	et	al.,	2010).

Alternatively,	mutators	may	be	favored	not	for	their	own	intrin‐
sic	 effects	on	 a	 cell’s	 fitness	but	 through	genetic	 association	with	
intrinsically	beneficial	mutations	elsewhere	in	the	genome.	In	other	
words,	CIN	mutators	may	evolve	via	so‐called	indirect	selection	by	
hitchhiking	(Smith	&	Haigh,	1974)	with	selectively	favored	oncogenic	

and	 tumor‐suppressing	 mutations	 they	 generate	 (Loeb,	 2001;	
Sprouffske,	Merlo,	Gerrish,	Maley,	&	Sniegowski,	2012).	Indirect	se‐
lection	on	alleles	that	increase	the	genomic	mutation	rate	(e.g.,	CIN‐
inducing	mutators)	is	expected	to	be	particularly	effective	in	asexual	
populations,	 such	as	 cancers,	 in	which	 the	genetic	 association	be‐
tween	mutators	 and	 beneficial	 mutations	 can	 never	 be	 disrupted	
by	 recombination.	 In	 fact,	 numerous	 theoretical	 and	 experimental	
studies	 in	microbes	have	already	shown	that	mutators	may	spread	
through	 non‐recombining	 populations	 by	 hitchhiking	 if	 beneficial	
mutations	are	readily	available	 (reviewed	 in:	Raynes	&	Sniegowski,	
2014;	Sniegowski,	Gerrish,	Johnson,	&	Shaver,	2000).

Importantly,	while	genomic	instability	may	increase	the	rate	of	ben‐
eficial	mutations,	it	necessarily	also	increases	the	rate	of	deleterious	mu‐
tations,	which	are	generally	more	common	(Cahill	et	al.,	1999).	However,	
alleles	that	elevate	the	point	mutation	rate	(i.e.,	NIN‐	or	MSI‐inducing	
mutators)	generate	DNA	changes	confined	to	only	a	few	nucleotides.	
As	a	result,	beneficial	and	deleterious	mutations	are	likely	introduced	
independently	 from	each	other	by	separate	mutational	events.	Thus,	
while	 such	mutators	may	 be	 frequently	 lost	 to	 selection	 against	 the	
increased	 load	 of	 deleterious	 mutations,	 they	 may	 also	 occasionally	
expand	within	a	neoplasm	by	hitchhiking	with	a	rare	beneficial	muta‐
tion.	In	contrast,	CIN	mutators	generate	large‐scale	SCNAs	that	are	not	
confined	to	single	loci.	Instead,	SCNAs	may	disrupt	many	neighboring	
loci,	thereby	simultaneously	introducing	both	beneficial	and	deleterious	
changes.	For	example,	a	single	SCNA	may	delete	a	tumor	suppressor	
and	 a	 neighboring	 housekeeping	 gene.	Genetic	 linkage	 between	 the	
relatively	rare	beneficial	 loci	and	the	more	common	deleterious	ones	
may	drastically	limit	the	availability	of	SCNAs	with	net	beneficial	effects	
(needed	to	facilitate	CIN	hitchhiking)	and,	thus,	inhibit	CIN	evolution.

We	have	hypothesized	 that	 indirect	 selection	could,	neverthe‐
less,	favor	CIN	given	a	spatial	organization	of	the	genome	that	min‐
imizes	 co‐occurrence	 of	 beneficial	 and	 deleterious	 loci	 in	 SCNAs.	
Specifically,	we	wanted	 to	 test	 the	 hypothesis	 that	CIN	would	 be	
favored	by	indirect	selection	in	genomes	in	which	either	beneficial	
or	deleterious	loci	were	spatially	clustered	along	the	chromosome.	
To	do	 so,	we	developed	an	 individual‐based	 stochastic	population	
model	of	clonal	evolution	in	spatially	organized	genomes.	In	simula‐
tion,	we	investigated	the	effect	of	the	spatial	distribution	of	bene‐
ficial	and	deleterious	loci	on	CIN	evolution	and	cancer	progression.	
We	also	tested	the	effectiveness	of	therapeutic	strategies	that	aim	
to	raise	the	deleterious	costs	of	CIN	in	order	to	inhibit	CIN	evolution.	
Finally,	we	 examined	 the	 spatial	 distributions	 of	 candidate	 human	
oncogene	and	tumor	suppressor	loci	(identified	in	Davoli	et	al.,	2013)	
for	evidence	of	spatial	clustering	that	could	facilitate	indirect	selec‐
tion	for	CIN	in	real	cancers.

2  | METHODS

2.1 | Stochastic simulations

To	model	 the	evolutionary	progression	of	a	neoplastic	 cell	popu‐
lation	to	cancer,	we	developed	and	simulated	an	 individual‐based	
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computational	model	of	clonal	evolution	based	on	the	earlier	work	
of	 Beerenwinkel	 et	 al.	 (2007)	 and	Datta	 et	 al.	 (2013).	 Like	 these	
earlier	studies,	we	employed	a	Wright–Fisher	model	(Ewens,	2004),	
in	which	a	population	of	neoplastic	cells	evolves	 in	discrete,	non‐
overlapping	 generations	 with	 the	 probability	 of	 each	 cell’s	 re‐
production	being	proportional	 to	 its	 relative	 fitness.	As	 in	earlier	
studies,	cells	in	the	model	could	acquire	beneficial	and	deleterious	
fitness‐affecting	mutations	upon	reproduction.	Unlike	these	earlier	
studies,	however,	we	also	allowed	for	the	evolution	of	CIN	by	add‐
ing	 SCNA‐type	mutations	 (described	 below)	 and	 introducing	CIN	
mutator	alleles.

As	 in	 the	work	 of	 Beerenwinkel	 et	 al.	 (2007)	 and	Datta	 et	 al.	
(2013),	 simulations	 here	 start	 with	 a	 tumor	 population	 of	 initial	
size	N0 = 106	cells	and	end	when	the	tumor	develops	into	a	cancer.	
Following	Datta	et	al.	(2013),	we	defined	cancer	as	a	tumor	in	which	
10%	of	all	cells	have	acquired	at	least	20	beneficial	mutations.

The	total	size	of	the	neoplastic	population	is	constrained	to	grow	
exponentially	 at	 a	 rate	 proportional	 to	 the	 average	 fitness	 of	 the	
population.	The	size	of	the	population	at	generation	t	+	1	is	defined	
as	Nt+1=Nt ⋅ (1+ w̄𝛽),	 where	 w̄	 is	 the	 average	 fitness	 of	 the	 tumor	
population	(see	below)	and	β	 is	a	constant	that	governs	the	rate	of	
population	growth;	as	in	Datta	et	al.	(2013),	we	set	β	=	0.0016.

Neoplastic	 cells	 can	 acquire	 single‐locus	mutations	 that	 either	
change	fitness	or	induce	CIN.	Chromosomal	instability‐inducing	mu‐
tations	result	in	a	mutator	phenotype	which	allows	cells	to	generate	
SCNA	mutations	(described	below).	In	order	to	explicitly	explore	the	
role	of	indirect	selection	and	genetic	hitchhiking	in	the	evolution	of	
CIN,	CIN‐inducing	mutations	are	assumed	to	have	no	intrinsic	direct	
effect	on	a	cell’s	fitness.	Furthermore,	a	single	CIN	mutator	mutation	
is	 assumed	 to	be	 sufficient	 for	 the	mutator	 phenotype;	 additional	
CIN	mutations	have	no	effect	on	the	mutation	rate	and	so	cannot	
affect	the	dynamics	of	the	mutator	lineage.

Among	the	fitness‐affecting	mutations,	beneficial	mutations	in‐
crease	a	cell’s	fitness	by	sben	while	deleterious	mutations	decrease	a	
cell’s	fitness	by	sdel.	Since	sben and sdel	are	held	constant,	fitness	of	
a	 cell	with	x	 beneficial	mutations	and	y	 deleterious	mutations	 can	
be	computed	as	wxy=1+x ⋅sben−y ⋅sdel.	Correspondingly,	if	fxy	is	the	
fraction	of	cells	with	x and y	beneficial	and	deleterious	mutations,	
respectively,	in	a	tumor,	then	the	average	fitness	of	the	tumor	pop‐
ulation	 is	 w̄=

∑

x

∑

y

fxywxy.	 Unlike	 in	 the	 earlier	 work	 (Beerenwinkel	
et	 al.,	 2007;	 Datta	 et	 al.,	 2013),	 the	 effect	 of	 multiple	 mutations	
in	our	model	 is	additive	rather	than	multiplicative.	Note	that	there	
is	 little	 difference	 between	 additive	 and	multiplicative	 fitness	 for	
genotypes	 containing	 a	 small	 number	 of	mutations.	 (Algebraically,	
(1+sben)

x(1−sdel)
y≈1+x ⋅sben−y ⋅sdel	for	small	x and y.)	However,	for	

genotypes	 containing	 many	 mutations	 (like	 some	 CIN	 genotypes	
in	our	model),	multiplicative	 fitness,	which	 increases	exponentially	
with	the	number	of	mutations,	results	in	unrealistically	high	values.

The	 tumor	population	 is	composed	of	genetic	 lineages	of	neo‐
plastic	cells	defined	by	the	counts	of	fitness‐affecting	and	CIN	mu‐
tator	mutations	they	carry.	As	per	the	Wright–Fisher	model,	the	size	
of	a	lineage	with	x	beneficial	mutations	and	y	deleterious	mutations	
at	 generation	 t	+	1	 is	 drawn	 from	 a	 multinomial	 distribution	 with	

expectation	given	by	Nt+1fxywxy∕w̄,	where	fxy	is	the	frequency	of	the	
lineage	in	generation	t,	and	wxy∕w̄	is	its	relative	fitness.

Upon	 reproduction,	every	 surviving	 lineage	acquires	a	 random	
number Mben	of	beneficial	mutations, Mdel	of	deleterious	mutations,	
and MCIN	of	mutator	mutations	drawn	from	a	multinomial	distribu‐
tion	with	expectations	given	by	NiUben,	NiUdel,	 and	NiUCIN,	 respec‐
tively.	Here,	Ni	is	the	size	of	the	lineage,	and	Uben,	Udel,	and	UCIN are 
the	per	cell	rates	of	beneficial,	deleterious,	and	CIN	mutator	muta‐
tions.	Thus,	as	a	result	of	mutation,	a	 lineage	with	x	beneficial	and	
y	deleterious	mutations	gives	rise	to	a	new	lineage	with	Mben indi‐
viduals	carrying	x	+	1	beneficial	mutations,	a	new	lineage	with	Mdel 
individuals	carrying	y	+	1	deleterious	mutations,	and	a	third	lineage	
with	MCIN	individuals	carrying	the	CIN	mutator	allele.

Genetic	lineages	carrying	CIN	mutator	mutations	also	acquire	a	
Poisson‐distributed	 number	 of	 SCNAs,	MSCNA	with	mean	NiUSCNA,	
where USCNA	is	the	per	cell	rate	of	SCNA	production	in	CIN	mutators.	
Each	new	SCNA	mutation	contains	a	randomly	generated	number	of	
beneficial,	BSCNA,	and	a	randomly	generated	number	of	deleterious	
mutations,	DSCNA.	Each	new	SCNA	mutation	in	a	lineage	with	x ben‐
eficial	and	y	deleterious	mutations,	thus,	gives	rise	to	a	new	lineage	
with	a	 single	 individual	 carrying	x + BSCNA	beneficial	 and	y + DSCNA 
deleterious	mutations.

To	model	spatial	clustering	of	fitness‐affecting	loci,	we	use	dis‐
crete	distributions	with	 a	 constant	mean	number	of	mutations	 (µ)	
but	increasing	variance	(σ2)	to	draw	the	values	of	BSCNA and DSCNA	for	
each	new	SCNA.	Thus,	we	assume	the	infinite	sites	model	for	new	
SCNAs.	Note	that	while	the	available	supply	of	large	chromosomal	
aberrations,	such	as	aneuploidies,	in	real	cancers	is	relatively	small,	
shorter	SCNAs	will	be	plentiful.	 In	fact,	 the	supply	of	SCNAs	con‐
taining	about	100	loci	(~0.5%	of	the	human	genome)	like	the	ones	in	
our	model	should	be	extremely	high,	justifying	our	assumption	of	the	
infinite	sites	model.	Furthermore,	consider	that	in	our	model	a	tumor	
samples	and	substitutes	only	an	infinitesimal	fraction	of	the	available	
SCNA	distribution,	similar	to	real	cancers	that	have	been	shown	to	
contain	 a	median	number	of	 only	 about	20	SCNAs	 (Beroukhim	et	
al.,	2010).

Because	we	assume	the	infinite	sites	model	for	new	SCNAs,	spa‐
tially	 organized	 genomes	 are	 not	 explicitly	modeled,	which	 allows	
increased	 computational	 efficiency.	 Instead,	 clustering	 of	 loci	 in	
the	model	is	controlled	by	the	variance	in	the	distributions	of	BSCNA 
and DSCNA.	As	can	be	seen	from	Figure	1,	distributions	of	BSCNA and 
DSCNA	characterized	by	lower	variance	result	in	less	clustering	of	fit‐
ness‐affecting	 loci	 across	potential	 SCNAs	with	most	SCNAs	con‐
taining	relatively	similar	numbers	of	loci.	On	the	other	hand,	higher	
variance	in	either	BSCNA or DSCNA	distributions	produces	more	clus‐
tering	in	fitness‐affecting	loci	across	potential	SCNAs	with	relatively	
few	SCNAs	containing	large	clusters	of	loci	and	many	SCNAs	with‐
out	any.

The	model	was	parameterized	as	follows.	Based	on	earlier	theo‐
retical	studies	of	Beerenwinkel	et	al.	(2007),	Bozic	et	al.	(2010),	Datta	
et	al.	(2013),	and	McFarland,	Korolev,	Kryukov,	Sunyaev,	and	Mirny	
(2013),	we	set	Uben = 10‐5.	Because	estimates	of	the	deleterious	mu‐
tation	rate	and	effects	are	limited,	we	set	sdel	=	0.01	and	we	assumed	
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that	deleterious	mutations	outnumber	the	beneficial	ones	one	hun‐
dred‐fold	 and	 set	 Udel = 10–3.	 Note	 that	 higher	 Udel or sdel would 
raise	the	deleterious	load	of	SCNAs,	reinforcing	the	importance	of	
genomic	clustering	in	promoting	CIN;	on	the	other	hand,	lower	Udel 
or sdel	would	lessen	the	role	of	genomic	clustering	in	facilitating	CIN	
evolution.	UCIN	has	no	effect	on	the	role	of	genomic	clustering	and	
was	set	at	UCIN = 10‐5.	We	set	USCNA	=	0.01	SCNA	mutations	per	cell	
per	generation	after	Lengauer,	Kinzler,	and	Vogelstein	(1997)	in	lin‐
eages	carrying	CIN	mutators.	Finally,	we	set	sben	=	0.1,	based	on	the	
estimates	of	beneficial	effects	of	~0.004	to	~0.6	obtained	from	ear‐
lier	theoretical	studies	(Beerenwinkel	et	al.,	2007;	Bozic	et	al.,	2010;	
McFarland,	Mirny,	&	Korolev,	2014).

The	mean	number	of	mutations	(µ)	of	all	BSCNA	distributions	is	
set	 to	 1	 (i.e.,	 on	 average	 a	 single	 beneficial	mutation	 per	 SCNA),	
while µ	of	all	DSCNA	distributions	is	set	to	100:	The	ratio	of	the	two	
is	 thus	 the	same	as	 the	 ratio	of	Uben and Udel	 above.	To	generate	
BSCNA	 values,	 we	 use	 either	 a	 Dirac	 delta	 function	 with	 a	 single	
value	(i.e.,	no	clustering,	µ	=	1,	σ2	=	0),	a	Poisson	distribution	(mini‐
mal	clustering,	µ	=	1,	σ2	=	1;	Figure	1a),	a	geometric	distribution	(in‐
termediate	clustering,	µ	=	1,	σ2	=	2;	Figure	1b),	or	a	beta‐binomial	
distribution	 (high	 clustering,	 parameters	 of	 the	 beta	 distribution:	
n	=	50,	α	=	0.1,	β	=	4.9;	µ	=	1,	σ2	≈	8.98;	Figure	1c).	Similarly,	DSCNA 
is	 randomly	 drawn	 from	 either	 a	 Dirac	 delta	 function	 (µ	=	100,	
σ2	=	0),	a	Poisson	distribution	(µ	=	100,	σ2	=	100;	Figure	1g),	a	geo‐
metric	 distribution	 (µ	=	100,	σ2	=	10,100;	 Figure	1i),	 or	 a	 beta‐bi‐
nomial	 distribution	 (parameters	 of	 the	beta	 distribution:	n	=	500,	
α	=	0.1,	 β	=	0.4;	µ	=	100,	 σ2	≈	26,693;	 Figure	 1j).	 Figure	 1	 also	 il‐
lustrates	how	changing	the	variance	in	the	physical	distribution	of	
beneficial	and	deleterious	loci	affects	the	distribution	of	available	
SCNA	fitness	effects	(calculated	for	an	SCNA	with	B	beneficial	and	

D	deleterious	mutations	as	wSCNA=B ⋅sben−D ⋅sdel).	It	is	important	to	
note	that	while	the	expected	number	of	loci	in	an	SCNA	is	constant	
for	all	distributions	(100	deleterious	plus	1	beneficial),	the	realized	
number	of	 loci	 in	an	SCNA	is	not	constant	unless	both	BSCNA and 
DSCNA	are	drawn	 from	 the	Dirac	delta	 function.	Consequently,	 at	
higher	variance	 in	either	BSCNA or DSCNA,	 some	SCNAs	may	com‐
prise	more	loci	than	others.	Moreover,	while	we	model	SCNAs	of	
a	given	mean	size	(101	loci),	it	is	certainly	not	the	case	that	SCNAs	
of	such	size	are	representative	of	actual	SCNAs	in	cancer	(in	fact,	
based	on	Beroukhim	et	al.	(2010),	it	is	likely	that	most	focal	SCNAs	
comprise	 fewer	 loci).	We	explore	 these	assumptions	 in	 the	 simu‐
lation	 in	 Supporting	 Information	 Figures	 S1	 and	 S2,	 respectively,	
and	find	that	the	effect	of	clustering	on	CIN	evolution	is	robust	to	
both	of	them.

Since	all	simulations	end	with	cancer,	to	assess	the	influence	
of	genomic	clustering	and	CIN	evolution	on	carcinogenesis,	we	
calculate	the	mean	waiting	time	required	for	a	tumor	to	evolve	
into	cancer.	To	assess	whether	CIN	mutators	are	favored	by	indi‐
rect	selection	or	not,	we	calculate	the	mean	waiting	time	to	CIN	
establishment.	We	assume	that	a	mutator	mutation	becomes	es‐
tablished	if	 it	reaches	the	frequency	of	10%	of	the	population.	
We	then	compare	the	probability	of	mutator	establishment	(PCIN

10%

)	to	the	probability	of	a	neutral	mutation	reaching	the	frequency	
of	 10%	 (Pneutral

10%
).Pneutral

10%
	 is	 calculated	 as	 the	 frequency	 (over	 106 

runs	of	simulation)	at	which	a	neutral	mutation	appearing	at	the	
same	rate	as	the	mutator	(UCIN)	reaches	10%	of	the	population	in	
control	simulations	without	CIN.	Correspondingly,	mutators	are	
favored	by	 indirect	selection	when	PCIN

10%
> Pneutral

10%
	and	disfavored	

when PCIN
10%

<Pneutral
10%

	(e.g.,	Raynes,	Wylie,	Sniegowski,	&	Weinreich,	
2018).

F I G U R E  1  Spatial	clustering	of	fitness‐affecting	loci	in	the	model.	Beneficial	loci	of	effect	sben	=	0.1	were	distributed	across	SCNAs	
using	either	Poisson	(a;	low	clustering),	geometric	(b;	intermediate	clustering),	or	beta‐binomial	(C;	high	clustering)	distributions	with	µ = 1. 
Deleterious	loci	of	effect	sdel	=	0.01	were	distributed	using	the	Dirac	delta	function	with	µ	=	100.	These	distributions	of	beneficial	loci	
produced	the	distributions	of	SCNA	fitness	effects	shown	in	panels	d,	e,	and	f,	respectively,	calculated	as	wSCNA=B ⋅sben−D ⋅sdel	(where	B and 
D	are	the	counts	of	beneficial	and	deleterious	mutations,	respectively).	Likewise,	deleterious	mutations	were	distributed	across	SCNAs	using	
Poisson	(g;	low	clustering),	geometric	(i;	intermediate	clustering),	or	beta‐binomial	(j;	high	clustering)	distributions	with	µ	=	100.	Beneficial	
loci	were	distributed	using	the	Dirac	delta	function	with	µ	=	1.	These	distributions	of	deleterious	loci	produced	the	distributions	of	SCNA	
fitness	effects	shown	in	panels	k,	l,	and	m,	respectively,	calculated	as	above.	See	Methods	for	distribution	details
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2.2 | Genomic analysis

To	 examine	 the	 spatial	 distribution	 of	 the	 carcinogenic	mutations	
in	the	human	genome,	we	focused	on	the	candidate	oncogene	and	
tumor	suppressor	loci	identified	by	the	TUSON	algorithm	of	Davoli	
et	 al.	 (2013).	 The	 TUSON	 algorithm	 predicts	 the	 likelihood	 that	 a	
given	 gene	 acts	 as	 a	 tumor	 suppressor	 or	 an	 oncogene	 based	 on	
its	mutational	status	in	sequenced	tumors	versus	normal	tissue.	To	
identify	 the	most	 reliable	mutational	 parameters	 for	 prediction	of	
tumor	suppressors	and	oncogenes,	Davoli	et	al.	compiled	a	data	set	
of	~1,200,000	mutations	from	more	than	8,200	tumor	samples	of	
>20	different	 tumor	 types	and	developed	22	different	parameters	
based	 on	 the	 different	 classes	 of	 mutations.	 The	 algorithm	 was	
tested	on	three	different	training	sets	of	known	tumor	suppressors	
and	oncogenes	from	the	Cancer	Gene	Census	(Futreal	et	al.,	2004).	
In	 the	original	 study,	TUSON	predictions	were	used	 to	 rank	every	
gene	in	the	genome	based	on	its	potential	as	a	tumor	suppressor	or	
an	oncogene	(Davoli	et	al.,	2013).	For	our	analysis,	we	used	the	top	
300	tumor	suppressors	and	249	oncogenes	identified	by	TUSON	in	
the	original	study.	One	of	the	potential	tumor	suppressors	(C3orf27)	
from	the	original	top	250	list	of	Davoli	et	al.	have	since	been	shown	
to	be	a	 long	 intergenic	non‐protein‐coding	RNA	and	was	excluded	
from	the	present	analysis.	As	 in	Davoli	et	al.,	each	potential	tumor	
suppressor	 and	 oncogene	was	 assigned	 a	weight,	 hereafter	wDavoli 
(to	differentiate	 from	 fitness	notation	 in	our	model),	 calculated	 as	
wDavoli=T− r where T	is	the	total	number	of	genes	in	the	respective	
list	(300	for	suppressors	and	249	for	oncogenes)	and	r	is	the	rank	of	
that	gene	in	the	list.	wDavoli	can	thus	be	thought	as	proxy	for	the	po‐
tential	fitness	effect	of	a	gene	(most	potent	tumor	suppressors	and	
oncogenes	have	the	highest	wDavoli	scores).

Then,	also	as	in	Davoli	et	al.,	we	quantified	the	tumor‐suppres‐
sive	and	oncogenic	potentials	of	human	SCNAs	based	on	the	den‐
sity	and	potency	(wDavoli)	of	tumor	suppressors	and	oncogenes	they	
encompass.	For	SCNAs	the	size	of	a	chromosome	or	a	chromosome	
arm	 we	 used	 Chrom	 and	 Charm	 scores	 provided	 in	 the	 study	 of	
Davoli	et	al.	These	scores	were	calculated	as	 the	sums	of	weights	
(wDavoli)	of	tumor	suppressors	or	oncogenes	contained	in	each	chro‐
mosome	or	a	chromosome	arm	divided	by	the	total	number	of	genes	
contained	 in	that	chromosome	or	arm.	 In	other	words,	Chrom	and	
Charm	scores	represent	the	potential	beneficial	effect	that	SCNAs	
comprising	a	given	chromosome	or	chromosome	arm	may	have	on	a	
neoplastic	cell’s	fitness.

For	 focal	 SCNAs	 shorter	 than	 a	 chromosome	 arm,	 we	 em‐
ployed	a	sliding	window	approach.	For	computational	efficiency,	
we	advanced	the	window	from	the	beginning	of	each	chromosome	
arm,	10,000	nucleotides	at	a	time,	up	until	the	centromere	or	the	
end	of	the	chromosome	was	reached.	The	score	of	each	window	
was	calculated	as	the	sum	of	weights	of	oncogenes	or	tumors	sup‐
pressors	contained	in	the	window	divided	by	the	total	number	of	
genes	in	the	window.	To	quantify	spatial	clustering	of	oncogenes	
and	 tumor	suppressors	across	chromosomes,	chromosome	arms,	
and	focal	SCNAs,	we	calculated	the	variance	in	the	distributions	of	
Chrom,	Charm,	and	focal	SCNA	scores	of	each	size.

To	 assess	 whether	 human	 oncogenes	 and	 tumor	 suppressors	
are	clustered	more	than	random,	we	used	a	permutation	approach.	
To	create	each	random	permutation	of	tumor	suppressors	and	on‐
cogenes,	weight	 (wDavoli)	 values	 from	1	 to	300	 (for	 the	 tumor	 sup‐
pressor	distribution)	or	from	1	to	249	(for	the	oncogene	distribution)	
were	assigned	to	300	(or	249)	human	loci,	randomly	sampled	from	
the	genome.	For	each	such	random	permutation,	we	calculated	the	
Chrom,	 Charm,	 and	 focal	 SCNA	 scores	 as	 above.	We	 then	 calcu‐
lated	 the	variance	 in	 the	distributions	of	Chrom,	Charm,	and	 focal	
SCNA	scores	for	each	permutation.	A	total	of	10,000	permutations	
of	weights	were	performed	resulting	in	distributions	of	10,000	vari‐
ance	values	for	each	size	of	potential	SCNAs.	Observed	variance	in	
the	distribution	of	Chrom,	Charm,	 and	 focal	 scores	of	 all	 sizes	 for	
tumor	 suppressors	 and	oncogenes	was	 then	compared	 to	 the	null	
distributions	 obtained	 by	 permutation.	 Observed	 variances	 were	
considered	 to	 be	 significantly	 higher	 than	 expected	 if	 they	 were	
greater	than	95%	of	variances	sampled	by	permutation.

Ensemble	database,	release	84	(Yates	et	al.,	2016),	was	used	to	
obtain	 the	 genomic	 locations	 of	 all	 tumor‐suppressing	 and	 onco‐
genic	genes	identified	by	TUSON	as	well	as	the	list	of	20,837	human	
genes	using	the	following	two	gene	types	to	filter	the	results:	pro‐
tein‐coding	 genes	 and	 TEC	 (potential	 protein‐coding	 genes	 that	
require	 experimental	 confirmation).	 Genes	 on	 the	 Y	 chromosome	
were	excluded	from	the	analysis.	The	UCSC	human	genome	browser	
(Karolchik	et	al.,	2004)	(Assembly	Dec	2013,	GRCh/hg38)	was	used	
to	obtain	the	lengths	of	all	human	chromosomes	and	the	locations	
of	centromeres.

3  | RESULTS

3.1 | Spatial clustering of fitness‐affecting loci 
across SCNAs promotes the evolution of CIN

Figure	2	 illustrates	 the	dynamics	of	 tumor	 evolution	 in	 represent‐
ative	 runs	 of	 the	 simulation	with	 and	without	CIN	mutator	 loci	 in	
the	 genome	 (note	 the	 difference	 in	 x‐axis	 scale	 between	 panels).	
Consistent	 with	 earlier	 studies	 (Beerenwinkel	 et	 al.,	 2007;	 Datta	
et	al.,	2013),	 in	the	absence	of	CIN	mutators,	our	model	exhibits	a	
“traveling	wave”	of	clonal	expansions	and	contractions	 (Figure	2a).	
Clones	with	increasing	numbers	of	beneficial	mutations	successively	
expand	and	replace	 less	adapted	clones	until	a	clone	with	20	ben‐
eficial	mutations	appears	and	expands	to	10%	of	the	population	(at	
which	point	the	simulation	halts).	Importantly,	each	clonal	expansion	
is	driven	by	only	a	single	additional	beneficial	mutation.

When	CIN	mutators	are	added	to	the	genome,	the	dynamics	of	
tumor	evolution	become	strongly	dependent	on	the	spatial	distribu‐
tion	of	beneficial	and	deleterious	loci	across	potential	SCNAs.	Recall	
that	in	our	model,	CIN	mutators	themselves	do	not	affect	fitness	and	
only	experience	indirect	selection	via	genetic	association	with	SCNA	
mutations	 they	 generate.	When	neither	 beneficial	 nor	 deleterious	
loci	are	spatially	clustered,	that	is,	distributed	across	SCNAs	with	no	
variance,	all	available	SCNAs	are	deleterious	to	fitness	(Figure	1).	As	
a	result,	CIN	mutators	are	strongly	disfavored	by	indirect	selection	
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and	have	virtually	no	effect	on	cancer	progression,	which	remains	
indistinguishable	from	that	in	genomes	without	CIN	(Figure	2b).

However,	when	 either	 beneficial	 or	 deleterious	 loci	 are	 highly	
spatially	clustered,	that	is,	distributed	with	the	highest	possible	vari‐
ance	in	the	genome,	cancer	progression	is	significantly	accelerated	
by	CIN,	albeit	 in	different	ways.	 In	genomes	with	highly	clustered	
beneficial	 loci,	 large	 numbers	 of	 beneficial	 mutations	 co‐occur	
in	 a	 few	 SCNAs,	 resulting	 in	 some	 extremely	 beneficial	 SCNAs	
(Figure	1c,f).	Chromosomal	 instability	mutators	 rapidly	 increase	 in	
frequency	by	acquiring	such	SCNAs,	which,	in	turn,	allows	the	tumor	
to	very	quickly	evolve	into	cancer	by	substituting	only	a	few	SCNAs.	
For	example,	 in	Figure	2c,	a	single	CIN	mutator	 lineage	acquires	a	
cluster	of	36	beneficial	mutations,	which	 then	quickly	expands	 to	
the	 threshold	 frequency	 of	 10%.	On	 the	 other	 hand,	 in	 genomes	
with	 highly	 clustered	 deleterious	 mutations	 (Figure	 1j,m),	 large	
numbers	 of	 deleterious	 loci	 are	 sequestered	 into	 few	 very	 harm‐
ful	 SCNAs,	which	 reduces	 the	 deleterious	 load	 of	 other	 available	
SCNAs.	However,	 spatial	 clustering	of	deleterious	mutations	does	
not	affect	the	number	of	beneficial	mutations	in	individual	SCNAs.	
As	a	result,	CIN	mutators	are	still	favored	by	indirect	selection	but	
spread	by	hitchhiking	with	SCNAs	containing	fewer	than	the	mean	
number	of	deleterious	mutations	and	only	a	single	beneficial	muta‐
tion.	Correspondingly,	up	to	20	SCNA	mutations	may	substitute	in	
the	CIN	mutator	population	before	the	tumor	develops	into	cancer.	
Populations	with	clustered	deleterious	mutations	exhibit	very	sim‐
ilar	traveling	wave	dynamics	as	populations	without	CIN,	although	

the	 progression	 is	 accelerated	 once	CIN	mutators	 become	 estab‐
lished	(Figure	2d).

Figure	3	 summarizes	 the	 influence	of	 the	 spatial	 distribution	
of	 fitness‐affecting	 loci	 across	SCNAs	on	CIN	evolution	 and	 the	
speed	of	carcinogenesis.	As	expected	 from	population	dynamics	
seen	in	Figure	2,	cancer	progression	is	slowest	 in	genomes	with‐
out	 CIN	 mutators.	 Even	 in	 genomes	 with	 CIN	 mutators,	 cancer	
progression	remains	unaffected	by	CIN	when	both	beneficial	and	
deleterious	 loci	 are	 distributed	 with	 no	 or	 even	 low	 clustering	
across	SCNAs.	 In	these	genomes,	CIN	mutators	are	strongly	dis‐
favored	by	 indirect	 selection	 (PCIN

10%
<Pneutral

10%
)	 and	 the	waiting	 time	

to	 cancer	 is	 not	 significantly	 different	 than	 in	 genomes	without	
CIN	(Figure	3).	However,	as	beneficial	and	deleterious	loci	become	
increasingly	 clustered,	 the	 probability	 of	 mutator	 establishment	
raises	dramatically	above	that	of	a	neutral	mutation	(PCIN

10%
>Pneutral

10%
).	 In	

other	words,	CIN	mutators	switch	from	being	disfavored	to	being	
strongly	 favored	 by	 indirect	 selection.	 Correspondingly,	 as	 se‐
lected	 loci	 become	 increasingly	 clustered,	 cancer	 progression	 is	
accelerated,	with	the	waiting	time	to	cancer	minimized	in	genomes	
with	the	most	clustered	loci.

Note	 that	 in	 genomes	with	 clustered	 beneficial	 loci,	 the	wait‐
ing	time	to	CIN	establishment	is	not	significantly	different	from	the	
waiting	time	to	cancer.	Here,	CIN	mutators	become	established	by	
hitchhiking	with	SCNAs	containing	multiple	beneficial	mutation.	As	a	
result,	an	expanding	mutator	lineage	may	already	carry	enough	ben‐
eficial	mutations	for	the	tumor	to	become	cancerous	as	soon	as	it	is	

F I G U R E  2  Clonal	dynamics	in	representative	simulated	populations.	Solid	lines	represent	the	size	of	clones	with	numbers	of	beneficial	
mutations	indicated.	Dashed	lines	in	c	and	d	represent	the	size	of	the	mutator	population	within	the	tumor.	(a)	Without	CIN	mutators,	
(b)	with	CIN	mutators;	beneficial	and	deleterious	mutations	distributed	with	no	clustering	(using	the	Dirac	delta	function),	(c)	with	CIN	
mutators;	beneficial	mutations	distributed	with	high	clustering	(using	the	beta‐binomial	distribution)	and	deleterious	loci	not	clustered,	(d)	
with	CIN	mutators;	deleterious	mutations	distributed	with	high	clustering	(beta‐binomial)	and	beneficial	loci	not	clustered.	See	Methods	for	
distribution	details.	Model	parameters:	Uben = 10−5,	Udel = 10−3,	UCIN = 10−5	per	cell	per	generation,	sdel	=	0.01,	sben	=	0.1,	USCNA	=	0.01	SCNA	
mutations	per	cell	per	generation.	µ	for	all	beneficial	loci	distributions	=	1,	µ	for	all	deleterious	loci	distributions	=	100

(a)

(b)

(c)
(d)

, , , ,
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established	(as	seen,	for	example,	in	Figure	1c)	or	can	quickly	acquire	
additional	mutations	in	large	clusters	thereafter.	On	the	other	hand,	
in	genomes	with	clustered	deleterious	loci,	CIN	mutators	spread	by	
hitchhiking	with	 SCNAs	 generally	 containing	 only	 a	 single	 benefi‐
cial	mutation.	Consequently,	even	after	CIN	is	established,	multiple	
beneficial	mutation	must	still	sweep	through	the	population	before	
cancer	evolves.	Chromosomal	instability	mutators	do,	however,	sig‐
nificantly	accelerate	cancer	evolution	by	rapidly	producing	the	nec‐
essary	beneficial	mutations	(albeit	still	via	SCNAs	with	only	a	single	
beneficial	mutation	each).

3.2 | Oncogenic and tumor‐suppressive loci in the 
human genome are distributed with relatively 
high variance

Simulations	show	that	increased	variance	in	either	beneficial	or	del‐
eterious	 fitness	effects	of	SCNAs,	 resulting	 from	 increased	spatial	
clustering	of	fitness‐affecting	mutations,	can	promote	the	evolution	
of	CIN.	To	assess	the	variance	in	beneficial	fitness	effects	of	poten‐
tial	SCNAs	in	the	human	genome,	we	examined	the	spatial	distribu‐
tion	of	tumor	suppressor	and	oncogene	loci	identified	by	the	TUSON	
algorithm,	developed	by	Davoli	et	al.	(2013).	Intriguingly,	the	work	of	
Davoli	et	al.	showed	a	significant	relationship	between	the	genomic	
distribution	and	potency	of	tumor	suppressors	and	oncogenes	(sum‐
marized	as	Chrom	and	Charm	scores,	see	Methods)	and	patterns	of	
chromosomal	deletions	and	amplifications	from	sequenced	tumors.

Using	 the	 methodology	 of	 their	 study,	 we	 evaluated	 variance	
in	 the	 distribution	 of	 oncogenic	 and	 tumor‐suppressive	 effects	 of	
potential	 human	 SCNAs	 of	 different	 size,	 including	 focal	 SCNAs	
shorter	 than	 a	 chromosome	 arm,	 as	well	 as	 SCNAs	 the	 length	 of	
a	 chromosome	 arm	 and	 a	whole	 chromosome	 (Methods).	We	 ob‐
served	that	variance	in	the	distributions	of	oncogenic	(Figure	4a)	and	

tumor‐suppressive	 (Figure	 4b)	 effects	 was	 maximized	 for	 shorter	
SCNAs	and	decreased	for	longer	SCNAs.	We	then	evaluated	the	ob‐
served	variance	using	a	permutation	approach	(Methods).	We	found	
that	 the	 true	 variance	 in	 the	 distributions	 of	 both	 oncogenes	 and	
tumor	suppressors	was	consistently	higher	than	the	mean	variance	
of	the	permuted	distributions	across	all	of	SCNA	lengths	examined	
and	significantly	higher	(above	the	95th	percentile)	for	focal	SCNAs	
shorter	 than	~106	nucleotides.	Thus,	 it	appears	 that	beneficial	on‐
cogenic	and	tumor‐suppressive	effects	are,	 in	fact,	more	clustered	
in	 potential	 SCNAs	 than	 expected	 by	 chance,	 suggesting	 that	 the	
human	genome	could	be	organized	in	a	way	that	could	promote	CIN	
hitchhiking.

3.3 | Spatial organization of the genome affects the 
success of CIN‐inhibiting therapies

In	 simulations,	we	 showed	 that	 high	 variance	 in	 the	 spatial	 distri‐
bution	of	 beneficial	 loci	 across	 SCNAs	 can	promote	 the	 evolution	
of	 CIN,	 which	 in	 turn	 can	 significantly	 accelerate	 carcinogenesis.	
Furthermore,	our	analysis	of	 the	distribution	of	known	oncogenes	
and	tumor	suppressors	suggested	that	mutations	beneficial	to	neo‐
plastic	cells	may	be	more	clustered	than	random	in	the	human	ge‐
nome.	 In	 light	of	 these	observations,	we	 investigated	whether	 the	
evolution	of	CIN	could	be	 inhibited	by	either	 increasing	the	muta‐
tion	rate	of	CIN	mutators	or	by	exacerbating	the	effects	of	individual	
deleterious	 loci.	 Both	 therapeutic	 strategies	 have	 been	previously	
shown	to	successfully	reduce	tumor	size	by	exploiting	 its	deleteri‐
ous	mutational	 load	 (McFarland	et	 al.,	 2013).	Correspondingly,	we	
wanted	to	test	whether	these	strategies	could	also	inhibit	CIN	evolu‐
tion	by	increasing	the	deleterious	load	associated	with	CIN	mutators.

Using	 our	 model,	 we	 assessed	 the	 effect	 of	 increasing	 both	
CIN	rate	(USCNA)	and	deleterious	mutation	effects	(sdel)	in	genomes	

F I G U R E  3  Clustering	of	fitness‐affecting	loci	promotes	CIN	evolution	and	accelerates	cancer	development.	Waiting	time	to	CIN	
establishment	(blue)	and	cancer	(red)	as	a	function	of	genomic	organization.	For	genomes	with	clustered	beneficial	mutations	(µ = 1),	
deleterious	loci	were	distributed	using	the	Dirac	delta	function	(µ	=	100).	For	genomes	with	clustered	deleterious	mutations	(µ	=	100),	
beneficial	loci	were	distributed	using	the	Dirac	delta	function	(µ	=	1).	The	rest	of	model	parameters	are	as	in	Figure	2.	Circles	are	mean	
values	calculated	over	100,000	runs	of	simulation	(error	bars	represent	±95%	CI,	all	times	are	represented	with	violin	plots).PCIN
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values	next	to	each	time	to	CIN	establishment	data	point.	Mutators	are	favored	by	selection	when	PCIN
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Methods).	See	Methods	for	more	distribution	details
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characterized	by	high	(beta‐binomially	distributed,	Figure	1c)	and	
intermediate	 (geometrically	 distributed,	 Figure	 1b)	 clustering	 of	
beneficial	mutations.	For	the	most	clustered	genomes	(Figure	5a),	
increasing	USCNA	10‐fold	was	completely	ineffective	at	preventing	
either	the	establishment	of	CIN	or	rapid	carcinogenesis.	Increasing	
USCNA	100‐fold	(to	1	SCNA	per	cell	per	generation)	produced	only	
a	minor	effect	on	 the	probability	of	establishment	of	CIN	muta‐
tors,	 although	 both	 CIN	 establishment	 and	 carcinogenesis	 were	
somewhat	 delayed.	 Increasing	USCNA	 was	 considerably	 more	 ef‐
fective	 at	 inhibiting	 its	 establishment	 and	minimizing	 its	 role	 in	
carcinogenesis	in	genomes	characterized	by	intermediate	cluster‐
ing	(Figure	5b).	In	this	case,	100‐fold	stronger	CIN	mutators	were	
completely	inhibited	while	the	probability	of	establishment	of	10‐
fold	stronger	mutators	was	reduced	by	~30%.	On	the	other	hand,	
increasing	 sdel	 only	 five‐fold	 resulted	 in	 CIN	mutators	 becoming	
strongly	 disfavored	 by	 selection	 in	 both	 genomes,	while	 the	 av‐
erage	waiting	time	to	cancer	increased	to	non‐CIN	levels	seen	in	
Figure	3.	Thus,	while	increasing	CIN	rate	may	successfully	inhibit	
CIN	 evolution	 in	 some	 spatially	 clustered	 genomes,	 magnifying	
the	effects	of	deleterious	mutations	appears	to	be	a	considerably	

more	effective	strategy.	We	speculate	on	the	reasons	for	this	dif‐
ference	below.

4  | DISCUSSION

Here,	we	have	developed	a	stochastic,	 individual‐based	simulation	
model	 of	 clonal	 populations	 to	 examine	 the	 evolution	 of	 chromo‐
somal	instability	(CIN)	via	indirect	selection	on	associated	beneficial	
variation.	The	propensity	of	 genomic	mutators	 to	 spread	 in	 clonal	
populations	 via	 indirect	 selection	 has	 been	 extensively	 studied	 in	
evolutionary	theory	(Gerrish,	Colato,	Perelson,	&	Sniegowski,	2007;	
Kimura,	1967;	Taddei	et	al.,	1997)	and	demonstrated	in	experimen‐
tal	microbial	populations	(Chao	&	Cox,	1983;	Raynes	&	Sniegowski,	
2014).	Indirect	selection	on	mutators	and	their	potential	role	in	car‐
cinogenesis	have	also	been	investigated	in	computational	and	ana‐
lytic	models	of	cancer	progression	 (Beckman	&	Loeb,	2006;	Datta	
et	al.,	2013).	However,	whether	 indirect	selection	could	 favor	CIN	
mutators	during	carcinogenesis	has	remained	unclear.	The	reason	is	
that	CIN	mutators	generate	SCNAs	large	enough	to	simultaneously	

F I G U R E  4  Oncogenes	and	tumors	suppressors	are	distributed	with	relatively	high	variance	in	the	human	genome.	Variance	in	the	
distributions	of	(a)	oncogenic	and	(b)	tumor‐suppressive	effects	of	the	human	SCNAs	(circles).	Violin	plots	in	a	and	b:	Variances	of	10,000	
distributions	generated	by	permutation	(see	Methods).	Percentile	ranks	of	observed	variances	in	(c)	oncogenic	effect	distributions	and	(d)	
tumor‐suppressive	effect	distributions	among	variances	of	permuted	distributions	(in	panels	a	and	b,	respectively).	Horizontal	dashed	line:	
95th	percentile	rank
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1010

(a) (b)

(d)(c)



     |  309RAYNES ANd WEINREICH

affect	 multiple	 loci.	 As	 deleterious	 mutations	 generally	 outnum‐
ber	 beneficial	 ones,	 SCNAs	 with	 an	 overall	 beneficial	 effect	 may	
be	too	scarce	to	allow	for	CIN	hitchhiking.	Thus,	we	hypothesized	
that	 indirect	 selection	 could	 only	 favor	 CIN	 in	 genomes	 in	 which	
fitness‐affecting	 loci	were	distributed	 in	a	way	 that	minimized	 the	
co‐occurrence	of	beneficial	and	deleterious	loci	in	potential	SCNAs.

In	agreement	with	our	hypothesis,	simulations	showed	that	the	
genomic	distribution	of	fitness‐affecting	loci	can	strongly	influence	
indirect	selection	on	CIN‐inducing	mutators.	CIN	mutators	failed	to	
establish	or	affect	carcinogenesis	when	both	beneficial	and	deleteri‐
ous	loci	were	evenly	distributed	among	potential	SCNAs.	However,	
spatial	clustering	of	either	the	beneficial	or	the	deleterious	loci	pro‐
moted	 rapid	hitchhiking	of	CIN	mutators	 and	accelerated	carcino‐
genesis.	 In	 genomes	 characterized	 by	 the	 higher	 clustering	 of	 the	
beneficial	 loci,	 CIN	mutators	 succeeded	 by	 acquiring	 SCNAs	 con‐
taining	multiple	beneficial	mutations,	rather	than	acquiring	such	mu‐
tations	 individually	 (as	previously	seen	 in	models	of	MSI	mutators,	
(Datta	et	al.,	2013)).	On	the	other	hand,	in	genomes	characterized	by	
the	higher	clustering	of	the	deleterious	loci,	CIN	mutators	succeeded	
by	 acquiring	 SCNAs	with	 few	 beneficial	 mutations	 but	 a	 reduced	
load	of	deleterious	ones.	Once	established,	CIN	mutators	in	such	ge‐
nomes	were	able	to	accelerate	carcinogenesis	by	rapidly	producing	
additional	beneficial	mutations	via	further	SCNAs.

Importantly,	 in	our	model,	we	assume	 that	all	 single‐locus	mu‐
tations	 have	 a	 constant	 effect	 on	 a	 cell’s	 fitness.	 Therefore,	 the	
availability	 of	 beneficial	 SCNAs	 that	 could	 facilitate	 hitchhiking	 in	
simulation	 depended	 solely	 on	 the	 variance	 in	 the	 physical	 distri‐
bution	of	beneficial	and	deleterious	 loci.	 In	a	 real	 tumor,	however,	

different	mutations	will	 likely	have	different	effects	on	a	cell’s	 fit‐
ness.	As	a	result,	the	distribution	of	beneficial	effects	of	real	SCNAs	
will	be	determined	by	both	the	physical	distribution	of	individual	loci	
and	the	fitness	distribution	of	their	mutational	effects.	For	example,	
the	overall	beneficial	effect	of	an	SCNA	could	be	set	by	a	cluster	of	
smaller	effect	beneficial	mutations	or,	instead,	a	single	mutation	of	
large	effect.	Hitchhiking	of	CIN	mutators	should	then	depend	on	the	
variance	in	the	distribution	of	beneficial	effects	of	potential	SCNAs	
being	sufficiently	high	to	allow	for	SCNAs	whose	beneficial	effects	
could	compensate	for	their	deleterious	load.

Unfortunately,	while	many	potential	oncogenic	and	tumor‐sup‐
pressing	loci	have	been	discovered,	little	is	known	about	their	fitness	
effects	as	these	have	been	difficult	to	measure	empirically.	Thus,	as	
a	 first	approximation	of	 the	variance	 in	 fitness	of	potential	human	
SCNAs,	we	used	the	TUSON	algorithm	by	Davoli	et	al.	(2013),	which	
ranks	human	loci	based	on	the	likelihood	of	their	mutations	acting	as	
either	oncogenes	or	tumor	suppressors.	Like	Davoli	and	colleagues,	
we	 assigned	 each	 gene	 a	 fitness	 effect	 corresponding	 to	 its	 rank,	
resulting	in	a	discrete	uniform	distribution	of	fitness	effects.	Given	
this	 simple	 scheme,	both	potential	oncogenes	and	 tumor	 suppres‐
sors	 appeared	 to	 be	more	 spatially	 clustered	 than	 expected,	with	
shorter	 SCNAs	 up	 to	 ~106	 nucleotides	 significantly	 so.	 Thus,	 the	
human	genome	may	be	organized	 in	 such	a	way	 that	 some	of	 the	
available	SCNAs	have	sufficiently	large	beneficial	effects	that	over‐
come	their	deleterious	load.	If	such	SCNAs	are	available,	our	model	
suggests	 that	 alleles	 that	 induce	 CIN	may	 be	 favored	 by	 indirect	
selection	even	in	the	absence	of	any	direct	benefit	to	a	neoplastic	
cell’s	fitness.	Furthermore,	the	relatively	high	clustering	of	selected	

F I G U R E  5  Exacerbating	deleterious	mutations	is	more	effective	at	inhibiting	CIN	than	increasing	the	rate	of	CIN.	(a)	In	genomes	
with	high	clustering	of	beneficial	mutations	(beta‐binomially	distributed,	µ	=	1).	(b)	In	genomes	with	intermediate	clustering	of	beneficial	
mutations	(geometrically	distributed,	µ	=	1).	In	both	panels:	deleterious	mutations	distributed	with	no	clustering	(Dirac	delta,	µ	=	100).	
Circles	are	mean	values	calculated	over	100,000	runs	of	simulation	(error	bars	represent	±95%	CI,	all	times	are	shown	with	violin	plots).	
Model	parameters	as	in	Figures	2	and	3	except	where	noted.	See	Methods	for	distribution	details.	PCIN
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loci	across	the	shorter	SCNAs	suggests	that	shorter	SCNAs	are	par‐
ticularly	 likely	 to	 be	 positively	 selected	 during	 carcinogenesis	 and	
should	 thus	 be	 overrepresented	 in	 genomically	 unstable	 tumors.	
Intriguingly,	 a	 comprehensive	 survey	 of	 focal	 SCNA	 length	 across	
multiple	cancer	types	by	Beroukhim	et	al.	(2010)	showed	an	inverse	
relationship	 between	 SCNA	 length	 and	 frequency,	 with	 a	median	
length	of	1.8	×	106	nucleotides	 (Beroukhim	et	al.,	2010)	Note	 that	
this	observation	 is	only	consistent	with	the	prediction	that	natural	
selection	 should	 favor	 shorter	 SCNAs	and	 is	 not	 evidence	 for	 the	
role	of	indirect	selection	in	CIN	evolution.

It	 is	 surprising	 that	 the	 human	 genome	may	 be	 organized	 in	 a	
way	that	promotes	CIN	evolution.	After	all,	natural	selection	might	
have	 been	 expected	 to	 eliminate	 or	 at	 least	 reduce	 clustering	 of	
oncogenes	 and	 tumor	 suppressors	 to	 lower	 cancer	 susceptibility.	
However,	it	is	important	to	note	that	such	selection	would	have	been	
only	one	of	the	determinants	of	genome	organization.	It	is	becoming	
well	understood	that	eukaryotic	genes	are	not	randomly	distributed	
across	the	genome.	Related	genes	and	gene	families	that	have	arisen	
through	gene	duplication	may	be	expected	to	co‐localize	(Demuth	&	
Hahn,	2009).	Genes	with	similar	or	coordinated	expression	are	also	
frequently	clustered	(Hurst,	Pál,	&	Lercher,	2004).	Importantly,	can‐
cer	genes	identified	by	Davoli	et	al.	(2013)	and	used	in	our	analysis	
appear	 to	 be	 significantly	 enriched	 for	 a	 handful	 of	 functions	 ex‐
pected	to	aid	in	carcinogenesis,	such	as	cell‐cycle	control	and	apop‐
tosis.	In	light	of	this	observation,	it	seems	plausible	that	many	cancer	
genes	may	be	related	due	to	their	common	origin	by	duplication	or	
share	combined	regulation	and	are	more	clustered	than	expected	as	
a	result.	For	example,	two	tumor	suppressors	frequently	inactivated	
in	colorectal	cancer,	SMAD2 and SMAD4 (Fearon,	2011),	belong	to	
the	same	protein	 family	and	are	 located	within	several	megabases	
of	each	other.	Moreover,	we	would	speculate	that	the	evolution	of	
reduced	 genomic	 clustering	may	 be	 less	 likely	 than	 the	 evolution	
of	other,	perhaps	more	accessible,	mechanisms	to	suppress	cancer	
(such	 as	 additional	 tumor	 suppressor	 genes).	 As	 a	 result,	 genomic	
clustering	of	cancer	genes	may	have	persisted	despite	its	potential	
role	in	CIN	evolution	and	carcinogenesis.

Quantifying	 the	 true	 variance	 in	 fitness	 effects	 of	 potential	
human	SCNAs	requires	precise	fitness	measurements	of	mutations	
beneficial	 to	 a	 neoplastic	 cell’s	 fitness.	 Theoretical	 studies	 have	
produced	estimates	of	mean	effects	of	such	mutations	from	~0.4%	
to	~60%	(Beerenwinkel	et	al.,	2007;	Bozic	et	al.,	2010;	McFarland	
et	al.,	2014).	Vermeulen	et	al.	(2013)	were	also	able	to	empirically	
measure	the	selective	effects	of	three	mutations	in	p53,	APC, and 
Kras	 in	cells	of	a	mouse	 intestine.	Fitness	contributions	of	muta‐
tions	in	most	of	the	known	oncogenic	and	tumor‐suppressive	loci	
are	yet	to	be	estimated	empirically.	By	considering	the	distribution	
of	all	known	driver	mutations	discovered	in	different	cancer	types,	
we	also	have	implicitly	assumed	such	mutations	would	be	equally	
beneficial	in	all	cancers.	However,	the	fitness	contribution	of	a	mu‐
tation	in	a	particular	locus	should	depend	greatly	on	the	selective	
environment	and	the	potential	 interactions	with	other	mutations	
present	in	the	genome	and	will	thus	likely	differ	between	cancer	
types.	 A	more	 rigorous	 test	 of	 the	 susceptibility	 of	 the	 genome	

to	CIN	hitchhiking	would	 correlate	 the	 distribution	 of	 beneficial	
mutations,	given	their	actual	 fitness	contributions	 in	a	particular	
cancer,	with	the	rate	of	CIN	in	that	cancer.	The	necessary	data	are,	
however,	currently	unavailable.

Understanding	when	and	how	CIN	evolves	by	indirect	selection	
and	the	potential	role	of	genomic	organization	in	CIN	evolution	can	
have	important	practical	implications.	While	the	necessity	of	CIN	for	
cancer	is	debatable,	our	simulations	show	that	once	it	evolves,	CIN	
can	rapidly	produce	beneficial	variation	and	accelerate	carcinogene‐
sis.	There	is	also	some	evidence	that	CIN	may	evolve	early	in	cancer	
progression	 (Olaharski	 et	 al.,	 2006;	 Rajagopalan	 et	 al.,	 2004;	 Shih	
et	al.,	2001;	Tonini,	2017).	Thus,	a	potential	therapy	to	prevent	CIN	
evolution	 in	 the	 first	 place	may	 be	 able	 to	 severely	 inhibit	 cancer	
development.	Building	on	the	earlier	work	of	McFarland	et	al.	(2013),	
we	also	used	our	model	to	examine	whether	increasing	the	rate	of	
CIN	or	the	cost	of	deleterious	mutations	could	prevent	evolution	of	
CIN.	Both	therapeutic	strategies	aim	to	increase	the	deleterious	mu‐
tational	 load	and	may	theoretically	be	expected	to	 inhibit	mutator	
evolution.	Intriguingly,	we	discovered	that	in	genomes	characterized	
by	high	variance	in	the	distribution	of	beneficial	mutations,	increas‐
ing	the	deleterious	effects	of	individual	mutations	was	considerably	
more	effective	than	increasing	the	rate	of	CIN.	The	disparity	in	the	
effectiveness	 of	 the	 two	 strategies	 is	 likely	 due	 to	 the	mechanics	
of	 CIN	 hitchhiking	 in	 these	 genomes.	 Stronger	 CIN	mutators	 can	
still	produce	the	rare	but	very	beneficial	SCNAs	available	 in	 these	
genomes,	which	allows	 them	 to	 rapidly	 spread	despite	 the	associ‐
ated	 deleterious	 load.	 Correspondingly,	 in	 genomes	 characterized	
by	 lower	variance,	 stronger	CIN	mutators	become	 less	 successful.	
On	the	other	hand,	exacerbating	the	cost	of	deleterious	mutations	
dramatically	decreases	the	fitness	effect	of	all	available	SCNAs,	am‐
plifying	the	deleterious	load	associated	with	any	increase	in	the	rate	
of	CIN	and	effectively	inhibiting	CIN	mutators.

In	the	study	of	McFarland	et	al.	(2013),	both	increasing	the	over‐
all	mutation	rate	of	a	tumor	and	magnifying	the	effects	of	deleteri‐
ous	mutations	successfully	led	to	cancer	regression.	In	their	model,	
both	 strategies	 work	 by	 strengthening	 selection	 against	 deleteri‐
ous	mutations	 accumulated	 by	 neoplastic	 populations	 during	 car‐
cinogenesis.	However,	magnifying	the	deleterious	effects	of	these	
mutations	proved	to	be	a	more	effective	therapy	in	simulation	than	
increasing	 the	mutation	 rate.	Our	 results	 agree	 that	 exacerbating	
deleterious	effects	could	also	be	a	more	effective	strategy	to	pre‐
vent	CIN	evolution	 and	 slow	carcinogenesis,	 assuming	 the	poten‐
tially	 high	 clustering	 of	 carcinogenic	 beneficial	 mutations	 in	 the	
human	 genome.	 In	 the	 clinic,	 exacerbating	 deleterious	 mutations	
could	be	potentially	achieved,	as	suggested	by	McFarland	et	al.,	by	
targeting	cellular	mechanisms	that	act	to	ameliorate	their	effects	in	
newly	made	proteins;	examples	of	such	mechanisms	include	chap‐
erones	that	may	help	proteins	destabilized	by	deleterious	mutations	
maintain	activity	(Karras	et	al.,	2017;	Rutherford	&	Lindquist,	1998)	
and	proteosomes	that	degrade	such	proteins	(Crawford,	Walker,	&	
Irvine,	2011).

In	 summary,	extending	earlier	 computational	models	of	 cancer	
progression,	 we	 have	 developed	 a	 new	model	 incorporating	 both	
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SCNA	mutations	and	CIN‐inducing	mutators	to	investigate	the	role	
of	indirect	selection	in	CIN	evolution.	Our	model	predicts	that	CIN	
mutators	 are	 strongly	 favored	by	 indirect	 selection	 in	 genomes	 in	
which	mutations	that	affect	neoplastic	fitness	are	clustered	within	
potential	SCNAs.	 Interestingly,	preliminary	examination	of	 the	dis‐
tribution	 of	 human	 oncogenes	 and	 tumor	 suppressors	 suggests	
that	 human	 genomes	may,	 indeed,	 be	 organized	 in	 such	 a	way	 as	
to	be	susceptible	to	CIN	hitchhiking	via	indirect	selection,	although	
more	 data	 on	 actual	 fitness	 contributions	 of	 these	mutations	 are	
needed.	Understanding	whether	CIN	evolves	by	hitchhiking	and	the	
role	 that	 genome	organization	 plays	 in	CIN	 evolution	may	 help	 in	
future	therapeutic	efforts	aimed	at	selecting	against	CIN	to	inhibit	
carcinogenesis.
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