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Abstract

Accurately predicting the localization of proteins is of paramount importance in the quest to determine their respective
functions within the cellular compartment. Because of the continuous and rapid progress in the fields of genomics and
proteomics, more data are available now than ever before. Coincidentally, data mining methods been developed and
refined in order to handle this experimental windfall, thus allowing the scientific community to quantitatively address long-
standing questions such as that of protein localization. Here, we develop a frequent pattern tree (FPT) approach to generate
a minimum set of rules (mFPT) for predicting protein localization. We acquire a series of rules according to the features of
yeast genomic data. The mFPT prediction accuracy is benchmarked against other commonly used methods such as
Bayesian networks and logistic regression under various statistical measures. Our results show that mFPT gave better
performance than other approaches in predicting protein localization. Meanwhile, setting 0.65 as the minimum hit-rate, we
obtained 138 proteins that mFPT predicted differently than the simple naive bayesian method (SNB). In our analysis of these
138 proteins, we present novel predictions for the location for 17 proteins, which currently do not have any defined
localization. These predictions can serve as putative annotations and should provide preliminary clues for experimentalists.
We also compared our predictions against the eukaryotic subcellular localization database and related predictions by others
on protein localization. Our method is quite generalized and can thus be applied to discover the underlying rules for
protein-protein interactions, genomic interactions, and structure-function relationships, as well as those of other fields of
research.
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Introduction

Over the past decade, progress in the fields of proteomics has

been both rapid and extensive. However, many fundamental

proteomic data sets remain poorly comprehended, including those

built to derive the subcellular localization of proteins. Subcellular

localization, is a basic feature of proteins, underlying the

mechanism by which cells classify newly synthesized proteins

and send them off to their final destinations [1–3].

The prediction of protein localization is paramount in the

pursuit to learn the function and role of proteins involved in all

cellular processes [4]. Localization data can also be used to

evaluate protein information indicated from genetic data [3,5].

Additionally, the subcellular localization of a protein can be used

to guide predictions about its mechanism of action [3,6,7].

Addtionally, one can gain inference on which pathway an enzyme

belongs to with the knowledge of its proper sucellular localization

and basic function in hand [8].

Various methods have been developed to predict the subcellular

localization of proteins. An integrated expert system was developed

to sort proteins into different compartments using sequentially

applied ‘‘if-then’’ rules [9,10]. This method has the advantage that it

could potentially mimic the actual physical decisions in the

underlying biological classification process. Another more probabi-

listic approach [11,12] was developed, using a "k nearest neighbors"

method to classify proteins according to the localization of their

closest relatives. Additionally, some approaches related to sequence

composition are adapted to predict subcellular localization [1]. For

instance, a method combining overall composition with neural

networks [8] has been used to sort proteins directly into different

compartments, and Andrade et al. employed the composition of

surface residues to predict subcellular localization [13]. Moreover, a

database of protein subcellular localization has been presented [14],

in which the authors annotated the entire proteomes of eukaryotic

organisms using a hierarchical prediction method.

To predict subcellular localization correctly, one must integrate

data from a multitude of sources. Progress has recently made [6,15]

via the combination of several attributes into one integrated

predictor, exploiting the predictions of other methods in addtion to

the raw data directly. Data mining methods can be used for feature

integration, such as Bayesian network approaches [6,16,17], decision

trees [18], support vector machines [19], and neural network [6,20].
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In this paper, we develop an adapted frequent pattern tree

method (FPT) [21–23] to generate a minimum set of rules and

apply it to integrate protein localization features of multiple data

sources. Different protein localization features form different

patterns. Accordingly, the number of possible patterns grows

combinatorially with number of features. For a given database,

FPT has the advantage because it exhaustively searches for

interactive patterns among all possible components up to a

specified minimum number of appearances within the database-

support level. In order to get a better prediction of results, the

support should be small, because it controls the degree of statistical

robustness. When the support is set to be 1, FPT can find all

interaction patterns within the development database, including

those often missed by other statistical methods. FPT patterns can

be considered as rules with attributes constructed by the protein

localization features. We build all possible rules to predict protein

locations in the form of: if feature-1 and feature-2, etc., then the

corresponding location expected. Our objective is to predict which

location proteins belong to given their features gathered from

different sources. A problem of using FPT in practice, is that rules

generated by FPT largely correlate or overlap with each other. We

implemented the FPT algorithm to generate a minimum number

of rules (mFPT) without losing detection accuracy.

The mFPT method can extract significant rare patterns from

large amounts of data, and can thus discover the underlying rules

and make predictions. It is a powerful method of data mining and

can be used for scientific and engineering fields such as

bioinformatics, drug discovery, chemometrics, engineering design

and quality control, environmental control. It may also be used to

improve administration of government and private corporations in

sectors as diverse as health care, IRS, credit, database marketing,

internet shopping, and customer relationship management, fraud

detection, financial risk management, insurance etc.. [24]

Our study is motivated by an earlier integrated method for

localizing yeast proteins using a Bayesian formalism. The authors of

this method carefully constructed various sets of yeast proteins of

known localization based on merging, filtering, and standardizing

the annotations in MIPS(Munich Information Center for Protein

Sequences) [25–27], Swiss-Prot and YPD(Yeast Protein Database)

[28], and trained and tested this system against these sets [1].

We compare the predicted results with the actual results for the

holdout sample for evaluating the prediction accuracy with several

statistical measures and find that mFPT performs best in these data

mining methods in predicting protein localization. Rules for

predicting protein localization are built consequently as the results

of frequent patterns. Furthermore, using these rules, we make the

prediction of locations to the overall populations in the entire yeast

genome including 4700 proteins without annotated locations in

database. Setting 0.65 as the minimum hit-rate(ratio of positives over

positives plus negatives) threshold, we obtained 138 proteins that

mFPT predict differently from SNB(Simple naive bayesian method)

[1]. By querying these 138 proteins against the database we derived

novel predictions for the 17 proteins whose localization is heretofore

unknown. These predictions can serve as putative annotations and

should provide preliminary clues for experimentalists. In addition, we

also compared our prediction results to those derived by other

methodologies, setting 0.65 as the minimum hit-rate threshold against

eSLDB(eukaryotic subcellular localization database) [14].

Results

The Datasets
The training and testing data for predicting protein localization

are from Swiss-Prot [31] and MIPS [25,26], and Yeast Protein

Database [28]. One dataset of localized yeast proteins were

prepared [1], called Localized-1342, included 1342 proteins. This

dataset include 704 proteins in Swiss-Prot with high-quality

localization, and 638 proteins with high-quality localization in

MIPS that have low-quality in Swiss-Prot. Here, quality for each

proteins represents the confidence level that a given protein

belongs to one location, based on real experimental evidence.

The dataset Localized-1342 includes all proteins that have non-

conflicting localizations in either MIPS, Swiss-Prot or both, as well

as proteins that are not annotated to have a predicted localization.

We therefore chose this dataset to predict and test the results [1].

The proteins in the Localized-1342 dataset are mainly classified

into 12 sub-cellular compartments. The 12 compartments were

collapsed into five new "generalized" compartments combining

together related smaller compartments. The new compartments

are the nucleus (N), mitochondria (M), cytoplasm (C), membrane

(T), and secretory pathway (E for endoplasmic reticulum or

extracellular). The T compartment included all the integral

transmembrane (plasma membrane, cell membrane and mem-

branes of various compartments such as mitochondria, nucleus,

Golgi) proteins, whereas all the secreted proteins and proteins in

the secretory pathway and small organelles (i.e. proteins in the

Golgi, vacuoles, endoplasmic reticulum, vesicles and peroxisome)

are classified to E compartment.

In order to predict localization using mFPT method, we needed

to generalize the features under consideration. There were 19

genomic features [1] included in our calculation, and they were

divided into three categories in terms of the information they were

derived from: (1) motifs (12 features); (2) overall-sequence (2

features); and (3) whole-genome (5 features). Table 1 gives the

description of 19 different features. For every feature, proteins

were divided into definite numbers of bins in terms of the different

feature values. Then we used numbers(from 1 to 113) to represent

different bins for different features. For every feature, the biggest

number represented no feature record for one protein, and the

other numbers corresponded to different bins separately.

The features in the motif class were based on a small sequence

pattern in a protein. For example, the feature HDEL(the

endoplasmic reticulum retention signal) represented the presence

or absence of the HDEL motif at the C terminus of a protein, then

we used numbers 82 to 84 to represent this feature, for which 82

denoted the absence of the HDEL motif, 83 denoted the presence

of the HDEL motif, and 84 denoted no feature information for this

protein.

The overall-sequence features were based on the entire

sequence of a protein. For instance, the feature PI was the

isoelectric point PI of a protein, while the feature TMS1

represented the number of predicted transmembrane segments

in a protein. At last, the whole genome features were derived from

whole-genome level data. For instance, the feature MAYOUNG

contained the mRNA absolute expression data from the

experiments of Young et al [32], and feature MAYOUNG were

divided in to 10 bin(number 45 to 55), with 55 representing no

feature record for one protein, and 44 to 54 corresponded to

mRNA absolute expression data from low to high.

Input patterns for mFPT are shown in Table 2, in which each

line represents a protein, and each column represents one of 19

genomic features, denoting separately MIT1, GLYC, SIGNALP,

SIG1, NUC1, PI, TMS1, MAYOUNG, KNOCKOUT,

MRDIASD, PLMNEW1, FARN, GGSI, MIT2, HDEL, NUC2,

POX1, MRCYELU, MRCYCSD. The last column indicates the

localization of protein, separately represented by C,N,M,T ,E.

Localized-1342 included 1342 proteins, separately belonging to

five different locations. To get an overall assessment of how the

Frequent Pattern Tree Approach
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Table 1. Features description.

Feature Type Subtype Bins(range) Description

MIT1 Motif Signal 2(1–3) More than one N-terminal residue is cut
(good chance of being mitochondrial)
[28]

GLYC Motif Signal 11(4–14) Number of predicted N-glycosylation
sites (NXS/T) [10]

SIGNALP Motif Signal 2(15–17) Secretory signal peptide according to
the SignalP server [44–46]

SIG1 Motif Signal 2(18–20) If a protein has a signal sequence. The
pattern consists of a charged residue
within the first seven residues, followed
by a stretch of 14 residues with an
average GES hydrophobicity less than -
1 kcal/mol [1]

NUC1 Motif Signal 6(21–27) Four-residue patterns of 1. All basic
amino acid residues (K or R) or 2. Three
basic amino acids (K or R), and one H or
P [10]

PI Overall-sequence Isoelectric point 10(28–38) pI (isoelectric point) values [25–28]

TMS1 Overall-sequence Transmembrane helix 5(39–44) Prediction results of whether a protein
has transmembrane (TM) segments. TM
segments were identified using the GES
hydrophobicity scale [47]. The values
from the scale for residues in a window
of size 20 were averaged, and then
compared against a cutoff value. Boyd
and Beckwith MaxH criteria was used to
set cutoffs as in previous analyses [48–
50]

MAYOUNG Whole-genome Absolute expr.(GeneChip) 10(45–55) Absolute mRNA expression in a
GeneChip experiment [32]

KNOCKOUT Whole-genome Knockout mutation 2(56–58) Knockout mutation (lethal or viable).
[25–28]

MRDIASD Whole-genome Expr.fluctuation (Diauxic shift) 10(59–69) Standard deviation in mRNA expression
level over time (i.e. expression
fluctuation) for a protein in the diauxic
shift experiment [51]

PLMNEW1 Motif Signal 2(70–72) Plasma membrane signal [10]

FARN Motif Signal 2(73–75) C-terminal farnesylation site: the
sequence pattern consists of a cysteine
followed by two aliphatic residues and
one more residue at the C terminus [52]

GGSI Motif Signal 2(76–78) C-terminal geranylgeranylation site [52]

MIT2 Motif Signal 2(79–81) Mitochondrial matrix import sequence:
The N-terminal of the protein has
repeated alternating hydrophobic and
hydrophilic patterns, and the protein
contains at least four S or T residues in
its 20 N-terminal residues.

HDEL Motif Signal 2(82–84) Endoplasmic reticulum retention signal
(HDEL) [10]. We checked for the
presence of this signal in the nine C-
terminal residues

NUC2 Motif Signal 3(85–88) Pattern starting with a P and followed
within three residues by a basic four-
residue segment containing K or R
residues [10]

POX1 Motif Signal 2(89–91) C-terminal peroxisome import signal
([SA](KRH]L) [10]

MRCYELU Whole-genome Expr.fluctuation (Cell cycle) 10(92–102) Standard deviation in mRNA expression
level over time (i.e. expression
fluctuation) for a protein in the
elutriation time series experiment in
Yeast Cell Cycle Analysis Project [53]

Frequent Pattern Tree Approach
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prediction performs, we divided the data samples into training

(70%) and testing (30%) files.

Rules of Predicting Protein Localization
We executed the mFPT algorithm with the following steps:

N Run FPT once, produce a complete set of patterns.

N Sort these rules according to their performances. (Here we

used the product of hit-rate(ratio of positives over positives plus

negatives) and square root of number of hits by the rule.)

N Select the best rule. (We chose highest hit-rate above support

level.)

N Remove the samples hit by this rule, go to step 1 and run FPT

again.

mFPT method prescribes that the lower the minimum support

is, the more accurately the rules are predicted. In consideration of

computing time cost, we chose the minimum support as 2, the

minimum hit-rate as 0.5, and the rules below them were

considered to be insignificant.

In the computation, we predicted five locations individually.

After almost 50 loops, we got 45,31,17,34,15(total 142 rules) rules

respectively for C,N,M,T ,E five locations, as is partly shown in

Table 3 and entirely shown in File S1. At last, we integrated the

five predicting results and obtained the final predictions for

localization.

Table 3 shows 10 best rules when the minimum hit-rate was set

to 0.5, and Table 4 shows all the rules when the minimum hit-rate

was set to 0.65.

In Table 3 and Table 4, the first column represents the hit-rate

of the corresponding patterns, and the second column denotes the

number of hits (positiveznegative). From Table 4, we were able

to explore the meaning of each rule, and by checking the rules we

discovered the 10 most important features affecting protein

localization included MIT1, GLYC, MAYOUNG, GGSI,

POX1, SIGNALP, PLMNEW1, TMS1, KNOCKOUT, NUC2.

For these 10 ten features, MIT1, GGSI, SIGNALP were from

amino acid sequence, GLYC, POX1, PLMNEW1, TMS1, NUC2

were predicted motifs, and only MAYOUN and KNOCKOUT 2

features were from other experiments. This showed that our

predictor does not rely on the experiment information too heavily.

For these rules, the rule C1 states that when protein has no

more than one N-terminal residue cut(feature MIT1 is 1), higher

absolute mRNA expression value(feature MAYOUNG is 54), no

C-terminal geranylgeranylation site(feature GGSI is 76) and no C-

terminal peroxisome import signal(feature POX1 is 89), it has a

higher probability of being in cytoplasmic location(C location).

Rule N2 denotes that when protein has no secretory signal

peptide(feature SIGNALP is 15), more N-glycosylation sites(-

GLYC is 13), no plasma membrane signal(PLMNEW1 is 70) and

no C-terminal peroxisome import signal(feature POX1 is 89), it

has a higher probability of being localized to the nucleus(N

location).

Rule M1 shows when protein has more than one N-terminal

residue cut(MIT1 is 2), has no secretory signal peptide(feature

SIGNALP is 15), no pattern starting with a P and followed within

three residues by a basic four-residue segment containing K or R

residues(NUC2 is 85), no C-terminal farnesylation site(FARN is

73), it has a higher probability of being transmembrane protein(T

location).

Rule T1 shows when protein has no more than one N-terminal

residue cut(MIT1 is 1), more possibility to have transmembra-

ne(TMS1 is 43), viable knockout mutation(KNOCKOUT is 56),

no pattern starting with a P and followed within three residues by a

basic four-residue segment containing K or R residues(NUC2 is

85), no C-terminal peroxisome import signal(POX1 is 89), it has a

higher probability of being transmembrane protein(T location).

Table 2. Input format of FPT.

Mt1 Gly Sig Sig1 NC1 PI TMS MAY KNO MRD PLM FAR GGS MT2 HDE NC2 POX MRC MCC Location

1 4 16 19 27 31 42 54 56 68 70 73 76 79 82 85 89 97 109 (E)

1 9 15 18 27 34 39 54 56 67 70 73 76 79 82 85 89 92 108 (C)

1 13 15 18 27 28 39 50 57 59 70 73 76 79 82 85 89 92 105 (N)

2 5 15 19 27 34 39 53 56 64 70 73 76 79 82 85 89 95 112 (M)

2 5 16 19 27 30 39 53 56 62 70 73 76 79 83 85 89 98 109 (E)

The meaning of category values are as Table 1.
doi:10.1371/journal.pone.0014449.t002

Feature Type Subtype Bins(range) Description

MRCYCSD Whole-genome Expr.fluctuation (Cell cycle) 10 (103–113) Standard deviation in mRNA expression
level over time (i.e. expression
fluctuation) for a protein in the
alphafactor arrest time series
experiment in Yeast Cell Cycle Analysis
Project [53]

For every feature, proteins are divided into a definite number of bins in terms of the different feature values. Then we use number(from 1 to 113) to represent different
bins for different features. For every feature, the biggest number represents no feature record for one protein, and the other numbers correspond to different bins
separately. For example, for feature Mit1, 1 represents no More than one N-terminal residue is cut for one protein, 2 represents More than one N-terminal residue is cut
for one protein, and 3 denotes no feature record for this protein.
doi:10.1371/journal.pone.0014449.t001

Table 1. Cont.

Frequent Pattern Tree Approach
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Rule E1 shows that when protein has more than one N-terminal

residue cut(feature MIT1 is 2), has secretory signal peptide(feature

SIGNALP is 16), has a SIG1 signal(SIG1 is 19,see Table 1), no

pattern starting with a P and followed within three residues by a

basic four-residue segment containing K or R residues(NUC2 is

85), no C-terminal peroxisome import signal(POX1 is 89), it has a

higher probability of being in E location.

In accordance with this analysis, we found that GLYC and

SIGNALP features were informative to the location N, because

N2 and N3 rules both include GLYC and SIGNALP information.

Meanwhile, it could be inferred that proteins in N compartment

were inclined to be of no secretory signal peptide and have more

GLYC sites. For M and E compartment, MIT1 and SIGNALP

were important features, which were both included in rules M1

and E1. M1 and E1 in that they both possessed the feature of

having more than one N-terminal residue cut, and they differed in

that the E compartment contained secretory signal peptide while

the M compartment did not. Compartments C and T were similar

in that no more than one N-terminal residue was cut and differed

in that proteins in location C were inclined to have higher absolute

mRNA expression. All these provided some clues for inferring the

influence of features to the localizations of yeast proteins.

We predicted protein localization for training and testing data

sets using rules obtained above. We evaluated the number of true/

false positives predictions in the testing set and calculated

Receiving Operator Characteristic (ROC) [18], which gives the

quantitative measure of how good the discrimination is in

identifying the protein localization. In Figure 1, green lines show

the ROC curves of predicting C,N,M,E four locations using

mFPT method. We can see that mFPT has its ROC curve

climbing rapidly towards upper left hand corner of the graph,

revealing a good prediction performance.

Comparisons of Different Methods
In order to make comparisons to other data mining methods,

we performed the prediction of protein localization using Bayesian

network approach(BN) [17,33–35], logistic regression method, and

SNB(simple naive Bayesian classifier) [1] method separately.

Figure 1A shows the comparisons of results of ROC curve for 3

different methods for C location for testing samples. Figure 1B,

Figure 1C and Figure 1D show the comparing results of ROC

curve for testing samples for the different methods for the N, M, E

locations respectively.

From Figure 1A, we could not tell which one of three methods

performed best because there were cross parts among their ROC

curves. From Figure 1C and Figure 1D, we could see that the

mFPT and the logistic regression methods performed better than

the Bayesian network method, and the mFPT approach was

moderately better than logistic regression. Only in Figure 1B,

mFPT did not perform better than the other two methods.

However, this did not affect the fact that mFPT gave the best

overall prediction among these methods, which was also reflected

in the next part about comparisons of correct prediction rate.

As mentioned above, we also compared the correct prediction

rate of four different methods. Figure 2 tabulates the comparison

of prediction results per compartment as well as cumulatively for

the various methods taken into consideration. It shows that mFPT

reached a prediction accuracy of 81%, higher than SNB’s

75%,logistic regression’s 77%, and Bayesian network’s 73%, and

thus was the best performer of the methods.

In addition, we used cross validation (5-fold) to further validate

the performance of FPT. In consideration of computing time cost,

we just did cross validation to FPT and the logistic regression

method that demonstrated the most similar performance. To

implement five fold cross validation, we randomly divided 1342

samples into five subsets, each containing separately about 280

proteins. Then we predicted the localization of the proteins in each

subset after training the system on the proteins in the remaining

four subsets. Figure 3 shows the comparison results of the five fold

cross validation test for FPT and logistic regression. We can see

that FPT acquired 79% average correct prediction rate for testing

samples, outperforming logistic regression (72%). The correspond-

ing variances from the average are also compared after a

thousand-fold enlargement. We found that the variance of

performance of FPT is less than that of logistic regression. This

showed that FPT is more robust and powerful method than logistic

regression.

Predict 4700 Yeast Proteins with Unknown Localization
After training and testing, we used our system to attempt to

place the 4700 yeast proteins that did not have a known

localization [1]. To determine the locations of these 4700 yeast

proteins(we call this set the Unknown-4700), we trained the feature

values on the Localized-1342 set, and used the rules from

Localized-1342 to predict the overall compartment population for

the Unknown-4700 proteins. Setting 0.5 as the minimum hit-rate

cut, we retrieved 3787 proteins with predicted locations for the

total 4700 ones using forementioned 142 rules. Figure 4A shows

prediction results for Unknown-4700(see the detailed prediction

results in File S2).

Table 3. Rules of FPT.

Hit-rate Hit-number Rules Rules label Location

0.852 163 76 89 1 54 C1 (C)

0.599 15 89 85 27 1 56 68 C2 (C)

0.603 222 73 76 82 89 79 15 1 57 N1 (N)

0.785 28 89 70 15 13 N2 (N)

0.747 91 73 85 15 27 2 M1 (M)

0.666 6 89 85 27 56 47 36 M2 (M)

0.916 12 89 85 1 56 43 T1 (T)

0.714 7 89 85 27 18 53 62 T2 (T)

0.789 19 89 85 27 2 19 16 E1 (E)

1 2 89 85 5 67 16 E2 (E)

The meaning of category values are as table 1.
doi:10.1371/journal.pone.0014449.t003

Table 4. Rules of FPT used to predict Unknown-4700 with
0.65 as hit-rate threshold cut.

Hit-rate Hit-number Rules Rules label Location

0.852 163 76 89 1 54 (C1) (C)

0.785 28 89 70 15 13 (N2) (N)

0.666 18 73 82 89 79 15 1 11 (N3) (N)

0.747 91 73 85 15 27 2 (M1) (M)

0.916 12 89 85 1 56 43 (T1) (T)

0.789 19 89 85 27 2 19 16 (E1) (E)

The meaning of category values are as Table 1.
doi:10.1371/journal.pone.0014449.t004

Frequent Pattern Tree Approach
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Figure 1. ROC curve comparisons of testing sample for 4 different compartments for 3 different methods. A,B,C,D show the
comparison results separately for C, N, M, E compartment.
doi:10.1371/journal.pone.0014449.g001

Figure 2. Comparisons of correct prediction rate for four methods.
doi:10.1371/journal.pone.0014449.g002
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In order to explore more deeply what we found using mFPT, we

set the minimum hit-rate as 0.65 to predict the Unknown-4700

again. In this way, we increased the correct prediction rate, and

therefore retreived fewer proteins with predicted location for the

4700 proteins compared with the results when we used 0.5 as the

minimum hit-rate threshold. This time we got 6 rules as shown in

Table 4, and only predicted 1261 proteins using these rules. We

then compared the different parts of predictions of SNB and

mFPT for Unknown-4700 and obtained 138 proteins as shown in

Table S1. Meanwhile, we searched for these proteins in

SGD(Saccharomyces Genome Database) and Swiss-Prot database

to make comparisons and explore their localization information.

In Table S1 there are total 138 proteins, 17 of which (12%) have

no annotated locations in SGD, 77 of which (56%) were correctly

predicted by mFPT based on SGD or Swiss-Prot. The percentage

of correct predictions for five locations are respectively

50%,31%,62%,95%,29%,(C,N,M,T,E).

We found that for the N and E compartments of Unknown-

4700, the proteins mFPT predict correctly are only 31% and 29%,

which was potentially due to there being only 1342 proteins with

 

 

Figure 3. Comparisons of correct prediction rate using five fold cross validation test for FPT and logistic regression method. The
variances are enlarged to 1000 times to see the comparison clearly.
doi:10.1371/journal.pone.0014449.g003

Figure 4. Prediction of localization for the entire 6042 yeast proteins.
doi:10.1371/journal.pone.0014449.g004
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limited features as the training samples for predicting five locations

of preteins, almopst certainly did not reflect the totality of

characteristics of the yeast proteome. We believe that with more

features and proteins included, mFPT coud have outputted a

greater number of predictions.

For the Unknown-4700, we predicted some new tentative

localizations for 17 proteins that currently do not have any

associated localization, whose annotations are described in detail

in the discussion section. These predictions can serve as putative

annotations and should be experimentally validated. Meanwhile,

they provide preliminary clues for experimentalists.

Finally, we integrated results of prediction of both the

Unknown-4700 dataset and Localize-1342 dataset, and acquired

the predicting results of the entire yeast genome (6042 proteins),

which is shown in Figure 4B. From Figure 4B, we could see that

nucleus proteins occuppied the largest share of the predictions for

localization, probably because that the training data were strongly

biased towards nucleus proteins [1].

We also compared our prediction results with a 0.65 minimum

hit-rate threshold against eSLDB(eukaryotic subcellular localiza-

tion database) [14], and related prediction by others on protein

localization (see SI Text and File S3).

Discussion

From Table S1, we could find that for C location, there are 2

proteins newly predicted. YHR020W colocalizes with ribosome

[36], and should belong to cytoplasm location, in that ribosome

proteins occupy 7.5% of cytoplasm location [3]. YNL327W

belongs to protein of cellular bud or cell wall [29,30].

For the N location predicted by mFPT, there were 11 proteins

newly predicted. YLR149C is a putative protein of unknown

function, over expression of which causes a cell cycle delay or arrest

[37]. 12.3% proteins of nucleus location are related with cell cycle

and mitosis [3], so, it might be one nucleus protein. YGL215W is a

Cyclin-like protein that interacts with Pho85p. YOR043W is a

protein that along with its binding partner Psr1p, regulates growth

during the diauxic shift, and also serves as a negative regulator of G1

cyclin expression. YPL219W is a Cyclin, interacts with Pho85p

cyclin-dependent kinase (Cdk) to phosphorylate, and regulates

glycogen synthase, and YBL047C is cellular bud neck proteins.

These four proteins are all related with the cell cycle and might be

classified to the nuclear compartment. The gene of YHR219W is

located in the telomere region on the right arm of chromosome

VIII, and should also belong to nuclear compartment. YPR204W

affects DNA helicase activity [38], and therefore is located in the

nuclear compartment. YEL062W is a protein with a possible role in

regulating expression of the nitrogen permeases, and YNL229C is a

nitrogen catabolite repression transcriptional regulator that acts by

inhibition of GLN3 transcription when nitrogen is in abundance.

These two proteins are both associated with transcription, and

therefore might be classified to nuclear compartment. YPL054W is

a Zinc-finger protein of unknown function. YIL151C is a putative

protein of unknown function, predicted to contain a PINc (PilT N

terminus) domain. For these two proteins, there is no evidence that

would lead one to assign them to the nuclear compartment.

For M location predicted by mFPT, there was only 1 protein

newly predicted. The gene of YDL183C is on the right arm of

Table 5. The FP-tree in Example 1.

Tid Items bought (Ordered) frequent items

1 F, A, C, D, G, I, M F, C, A, M

2 A, B, C, F, L, M, O F, C, A, B, M

3 B, F, H, J, O F, B

4 B, C, K, S C, B

5 A, F, C, E, L, M, N F, C, A, M

doi:10.1371/journal.pone.0014449.t005

Figure 5. The FP-tree in Example 1.
doi:10.1371/journal.pone.0014449.g005
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chromosome IV [39]. We looked up this protein in the SGD and

YRc but did not find any related evidence to make it localized to

M compartment.

mFPT proved to be very effective for predicting T localization

as there was only one protein YOL007C newly predicted. SGD

showed that YOL007C localizes to the other side of the bud neck

and the vacuole, and according to TMHMM, a program of

predicting transmembrane helices of proteins [40], it might have

one TM-helix, which would be consistent with our prediction.

For E location predicted by mFPT, there were only 2 proteins

newly predicted. YJL193W is putative protein of unknown

function, predicted to encode a triose phosphate transporter

subfamily member based on phylogenetic analysis [41], and is

related with transport, and might be classified to E location.

YNL322C is Cell wall glycoprotein involved in beta-glucan

assembly, and should belong to E location.

Conclusion
In conclusion, we have applied a mFPT approach to predict

protein localization integrating all kinds of genomic features. The

ROC curve of prediction results for Localizaed-1342 dataset

indicated that this approach performs better than logistic regression,

Bayesian network and other methods which are commonly used.

We also made this prediction for the Unknown-4700 dataset using

FPT. When we chose 0.65 as the minimum hit-rate, we got 1261

proteins with predicted locations. Comparing the different part of

predictions of SNB and FPT for the Unknown 4700, we acquired

138 proteins, among which 77(56%) were predicted correctly by

FPT compared with SGD or Swiss-Prot or Mips. We also provided

new tentative localizations for 17 proteins that currently do not have

any associated localization. These predictions can serve as leads for

future experimentation.

It stands to reason that the addition of more data and better

features to our method would lead to better distinction of

localization among the compartments as well as to greater

accuracy of prediction. Also, it is anticipated that this approach

could be used to uncover protein interactions and localizations in

other organisms and may also be applied to studies of gene

networks. As a general tool, mFPT has the potential to be applied

for not only biology but other areas in science and industry where

large data and information mining are required.

Materials and Methods

Method of Frequent-pattern Mining
FP(frequent patterns) mining is a very important approach in the

field of data mining used to extract significant and potentially useful

patterns from some large database. And the information and

knowledge gained can be applied to a diverse body of fields: from

market analysis to fraud detection, customer retention, production

control, as well as to other avenues of science inquiry [24].

First, we check Frequent-pattern mining [21,22]. Let

I~A1,A2, . . . ,Am be a set of items, and a transaction database

DB~T1,T2, . . . ,Tn, where Ti(i~1 . . . n) is a transaction containing

a set of items in I . The support (or occurrence frequency) of a pattern

Q, where Q is a set of items, is the number of transactions containing Q
in DB. Pattern Q is frequent if Q’s support is bigger than a predefined

minimum support threshold, j. Given a transaction database DB and a

minimum support threshold j, finding the complete set of frequent

patters is called the frequent-pattern mining problem. [21,22].

Mining frequent patterns in transaction databases, has been

studied popularly in data mining. Most previous studies on

frequent pattern mining adopt the Apriori algorithm [42]. This

method has bottlenecks, which are the huge candidate sets and

multiple scans of the entire database with high computational

costs.

FPT method discovers frequent patterns in transactional

databases by FP-growth arithmetic. FP-growth [22] first performs

a frequent item-based databases projection to the large database

and then a compact data structure, FP-tree, is constructed, which

is condensed, but complete for frequent pattern mining.

Therefore, mining database problem is transformed into mining

one compact tree. The FPT approach has several advantages

compared with some representative frequent-pattern mining

methods for data mining: It alleviates the multi-scan problem

and improves the candidate pattern generation; it is faster than

Apriori and performs better than the tree projection algorithm

[43] and it shows advantages particularly when the data set

contain many patterns or the frequent patterns are long [21,22].

A frequent-pattern tree (or FP-tree in short) is a tree structure

and it can be designed as follows [21].

1. It comprises one root labeled as "null", a set of item-prefix

subtrees as the children of the root, and a frequent-item-header

table.

2. Each node in the item-prefix subtree includes three fields: item-

name, count, and node-link, where item-name denotes which

item this node represents, count denotes the number of

transactions represented by the portion of the path reaching

this node, and node-link links to the next node in the FP-tree

carrying the same item-name. Node-link is null if there is no

next node.

3. Each entry of the frequent-item-header table is made up of two

fields, (1) item-name and (2) head of node-link (a pointer

pointing to the first node in the FP-tree carrying the item-

name).

According the design principle, after scanning all the transactions,

the FP-tree could be constructed. First, a scan of DB produces a list of

frequent items, such as (F : 4),(C : 4),(A : 3),(B : 3),(M : 3) (here

F ,C,A,B,M represent items, and the number after ":" indicates the

support), and items in this list are ordered in frequency-descending

order. Second, the root of a tree labeled with "null" is created.

Table 5 is an example for the transaction database, DB, in

which the minimum support threshold is 3. The FP-tree is

constructed as follows by scanning the transaction database DB
twice.

1. The scan of the first transaction construct the first branch of the

tree: v(F : 1),(C : 1),(A : 1),(M : 1)w. Here the frequent

items in the transaction are listed in terms of the order in the

list of frequent items.

2. For the second transaction, its (ordered) frequent item list

vF ,C,A,B,Mw shares a common prefix v F, C, Aw with

the existing path vF, C, A, Mw, so the count of each node

along the prefix is increased by 1, and one new node (B : 1) is

created and linked as a child of (A : 2) and another new node

(M : 1) is created and linked as the child of (B : 1).

3. For the third transaction, F ’s count is incremented by 1, and a

new node (B : 1) is created and linked as a child of (F:3),

because its frequent item list v F, Bw shares only the node

v F w with the F -prefix subtree.

4. Scanning the fourth transaction leads to the construction of the

second branch of the tree, v(C:1), (B:1)w.

5. For the last transaction, its frequent item list vF, C,A,Mw is

same with the first one. Hence, the path is shared with the

count of each node along the path incremented by 1.

Frequent Pattern Tree Approach
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In order to promote tree traversal, an item header table is built

in which each item points to its first occurrence in the tree via a

node-link. Nodes with the same item-name are linked in sequence

by such node-links. After scanning all the transactions, the tree,

accompanied by the related node-links, are shown in Figure 5.

Logistic Regression
Features are denoted by X1,X2, . . . ,Xn, and the locations are

denoted by variable Y . Five files of features are constructed

respectively for 5 location prediction. For every individual location

prediction, the output variable Y is set to binary format. Y~1
represents protein belong to this location, while Y~0 denotes not.

The logistic model is of the form log P(Y~1)
1{P(Y~1)

~azbX , where the

vector X consists of X1,X2, . . . ,Xn, and P represents probability

[18]. We use SAS(SAS 8.2) software to implement the logistic

regression process.

Supporting Information

File S1 Rules for the predictions of 4700 proteins with the hit-

rate threshold cut 0.5. The first two columns represent respectively

the hit-rate and hit-number of the FPT rules. The last column

represents prediction locations, and between them are FPT rules.

Found at: doi:10.1371/journal.pone.0014449.s001 (0.00 MB

TXT)

File S2 Predictions for the entire yeast proteome with the hit-

rate threshold cut 0.5. There are 3,787 proteins with predicted

locations by FPT using 142 rules (see the rules in File S1). We

compared these prediction results against SNB method. The first

column (ID) represents proteins. The second column (SNB)

represents prediction results of SNB. The third column (FPT)

represents the prediction results of FPT at 0.5 hit-rate threshold,

and the last column(hit-rate) represents the hit-rate of rules that

FPT use.

Found at: doi:10.1371/journal.pone.0014449.s002 (0.07 MB

TXT)

File S3 Prediction difference between our work and eSLDB.

There are 504 proteins predicted differently by our FPT method

and eSLDB among 1,267 proteins we acquired at 0.65 hit-rate

threshold cut, 98 proteins of which we randomly selected and

looked up in both SGD and YRC (http://images.yeastrc.org/). In

File S3, the first column (ID) represents proteins. The second

column (FPT065) represents prediction results of FPT at 0.65 hit-

rate threshold. The third column (HITRATE) represents the hit-

rate of rules that FPT use. The fourth column (eSLDB) represents

prediction results of eSLDB. The fifth column (locations) denotes

the locations recorded in Database, with "un" denoting that the

there is no explicit description about the localization of this protein

from the three databases. And the sixth and seventh columns

denote separately the source of database and descriptions in the

databases (SGD or YRC).

Found at: doi:10.1371/journal.pone.0014449.s003 (0.01 MB

TXT)

Table S1 Differences in prediction results of Unknown 4700

between FPT and SNB. Our FPT uses 0.65 as hit-rate threshold,

and there are totally 138 proteins in this table, which are predicted

using the rules in Table 4. N represents nucleus, M for

mitochondria, C for cytoplasm, T for membrane, and E for

endoplasmic reticulum or extracellular. Here, the database

includes SGD (Saccharomyces Genome Database), Swiss-Prot,

and Mips. About the location from database column, the default is

from SGD, and the items from Mips and Swiss-Prot have been

indicated. Unknown denotes that there is no explicit description

about the localization of this protein from the three databases. For

Swiss-Prot, the term "Potential" indicates that there are some

logical or conclusive evidences that the given annotation could

apply. This nonexperimental qualifier is often used to present the

results from protein sequence analysis tools, which are only

annotated, if the results make sense in the context of a given

protein. The term "Probable" is stronger than "Potential", and

there must be at least some experimental evidence that indicates

that the given information is expected to be found in the natural

environment of a protein.

Found at: doi:10.1371/journal.pone.0014449.s004 (0.05 MB

PDF)

Text S1 Supplementary results of comparisons between FPT

and eSLDB.

Found at: doi:10.1371/journal.pone.0014449.s005 (0.03 MB

PDF)

Acknowledgments

We thank Mr. Jeremy Adler for helping editing the English text.

Author Contributions

Conceived and designed the experiments: JW EW XW. Performed the

experiments: JW CL. Analyzed the data: JW CL EW XW. Contributed

reagents/materials/analysis tools: JW EW XW. Wrote the paper: JW CL

EW XW.

References

1. Drawid A, Gerstein M (2000) A bayesian system integrating expression data with

sequence patterns for localizing proteins: Comprehensive application to the yeast
genome. J Mol Biol 301: 1059–1075.

2. Alexandrov V, Gerstein M (2001) Calculating populations of subcellular

compartments using density matrix formalism. Int J Quantum Chemistry 4:
188–195.

3. Kumar A, Agarwal S, Heyman J, Matson S, Heidtman M, et al. (2002)
Subcellular localization of the yeast proteome. Genes Dev 16: 707–719.

4. Huang WL, Tung CW, Ho SW, Hwang SF, Ho SY (2008) Proloc-go: Utilizing
informative gene ontology terms for sequence-based prediction of protein

subcellular localization. BMC Bioinformatics 8: 80.

5. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, et al. (2001) A comprehensive

two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci

USA 98: 4569–4574.

6. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, et al. (2003) A bayesian

networks approach for predicting protein-protein interactions from genomic
data. Science 302: 449–453.

7. Drawid A, Jansen R, Gerstein M (2000) Genome-wide analysis relating
expression level with protein subcellular localization. Trends Genet 16: 426–30.

8. Reinhardt A, Hubbard T (1998) Using neural networks for prediction of the

subcellular location of proteins. Nucl Acids Res 26: 2230–2236.

9. Nakai K, Kanehisa M (1991) Expert system for predicting protein localization

sites in gram-negative bacteria. Proteins: Struct Funct Genet 11: 95–110.

10. Nakai K, Kanehisa M (1992) A knowledge base for predicting protein

localization sites in eukaryotic cells. Genomics 14: 897–911.

11. Nakai K, Horton P (1996) A probabilistic classification system for predicting the

cellular localization sites of proteins. Intell Sys Mol Biol 4: 109–115.

12. Nakai K, Horton P (1997) Better prediction of protein cellular localization sites

with the k nearest neighbors classifier. Intell Sys Mol Biol 5: 147–152.

13. Andrade M, O’Donoghue S, Rost B (1998) Adaptation of protein surfaces to
subcellular location. J Mol Biol 276: 517–525.

14. Pierleoni A, Martelli PL, Fariselli P, Casadio R (2006) esldb: eukaryotic
subcellular localization database. NUCLEIC ACIDS RES 35: D208–D212.

15. Zhang LV, Wong SL, King OD, Roth FP (2004) Predicting co-complexed protein
pairs using genomic and proteomic data integration. BMC Bioinformatics 5: 38.

16. Friedman N (2004) Inferring cellular networks using probabilistic graphical
models. Science 303: 799–805.

17. Friedman N, Koller D (2003) Being bayesian about network structure: A

bayesian approach tostructure discovery in bayesian networks. Machine

Learning 50: 95–126.

18. Lin N, Wu B, Jansen R, Gerstein M, Zhao H (2004) Information assessment on

predicting protein-protein interactions. BMC Bioinformatics 5: 154.

Frequent Pattern Tree Approach

PLoS ONE | www.plosone.org 10 January 2011 | Volume 6 | Issue 1 | e14449



19. Brown M, Grundy W, Lin D, Cristianini N, Sugnet C, et al. (2000) Knowledge-

based analysis of microarray gene expression data by using support vector
machines. Proc Natl Acad Sci USA 97: 262–267.

20. Lu LJ, Xia Y, Paccanaro A, Yu H, Gerstein M (2005) Assessing the limits of

genomic data integration for predicting protein networks. Genome Res 15:
945–953.

21. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge

Discovery 8: 53–87.

22. Han J, Pei J (2000) Mining frequent patterns by pattern-growth: Methodology
and implications. ACM SIGKDD Explorations Newsletter 2: 14–20.

23. Wang J, Li C, Wang E, Wang X (2009) Uncovering the rules for protein-rotein
interactions from yeast genomic data. Proc Natl Acad Sci USA 106: 3752–3757.

24. Han JW, Kamber M (2006) Data mining concepts and techniques. San
Fransisco: Morgan Kaufmann. pp 475.

25. Frishman D, Heumann K, Lesk A, Mewes HW (1998) Comprehensive,

comprehensible, distributed and intelligent databases: current status. Bioinfor-
matics 14: 551–561.

26. Frishman D, Mewes HW (1997) Pedantic genome analysis. Trends Genet 13:
415–416.

27. Mewes HW, Hani J, Pfeiffer F, Frishman D (1998) Mips: a database for protein

sequences and complete genomes. NuclAcids Res 26: 33–37.
28. Hodges PE, McKee AH, Davis BP, Payne WE, Garrels JI (1999) The yeast

proteome database (ypd): a model for the organization and presentation of
genome-wide functional data. Nucl Acids Res 27: 69–73.

29. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, et al. (2003) Global
analysis of protein localization in budding yeast. Nature 425: 686–691.

30. Riffle M, Davis T (2010) The yeast resource center public image repository: A

large database of fluorescence microscopy images. BMC Bioinfromatics 11: 263.
31. Bairoch A, Apweiler R (2000) The swiss-prot protein sequence database and its

supplement trembl in 2000. Nucl Acids Res 28: 45–48.
32. Holstege FCP, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, et al. (1998)

Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–728.

33. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bayesian network to
analyze expression data. Computational Biology 7: 601–620.

34. Nachman I (2004) Probabilistic modeling of gene regulatory networks from data.
In: Ph.D. dissertation. Hebrew University.

35. Stephenson T (2000) An introduction to bayesian network theory and usage
Available: http://wwwidiapch/publications/todd00abibabshtml.

36. Tatusov R, Galperin MY, Natale DA, Koonin EV (2000) The cog database: a

tool for genome-scale analysis of protein functions and evolution. Acids Res 28:
33–6.

37. Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional
profiling of the saccharomyces cerevisiae genome. Nature 418: 387–91.

38. Shiratori A, Shibata T, Arisawa M, Hanaoka F, Eki T (1999) Systematic

identification, classification, and characterization of the open reading frames

which encode novel helicase-related proteins in saccharomyces cerevisiae by

gene disruption and northern analysis. Yeast 15: 219–53.

39. Verhasselt P, Voet M, Volckaert G (1995) New open reading frames, one of

which is similar to the nifv gene of azotobacter vinelandii, found on a 12.5 kbp

fragment of chromosome iv of saccharomyces cerevisiae. Yeast 10: 961–6.

40. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting

transmembrane protein topology with a hidden markov model: Application to

complete genomes. J Mol Biol 305: 567–580.

41. Paulsen I, Sliwinski MK, Nelissen B, Goffeau A, Saier MH, Jr. (1998) Unified

inventory of established and putative transporters encoded within the complete

genome of saccharomyces cerevisiae. FEBS Lett 430: 116–25.

42. Agrawal R (1994) Fast algorithms for mining association rules. In: Proc. 20th Int.

Conf. Very Large Data Bases, VLDB. p. 487̈ C499.

43. Agarwal R, Aggarwal C, Prasad V (2001) A tree projection algorithm for

generation of frequent itemsets. Journal of Parallel and Distributed Computing

61: 350–C371.

44. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network

method for identiHcation of prokaryotic and eukaryotic signal peptides and

prediction of their cleavage sites. IntJNeural Sys 8: 581–599.

45. Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the

prediction of signal peptides and other protein sorting signals. Protein Eng 12:

3–9.

46. von Heijne G, Nielson H, Engelbrecht J, Brunak S (1997) Identification of

prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.

Protein Eng 10: 1–6.

47. Engelman DM, Steitz TA, Goldman A (1986) Identifying non-polar transbilayer

helices in amino acid sequences of membrane proteins. Annu Rev Biophys

Biophys Chem 15: 321–353.

48. Boyd D, Schierle C, Beckwith J (1998) How many membrane proteins are there?

Protein Sci 7: 201–205.

49. Klein P, Kanehisa M, DeLisi C (1985) The detection and classification of

membrane-spanning proteins. Biochim Biophys Acta 815: 468–476.

50. Gerstein M, Lin J, Hegyi H (2000) Protein folds in the worm genome. Pac Symp

Biocomp 5: 30–42.

51. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic

control of gene expression on a genomic scale. Science 278: 680–686.

52. Stryer L (1996) Biochemistry. New York: W.H Freeman and Company.

53. Spellman P, Sherlock G, Zhang M, Iyer V, Anders K, et al. (1998)

Comprehensive identification of cell cycle-regulated genes of the yeast

saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:

3273–3297.

Frequent Pattern Tree Approach

PLoS ONE | www.plosone.org 11 January 2011 | Volume 6 | Issue 1 | e14449


