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Mentha piperita L. (peppermint) possesses antimicrobial properties, but little is known of its ability to modulate macrophages.
Macrophages are essential in bacterial infection control due to their antimicrobial functions and ability to link the innate and
adaptive immune responses. We evaluated the effects of the peppermint leaf hydroalcoholic extract (LHAE) on cultured murine
peritoneal macrophages stimulated or not with lipopolysaccharide (LPS) in vitro. Vehicle-treated cells were used as controls.
The constituents of the extract were also identified. Epicatechin was the major compound detected in the LHAE. LPS-induced
macrophage death was reversed by incubation with LHAE (1–30 μg/ml). Higher concentrations of the extract (≥100 μg/ml)
decreased macrophage viability (49–57%) in the absence of LPS. LHAE (1–300μg/ml) attenuated H2O2 (34.6–53.4%) but not
nitric oxide production by these cells. At similar concentrations, the extract increased the activity of superoxide dismutase
(15.3–63.5-fold) and glutathione peroxidase (34.4–73.6-fold) in LPS-treated macrophages. Only LPS-unstimulated macrophages
presented enhanced phagocytosis (3.6–6.6-fold increase) when incubated with LHAE (3–30 μg/ml). Overall, the LHAE obtained
from peppermint modulates macrophage-mediated inflammatory responses, by stimulating the antioxidant pathway in these
cells. These effects may be beneficial when the excessive activation of macrophages contributes to tissue damage during
infectious disease.

1. Introduction

Macrophages are on the first line of the host’s immune
response to bacterial infection. Indeed, these cells play detri-
mental roles in pathogen recognition, bacterial killing, and
antigen presentation, leading to further activation of adaptive
immune responses (see for review [1–3]). Gram-negative

bacterial strains are major pathogens causatives of severe
infectious diseases in humans, associated with high mortality
rates [4, 5]. This is due not only to their ability to become
resistant to the available antimicrobials [4] but also depends
on an effective macrophage response to these pathogens [6].

The production of oxidant species by macrophages is a
hallmark of the inflammatory response to infection (see for
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review [7, 8]). Oxidant species such as hydrogen peroxide
(H2O2) and superoxide (O2

−) are produced following
phagocytosis of the pathogen by these cells as part of their
machinery to respond to harmful insults [9]. Alongside an
excessive nitric oxide (NO) production, increased levels of
prooxidant species may lead to damage and poor perfu-
sion of vital organs of the host, contributing to multiple
organ failure; thus, to counteract this response, antioxidant
pathways are activated [10].

Natural antioxidants including phenolic compounds
have been identified in a variety of plants. Additionally,
antimicrobial properties have been attributed to these
compounds, suggesting them to be potential therapies for
bacterial infections. Mentha piperita L., a member of the
family Lamiaceae and popularly known as peppermint, is
native to the Mediterranean region and has been spread
worldwide due to its medicinal properties, taste, and aroma
[11]. Its medicinal properties include antitumor, antimicro-
bial, and antioxidant actions and have been reported
especially for its essential oil [12–17]. Of importance, M.
piperita essential oil was previously shown to be effective
against Gram-negative and Gram-positive bacteria and to
act as a potential antioxidant in vitro [12]. This essential oil
was also shown to reduce the numbers of leukocytes in a
murine model of skin inflammation [18] and modulate
cytokine production in vivo [19]. However, the underlying
mechanisms of the effects of M. piperita on macrophages
remain unclear. Considering peppermint antioxidant and
anti-inflammatory potentials, we hypothesized whether its
leaf hydroalcoholic extract (LHAE) is able to modulate
macrophage-mediated inflammatory responses. Therefore,
the aim of this study was to investigate the effects of the
peppermint leaf hydroalcoholic extract (LHAE) on cultured
murine peritoneal macrophages in vitro.

2. Material and Methods

2.1. Plant. The leaves ofM. piperitawere collected in Septem-
ber at Santa Luzia, Maranhão, Brazil (4°4′8″S, 45°41′24″W). A
voucher specimen (number 01275) was deposited in the her-
barium Ático Seabra of the Federal University of Maranhão,
São Luís, Brazil.

2.2. Preparation of the Crude Hydroalcoholic Extract. The
collected leaves were washed in running water before being
dried under forced air circulation at 45°C. The dried leaves
were triturated, and the resulting powder was macerated for
10 days in 70% ethyl alcohol (Sigma-Aldrich, St. Louis,
MO, USA) at room temperature. The mixture was filtered
through cellulose filter paper (Whatman No. 4, GE Health-
care UK, Amersham, UK) and evaporated to dryness
under reduced pressure using a rotary evaporator (Eyela
N-1200BV-W, Tokyo, Japan) at 40°C. The residual solvent
was removed in a vacuum centrifuge at 40°C to yield
crude ethanol extracts of leaves.

2.3. Chemical Characterization by High-Performance Liquid
Chromatography (HPLC). For HPLC analysis, the pepper-
mint LHAE was dissolved in methanol and water to a final

concentration of approximately 5mg/ml and filtered through
a 0.22μm nylon filter. An HPLC (Surveyor Plus/Finnigan)
coupled to an ultraviolet-visible detector (HPLC-UV-Vis),
with an ACE 5 C18 reverse phase analytical column
(250× 4.60mm, 5μm, ACE) protected by a C18 precolumn
(4× 3mm, 5μm, Gemini, Phenomenex), was used for the
analysis. Compounds were separated at room temperature
using an elution gradient at a flow rate of 0.6ml/min. Mobile
phases consisted of purified water containing 0.1% acetic acid
(A) and methanol (B). The following gradient was used:
0–2min, 5% B; 2–10min, 25–40% B; 10–20min, 40–50% B,
20–30min, 50–60% B; 30–40min, 60–70% B; and 40–
50min, 70–80% B. Injection volume was 10μl and UV-Vis
detection was performed at 254nm. Ursolic acid, epicatechin,
caffeic acid, rutin, quercetin, naringenin, andkaempferol stan-
dards were diluted and analyzed under the same conditions.

2.4. Macrophage Assays

2.4.1. Animals. Nonfasted outbred male Swiss mice (2-3
months old) were used. Mice were obtained from the ani-
mal’s facility of the Universidade CEUMA (UNICEUMA).
Mice were kept in a climatically controlled environment
(room temperature of 22± 2°C and humidity of around
60%) under 12 : 12 h light-dark cycle (lights on 07:00 h). All
procedures were approved by the Ethics Committee of
UNICEUMA and carried out in accordance with the
Brazilian Society for Animal Welfare (SBCAL).

2.4.2. Macrophage Culture and Viability. Peritoneal cells
were collected from animals injected intraperitoneally with
1ml of phosphate-buffered saline (PBS, Sigma-Aldrich,
Brazil) containing 1% oyster glycogen (Sigma-Aldrich,
Brazil). Briefly, 18 h following injection, the peritoneal
cavity was washed with 10ml of cold PBS and the perito-
neal cells were harvested, centrifuged (10min, 4°C), and
resuspended (final concentration of 2× 106 cells/ml) in
DMEM-Glutamax® (Life Technologies, Brazil) containing
10% FCS (v/v, Life Technologies, Brazil) and 1x penicillin-
streptomycin (Sigma-Aldrich, Brazil). Cells (6× 105/well)
were incubated in 96-well plates, at 37°C under 5% CO2,
and after 2 h, nonadhered cells were removed and the
adherent cells (macrophages) were incubated with either
peppermint LHAE (1–300μg/ml) or vehicle (1% dimethyl
sulfoxide (DMSO, Sigma-Aldrich, Brazil) in PBS), and after
15min, stimulated with K. pneumoniae lipopolysaccharide
(LPS, 100ng/ml in PBS, Sigma-Aldrich, Brazil) or PBS for
24 h. After this period, the supernatant was collected and
stored at −80°C for further analysis of NO2

−/NO3
− (NO

end products) and H2O2 concentrations. For analysis of
macrophage viability, the remaining cells were incubated
with PrestoBlue® reagent (1 : 10, Life Technologies, Brazil)
for 90min; and then, the absorbances were read at 550 and
650 nm. Results were calculated according with the manu-
facturer’s instructions and are expressed as absorbance in
percentage (%) of cell viability in relation to vehicle/
PBS-treated cells.

2.4.3. Phagocytosis. In a separate series of experiments, peri-
toneal macrophages were obtained and cultured (6× 105/
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well) as described above in eight chamber culture slides (BD
Falcon). Just after removal of nonadherent cells, macro-
phages were incubated with 2μm fluorescent latex beads
(1 : 100; 5μl/well; Sigma-Aldrich, Brazil), for 24h as
described by Fernandes et al. [20]. After the incubation
period, the cell culture medium was removed and each well
was washed three times with PBS. Wells were fixed in 2%
paraformaldehyde for 10min and washed three times with
PBS for the removal of excessive paraformaldehyde. Then,
10μl PBS were added per well and slides were covered with
a glass slip. Slides were analyzed in a fluorescence microscope
(Zeiss Axio Image Z2, German, ×40 objective, bright field).
Two lots of 100 cells were counted for each well, and the
average for each well was considered as an n number. Results
are expressed as percentage of cells containing beads and
number of phagocytosed beads per 100 cells.

2.4.4. NO End Product (Nitrate NO3
− plus Nitrite NO2

−)
Measurement. The NO2

−/NO3
− content was measured by

the Griess reaction assay as an indicator of NO production
in supernatant samples as previously described [21]. NO3

−

was reduced to nitrite (NO2) by incubating 80μl of the
sample with 20μl of 1U/ml nitrate reductase and 10μl of
1mM NADPH for 30min at 37°C in a 96-well plate. Next,
100μl Griess reagent (5% v/v H3PO4 containing 1% sulfanilic
acid and 0.1% N-1-napthylethylenediamine) was added and
incubated for 15min at 37°C. Absorbance at 550nm was
immediately measured using a spectrophotometer (Plate
reader MB-580; Heales, Shenzhen, China). After subtrac-
tion of background readings, the absorbance in each
sample was compared with that obtained from a sodium
nitrite (0–100μM) standard curve and expressed as NOx

concentrations (μM).

2.4.5. Measurement of H2O2 Concentrations. H2O2 produc-
tion by macrophages was measured by using a H2O2/
peroxidase assay kit (Amplex Red H2O2/Peroxidase assay
kit, Invitrogen, Brazil), as described by Mendes et al. [21].
Briefly, 50μl of the supernatants were incubated with 50μl
of a 0.05M NaPO4 (pH7.4) solution containing 0.2U/ml
horseradish peroxidase (HRP) and 25.7mg/ml Amplex Red
reagent (10-acetyl-3,7-dihydroxyphenoxazine) for 2 h, at
37°C. Samples incubated with 0.05M NaPO4 only were used
as controls. After incubation, the absorbance was read at
560nm. After subtraction of background readings, the absor-
bance in each sample was compared with that obtained from
a H2O2 standard curve (0–40μM). H2O2 concentrations are
expressed in μM.

2.4.6. Antioxidant Enzyme Activities

(1) Sample Preparation. In another series of experiments,
macrophages were obtained, isolated, cultured (6× 105/well)
in 24-well plates, and stimulated as described above. Follow-
ing incubation with LPS (24 h), the supernatant was removed
and 500μl of 0.05M NaPO4 (pH7.4) (containing ethylenedi-
aminetetraacetic acid (EDTA), 1mM) was added to each
well. Plates were placed on ice for 15min. Then, cells were
scraped from each well, transferred to tubes, and lysed by
three snap freezing/defrosting times. Tubes were centrifuged

at 10,000×g for 10min at 4°C, and the supernatants were
used for the enzyme activity assays.

(2) Superoxide Dismutase (SOD) Activity Assay. SOD activity
was measured as described by Ukeda et al. [22], with
modifications. Briefly, 20μl of sample were incubated with
200μl of a solution containing 2.5ml sodium carbonate
buffer (50mM; pH9.4) and 0.1ml of a mixture containing
xanthine (3mM), EDTA (3mM) and 2,3-Bis-(2-Methoxy-
4-Nitro-5-Sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT,
153mU/ml), in the presence and absence of SOD. Samples
(200μl/well) were added in 96-well plates and the absorbance
was read at 470nm for 20min. Results are expressed as milli-
units (mU) of SOD/mg of protein. One unit of SOD was
defined as the amount of enzyme capable of dismutating
1μmol of O2

−/min.

(3) Glutathione Peroxidase (GPx) Activity Assay. GPx activity
was determined as described by Paglia and Valentine [23].
For this, 30μl of sample per well (diluted 1 : 3) was incu-
bated for 5min at 37°C, with 145μl per well of 0.05M
phosphate buffer (pH7.4) containing 0.1M EDTA, 5μl
of glutathione (GSH, 80mM), and 5μl glutathione reductase
(0.0096U/μl). After incubation, 5μl of 0.46% tert-butyl
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Figure 1: HPLC analysis of the peppermint LHAE. Peaks are
numbered 1–7 and were shown to coelute with (1) ursolic acid, (2)
epicatechin, (3) caffeic acid, (4) rutin, (5) quercetin, (6) naringenin,
and (7) kaempferol.

Table 1: Registered retention times obtained by HPLC analysis of
the peppermint LHAE. Retention times in minutes were registered
for each peak.

Peak number Retention time in min Compound

1 13.8 Ursolic acid

2 14.5 Epicatechin

3 16.3 Caffeic acid

4 23.6 Rutin

5 27.6 Quercetin

6 33.5 Naringenin

7 37.8 Kaempferol
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hydroperoxide solution and 10μl of 1.2mM NADPH were
added to each well. Absorbances were monitored at 340nm
for 10min. The results are expressed as μmol of GSH/
min/mg of protein.

2.5. Statistical Analysis. Data are expressed as mean± stan-
dard error (SEM). Differences between groups were analysed
by two-way analysis of variance (ANOVA), followed by
Bonferroni’s multiple comparison tests, or paired t-test as
appropriate. Percentages of inhibition were calculated as the
mean of the inhibitions obtained for each individual experi-
ment. p values < 0.05 were considered statistically significant.

3. Results

3.1. Chemical Analysis. HPLC analysis of peppermint LHAE
detected the presence of seven peaks that coeluted with urso-
lic acid, epicatechin, caffeic acid, rutin, quercetin, naringenin,
and kaempferol (Figure 1). Epicatechin and naringenin were
the major compounds, with retention times of 14.5min and
33.5min, respectively (Table 1).

3.2. Peppermint LHAE Modulates Macrophage Viability.
Peppermint LHAE effects were evaluated on macrophage

viability stimulated or not with LPS. As expected, LPS
reduced macrophage viability by 40% (Figure 2(a)). LPS-
induced macrophage death was reversed by incubation
with LHAE (1–30μg/ml; Figure 2(a)). At higher concen-
trations (≥100μg/ml), the extract decreased (49–57%) the
viability of macrophages cultured in the absence of LPS
(Figure 2(a)).

3.3. Macrophage-Mediated Phagocytosis. LPS stimulated
phagocytosis in comparison with vehicle-treated cells, as
denoted by an increase in the percentage of cells contain-
ing beads (4.1-fold increase) and in the number of beads
per cell (6.2-fold increase; Figures 2(b) and 2(c)). Pepper-
mint LHAE potentiated the ability of macrophages to
phagocytose in the absence but not in the presence of
LPS (Figures 2(b) and 2(c)). This potentiation was as high
as 6.6- and 8.8-fold for the percentage of macrophages con-
taining beads and number of beads per cell, respectively
(Figures 2(b) and 2(c)).

3.4. Peppermint LHAE Reduces H2O2 but Not NO Production.
Figures 3(a) and 3(b) show the measured concentrations of
H2O2 and NO, respectively, in supernatant samples from
macrophages incubated or not with LPS and LHAE.
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Figure 2: Effect of peppermint LHAE on peritoneal macrophage viability and phagocytosis. Cell viability (a), number of cells containing
beads (b), and number of beads per cell (c) were quantified on peritoneal macrophages pretreated with peppermint LHAE (1–300μg/ml,
in 1% DMSO in PBS) and stimulated with LPS for 24 h. Vehicle-treated cells were used as controls. Data are expressed as mean± SEM.
∗p < 0 05 compared with vehicle-treated cells; #p < 0 05 compared with LPS-treated cells.
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Incubation of macrophages with LPS triggered the release of
both H2O2 and NO by these cells, with fold increases of 5.6
and 10.0, respectively, for LPS-treated cells in comparison
with vehicle controls. H2O2 but not NO release was reduced
(34.6–53.4%) in LHAE-treated macrophages.

3.5. SOD and GPx Activities Are Increased in LPS-Stimulated
Macrophages Treated with Peppermint LHAE. Figures 3(c)
and 3(d) show the measured activities of SOD and GPx
in cultured macrophages. Peppermint LHAE increased
the activation of both enzymes in LPS-treated macro-
phages in comparison with vehicle controls. SOD activity
was increased by 15.3–63.5-fold (Figure 3(c)), whilst GPx
activity was raised by 34.4–73.6-fold (Figure 3(d)).

4. Discussion

M. piperita was previously suggested to have antimicrobial
activity against both Gram-negative and Gram-positive
bacteria [12], in addition to presenting with antioxidant
potential in vitro [12, 17, 24]. In vivo anti-inflammatory
actions were also reported for this plant in murine models
of infection and inflammation. However, little is known on
the modulatory effects of this plant in inflammatory cells.
Here, we investigated the effects of a peppermint LHAE on

cultured macrophages stimulated or not with LPS from
K. pneumoniae. We found that this extract is able to mod-
ulate macrophage responses to LPS.

Mentha spp. effects on macrophage viability in vitro have
been suggested to be concentration dependent. Indeed,
RAW264.7 macrophage viability was previously shown not
to be affected by treatment with M. piperita essential oil at
concentrations as high as 100μg/ml [16]. On the other hand,
extracts from different Mentha species were found to be
cytotoxic in both macrophage and monocyte cell lines when
assessed at concentrations >200μg/ml [25]. Thus, we initially
evaluated the effects of LHAE on peritoneal macrophage
viability. LPS-stimulated cells had their viability increased
when incubated with LHAE in comparison with LPS con-
trols. This was observed for the smallest concentrations
tested and did not affect macrophage’s ability to phagocytose
when stimulated with LPS. On the other hand, at higher
concentrations (≥100μg/ml), LHAE caused cytotoxicity in
cells not stimulated with this endotoxin. Additional effects
were also observed for LPS-untreated cells, as they presented
increased phagocytosis. To the best of our knowledge, we
present here the first evidence on that M. piperita affects
the viability and phagocytosis of LPS-stimulated murine
peritoneal cells. This set of results allows us to suggest that
M. piperita effects on macrophage may be not only
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Figure 3: Effect of peppermint LHAE on H2O2 and NO release. H2O2 (a) and NOx (b) concentrations in supernatant samples of cultured
peritoneal macrophages. SOD (c) and GPx (d) activities in cultured peritoneal macrophages. Cells were pretreated with peppermint LHAE
(1–300 μg/ml, in 1% DMSO in PBS) and stimulated with LPS for 24 h. Vehicle-treated cells were used as controls. Data are expressed as
mean± SEM. ∗p < 0 05 compared with vehicle-treated cells; #p < 0 05 compared with LPS-treated cells.
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Figure 4: Mechanisms of action of LHAE on macrophage-mediated responses. (a) As part of the host’s immune response during bacterial
infections, macrophages are activated by bacteria-derived products, such as lipopolysaccharide (LPS); and as a result of this activation,
reactive species are formed. Superoxide (O2

−) anion produced by NADPH oxidase is converted to hydrogen peroxide (H2O2) by
superoxide dismutase (SOD). H2O2 can, in turn, be further reduced to H2O by glutathione peroxidase (GPx) or even render hydroxyl
radical (HO.), a much more potent oxidant that can lead to diminished cell survival via peroxidation (and further breakdown) of lipids, as
well as oxidation of protein and DNA bases. In parallel, nitric oxide (NO.) continuously produced by inducible NO synthase (iNOS) can
react with O2

− and form peroxynitrous acid (ONOOH) which, after homolytic breakdown, can also render HO.in addition to the highly
reactive nitro (NO2

.) radical (a potent modifier of proteins and lipids), thus potentiating cell death. (b) The incubation of LPS-stimulated
macrophages with LHAE does not affect NO formation but rather increases SOD and GPx activities (thus lowering O2

− and H2O2
availability). As a consequence, OH and/or NO2

.formation is avoided, thus improving macrophage survival.
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dependent on concentration but also on the culture condi-
tions (presence versus absence of LPS).

In a recent study by Sun et al. [16], a peppermint essential
oil reduced LPS-induced NO production by naïve RAW264.7
macrophages at similar concentrations to those tested for
LHAE herein. A similar result was observed for an aqueous
extract from Mentha haplocalyx when incubated with LPS-
stimulated macrophages [26]. These studies and others
[12, 17, 24] also suggested an antioxidant potential for
peppermint and other plants from the same genus. We
found that H2O2, but not NO production, was decreased
in LHAE-treated cells stimulated with LPS at concentrations
as low as 1μg/ml. The same cells presented increased SOD
and GPx activities, as key antioxidant enzymes. Increased
SOD activity was previously reported in mice treated with
peppermint aqueous extract [27]. More recently, peppermint
essential oil was shown to act as a scavenger of hydroxyl rad-
icals and to be an antioxidant at concentrations ≥200μg/ml
[16]. These results allow us to suggest that peppermint anti-
oxidant actions on macrophages may be due to increased
activation of SOD and GPx, which in turn, leads to decreased
H2O2 production by these cells. These evidences, in addition
to recent reports on that peppermint LHAE increases serum
concentrations of anti-inflammatory cytokines in Schisto-
soma mansoni-induced infection [19], indicate an important
anti-inflammatory action for M. piperita.

In regards to NO production, our results contradicted
those described for Mentha spp. in the literature [28] as
LHAE did not affect its levels upon macrophage stimuli with
LPS. However, the inhibitory effects of Mentha spp. on NO
release by LPS-stimulated macrophages were shown for
hexane and ethyl acetate fractions [28], in addition to
aqueous extract [26], suggesting that compounds found in
different fractions and extractions of Mentha spp. may
present different actions on NO production.

Different compounds were detected in essential oils
obtained from peppermint leaves in previous studies
[12, 17, 24, 29]. M. piperita antioxidant actions were pre-
viously suggested to be due to the presence of phenolic
constituents in its leaves including rosmarinic acid and
different flavonoids such as rutin, naringin, eriocitrin,
luteolin, and hesperidin [30–33]. Here, HPLC analysis of
the peppermint LHAE detected some peaks that coeluted
with pure ursolic acid, epicatechin, caffeic acid, rutin, quer-
cetin, naringenin, and kaempferol. These compounds were
previously shown to act as anti-inflammatory and/or antiox-
idants [30, 33, 34]. It is possible that all these compounds
contribute to the modulatory actions of LHAE observed in
our study. However, we observed an unexpected lack of
effect for LHAE on NO release by LPS-stimulated cells. This
was rather surprising as it’s detected compounds are known
as potent inhibitors of NO production [35–40]. On the other
hand, ursolic acid effects on NO release by macrophages are
controversial and may be concentration dependent. Indeed,
some evidences suggest this compound increases NO pro-
duction by both infected [41] and resting [42] macrophages,
whilst others show ursolic acid inhibits NO release by LPS-
stimulated cells [43]. We suggest that, although the different
compounds detected in the LHAE may contribute

synergistically to its antioxidant effects, it is possible they
counteract each other’s abilities to stimulate or inhibit
NO production by macrophages depending on their bio-
availability in the extract.

Overall, our data show that the peppermint LHAE
modulates macrophage-mediated inflammatory responses,
by stimulating the antioxidant pathway in these cells
(Figure 4). These effects may be beneficial when the excessive
activation of macrophages contributes to tissue damage in
diseases in which there is an unbalanced oxidative stress,
such as those of infectious nature.
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