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Abstract

The rate of single nucleotide polymorphism varies substantially across the human genome and 

fundamentally influences evolution and incidence of genetic disease. Previous studies have only 

considered the immediate flanking nucleotides around a polymorphic site –the site’s trinucleotide 

sequence context– to study polymorph levels across the genome. Moreover, the impact of larger 

sequence contexts has not been fully clarified, even though context substantially influences rates 

of polymorphism. Using a new statistical framework and data from the 1000 Genomes Project, we 

demonstrate that a heptanucleotide context explains >81% of variability in substitution 

probabilities, revealing new mutation-promoting motifs at ApT dinucleotide, CAAT, and TACG 

sequences. Our approach also identifies previously undocumented variability in C-to-T 

substitutions at CpG sites, which is not immediately explained by differential methylation 

intensity. Using our model, we present informative substitution intolerance scores for genes and a 

new intolerance score for amino acids, and we demonstrate clinical use of the model in 

neuropsychiatric diseases.

INTRODUCTION

Measured at the level of the chromosome down to the individual base, rates of single 

nucleotide substitution vary substantially by position across mammalian genomes, including 
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the humans
1
. An exquisite example of the role for sequence context in contributing 

variability in substitution rate is provided by CpG dinucleotides, where spontaneous 

deamination of 5-methylcytosine results in ~14 fold higher C-to-T substitution rates 

compared to the genome-wide average
1,2,3. Modeling the variability in nucleotide 

substitution rates will inform our understanding of evolutionary processes, help identify 

functional noncoding regions
4
 and mutation promoting motifs, suggest mechanisms behind 

spontaneous mutation, and aid in prediction of the clinical impact of polymorphisms 

discovered through resequencing
5
. Such models will need to determine not only the optimal 

window of local sequence context but should also integrate knowledge of functional 

constraint on the genome due to pressure from purifying selection.

Studies of complex human disease have incorporated a simple trinucleotide sequence 

context
6,7 into models to quantify the probability of de novo mutational events

8–10
, to clarify 

the distribution of somatic mutational events segregating in different cancers
11

, and to model 

the purifying selective pressure on gene sequences
12

. As their focus was clinical, these 

reports did not determine if this context model best captured the extent to which flanking 

nucleotides influence the variability in genome-wide nucleotide substitution rates. Here, we 

report a statistical framework that compares the extent to which different local sequence 

lengths influence the probability of nucleotide substitution, tested using data from the 1000 

Genomes (1KG) Project
13

, apply our models to the coding genome, and demonstrate utility 

to interpret de novo mutations identified in studies of neuropsychiatric disorders. We define 

the probability of nucleotide substitution as the chance that a nucleotide in the human 

genome reference is polymorphic, that is, the nucleotide position segregates alternative 

nucleotides within the population. This probability depends upon population history, 

selection, sample ascertainment, and local context features that influence the rate of 

mutation.

RESULTS

Sequence context modeling of substitution probabilities

We hypothesized that local sequence context –the nucleotides that flank a polymorphic site– 

could explain the observed variability in nucleotide substitution probabilities. To test this 

hypothesis, we defined a statistical model (Supplementary Fig. 1, Methods) whereby the 

probability that a nucleotide substitution occurs at a genomic site varies according to (i) the 

identities of the nucleotides that flank the site and (ii) the size of the 5′-to-3′ local sequence 

context window. To minimize the impact of natural selection, we focused on intergenic 

noncoding regions of the genome (Methods). As the estimated nucleotide substitution 

probabilities were robust (Supplementary Table 1a), we developed a likelihood-ratio testing 

procedure to evaluate competing local sequence context models (Methods).

First, we calculated the likelihood of the observed data assuming a “1-mer” model, which 

allowed different substitution classes (e.g., A-to-G, C-to-T, etc.) to occur at different rates 

but ignored effects of sequence context on substitution probabilities. We compared the 1-mer 

model to the trinucleotide (“3-mer”) sequence context model where single 5′ and 3′ 

nucleotides flanking the polymorphic middle position impact the rate of substitution. As 

expected, the 3-mer model significantly improved fit to the data (log likelihood ratio, LLR = 
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6,070,948, P ≪ 10−100, Supplementary Table 1a). Next, we evaluated if additional local 

nucleotides could further improve fit to the observed data. We demonstrate that, when 

compared to the 3-mer model or the pentanucleotide (‘5-mer’) model (with two flanking 

nucleotides on each side), the larger, heptanucleotide (‘7-mer’) model (with three flanking 

nucleotides on each side) fit the data better (both LLR > 494,212, P ≪ 10−100, 

Supplementary Table 1b). To further validate the models, we estimated substitution 

probabilities using 1,659,929 HapMap
14

 variants found in our noncoding regions 

(Methods), and observed that 7-mer context probabilities strongly correlated with 

probabilities estimated from 1KG data (Supplementary Fig. 2, Supplementary Table 2), and 

provided the best fit to the observed polymorphisms (Supplementary Table 3). Our model 

recapitulates expected shifts in probabilities consistent with population histories
15 

(Supplementary Fig. 3) and the downward shift in the average substitution probability for 

the X chromosome
16

 relative to autosomes (Supplementary Table 4) due to the smaller 

effective population size at the X chromosome. Taken collectively, our analyses demonstrate 

for the first time, to our knowledge, that a 7-mer sequence context model explains the 

observed distribution of polymorphisms found in human populations.

To incorporate prior information, we developed a Bayesian formulation using objective 

conjugate priors for analysis of the noncoding genome (Methods). Consistent with our 

previous analysis, the 7-mer context model proved superior compared to all other models 

(Approximate Bayes Factor (ABF) ≫ 1,000, Supplementary Table 1c). In subsequent 

analyses, we use these posteriors for the nucleotide substitutions probabilities.

7-mer context predicts noncoding substitution rates

To quantify the variance in the posterior probabilities that a 7-mer sequence context model 

could explain, we considered each substitution class separately, as well as CpG site contexts 

(nine classes total). We employed forward regression (Methods) to select features from a 7-

mer context window to predict substitution probabilities and considered up to four-way 

interactions at positions within the window. When compared to single-base and position 

models without interactions, incorporating higher-order interactions substantially improved 

the fit to data (Supplementary Table 5). Specifically, we found that our selected models in a 

separately held test data set explained a median of 81% of the variability (as compared to 

30% explained by the 3-mer context) in probabilities across all substitution classes, covering 

84% of all mutational events and fitting well the probability of C-to-T substitution at CpGs 

(Table 1, Fig. 1A). Although we identified a common set of interactions across classes 

(Supplementary Table 6), many common features did not always influence substitution 

probabilities in the same way, and others had class-specific effects. These observations 

indicate that core and class-specific features based on sequence context are predictive of the 

potential for nucleotide substitution.

Methylation cannot fully explain patterns at CpG sites

The spontaneous deamination of 5-methylcytosine at CpG sites results in ~14-fold higher 

rates of C-to-T substitutions generally
3,17

. Although a previous report indicated that 

divergence at CpG sites varies as a function of local context, the focus was on introns, and 

did not consider population-level polymorphisms in humans
18

. Thus, we hypothesized that 
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the surrounding sequence context further influences the probability of nucleotide 

substitution at CpGs, and examined the C-to-T substitution class within the subset contexts 

that contain CpG at position 4 and 5 in the 7-mer. Simulations using a model that ignored 

additional genomic context, or considered the 3-mer context (Supplementary Fig. 4), using a 

fixed CpG substitution probability generated significantly less variability in 7-mer CpG 

substitution probabilities than was empirically observed (empirical P ≪ 10−10, Fig. 1A). 

These data indicate that (i) not all CpG sites accrue substitutions at the same rate and (ii) that 

the sequence context surrounding CpG sites correlate with biological features or 

mechanisms that influence this rate.

To explore the possibility that the excess variability depends upon variation in methylation 

intensity across sequence contexts, we reanalyzed whole-genome bisulfite sequencing data 

obtained from germline and other tissues of healthy individuals
19,20

. Comparing the CpG 

sites that are consistently methylated versus consistently unmethylated across subjects, we 

observed as expected that methylation correlates with an increase in the probability of C-to-

T substitution (P ≪ 10−100, Supplementary Fig. 5). Unexpectedly, when we compared the 

methylation intensity in sperm at 7-mer CpG contexts with the probability of substitutions, 

we found a positive but imperfect correlation (R2 = 0.33, P < 10−90, Fig. 1B), with similar 

results in other tissues (Supplementary Fig. 6), noting instances of methylation status 

decoupled from substitution probabilities. For example, nearly every genomic instance of the 

sequence contexts GTACGCA and GATCGCA showed consistent methylation signals (both 

methylated in >94% of occurrences in sperm), the probability of C-to-T transition was more 

than two-fold different for these two contexts (0.148 vs. 0.07, respectively). These data are 

consistent with the hypothesis that local context features beyond DNA methylation influence 

probabilities of C-to-T transitions at CpG sites, though we cannot exclude the possibility 

that sub-tissue methylation differences could explain these patterns.

Identification of novel mutation-promoting motifs

We next investigated the substitution probabilities for 7-mer contexts partitioned by 

substitution class (Fig. 2, Supplementary Table 7). First, we noted that several classes, C-to-

A, and C-to-G in addition to C-to-T, appeared to segregate as mixtures of two distributions, 

explainable by CpG effects. These observations are consistent with studies demonstrating 

elevated substitutions at CpGs in humans
21

, though this early work was not powered to 

measure context dependencies surrounding CpG sites as we are here. As the methylation 

transition state intermediate 5-formylcytosine can induce spontaneous C-to-A or C-toG 

substitutions
22

, one possibility is that methylation also elevates these rates in this context. 

We next determined if local sequence context motifs –analogous to but beyond CpG 

dinucleotides– correlate with variable substitution probabilities across classes (Methods). 

We noted that poly-CG sequences in the lower tail of C-to-T substitutions for the CpG 

context were enriched (P < 10−16, Table 2). This observation is consistent with previous 

reports
23

 as this context is found proximal to genes (Supplementary Fig. 7) and is associated 

with lower methylation intensities (Supplementary Fig. 8). In the upper tail of the A-to-T 

substitution class, we observed a poly(T) + poly(A) motif in the outlier sequences (P < 10−5, 

Table 2). We also observed a similar quad-A motif in the lower tail of the A-to-G class (P < 

10−10). One possible mechanism that may contribute is the ‘slippage’ of protein machinery 
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during DNA replication
24

. Our analysis also revealed motifs without an obvious contributing 

mechanism. First, in the upper tail of CpG rates, we observed enrichment of a TACG motif 

(P < 10−10, Table 2) that was strongly methylated (Supplementary Fig. 8), but curiously, a 

similar motif shifted by one position was enriched in the lower tail of the A-to-C class (P < 

10−4). Second, the ApT dinucleotide was found to elevate the substitution probabilities (Fig. 

2) for the A-to-G (P < 10−25) and A-to-T classes (P < 10−17), though not statistically 

significantly so for A-to-C. Finally, we observed a CAAT motif also enriched in the upper 

tail of the A to G substitution class (P < 10−53), reported in an earlier study of dbSNP 

variants
25

. These latter cases indicate potentially new mechanisms contributing to elevated 

nucleotide substitutability, not documented by the commonly utilized trinucleotide context 

model. As a final robustness analysis, keeping in mind limitations due to variant 

ascertainment, we estimated the substitution probabilities using HapMap variants and found 

similar mutation promoting motifs across substitution classes (Supplementary Table 8).

Experiments to validate the noncoding rate model

If the estimated noncoding substitution probabilities reflect properties of mutation, one 

would expect that these rates should (a) not influenced by rates of recombination (b) 

strongly correlate with rates of species divergence
26

, (c) be consistent for both rare and 

common genetic variants, and (d) also be reflected in de novo mutational events. We 

explored each of these predictions in turn. First, we estimated the 7-mer substitution rates 

from all intergenic noncoding variants separately for high and low recombination rate 

regions, and found a strong correlation between the two (R2 = 0.97, P ≪ 10−100, 

Supplementary Fig. 9, Methods), indicating that substitution probabilities estimated from 

the noncoding genome are correlated across high and low rates of recombination. Next, 

using human-chimpanzee and human-macaque alignments over intergenic noncoding 

sequences, we found a strong correlation between divergence and substitution probabilities 

for our 7-mer contexts (both R2 = 0.96, P ≪ 10−100, Supplementary Fig. 10, Supplementary 

Table 9, Methods). We then estimated 7-mer probabilities from all intergenic noncoding 

rare variants (singletons and doubletons) separately from low and high frequency variants 

(>1%), and found a strong correlation (R2 = 0.98, P ≪ 10−100, Supplementary Fig. 11, 

Methods), as well as a superior 7-mer context fit to data across variant frequencies 

(Supplementary Table 10). Finally, we obtained 4,748 de novo mutational events from a high 

quality pedigree sequencing dataset on 78 parent-offspring trios
27

. We tested for the 

presence of motifs we identified in Table 2 around de novo events, and observed a 

significant enrichment (Supplementary Table 11, Methods). Taken collectively, these 

findings provide additional validation for the hypothesis that our substitution probabilities 

capture features of germline mutation.

7-mer context also predicts exonic substitution rates

Assuming that the processes that generate spontaneous mutations apply uniformly across the 

genome, we hypothesized that sequence context could explain variability in substitution 

probabilities in the coding genome. We therefore extended our initial framework 

(Supplementary Fig. 1, Methods) to the coding genome by (i) using information obtained 

from our model on the noncoding genome as prior and (ii) allowing for context dependence 

of codons and local sequence context in our estimates of substitution probabilities to 
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accommodate purifying selective pressure
28

. Our new model substantially improved the fit 

to the data compared to either 3-mer sequence context models with or without codon context 

(ABF ≫ 1,000, Supplementary Table 12). To further validate, we tested our model on a 

different large scale exome-sequencing dataset from ~4,300 individuals
29

, and noted that our 

7-mer model fit patterns of exonic polymorphisms better than competing models (ABF ≫ 

1,000, Supplementary Table 12, Methods). These results demonstrate for the first time, that 

a broader sequence context –beyond simple codon or trinucleotide context– captures the 

forces that shape variability in nucleotide substitutions in the coding genome.

We then examined the posterior distribution of substitution probabilities for all contexts 

stratified by the type of amino acid substitution (Supplementary Fig. 12, Supplementary 

Table 13), and found excess variability in each class than expected under simulation 

(Supplementary Table 14, Methods). Next, we enumerated the substitution probability 

profiles for each amino acid change, and found certain nonsense and missense substitution 

probabilities to be higher than synonymous levels (Supplementary Fig. 13), partially 

explained by CpG contexts. These observations caution against the practice –invoked in 

rare-variant association tests– of ignoring codon and sequence context when testing for the 

burden of functional substitutions. Our results here demonstrate that functional substitutions 

may not be equally likely or tolerated with respect to purifying selection.

7-mer context improves power to detect pathogenic variants

We now turn to applications of our model to improve the interpretation of variation 

discovered by clinical re-sequencing. Efforts to prioritize variants from such studies often 

rely on classifying variants that are deleterious with respect to population genetic fitness, 

hypothesizing that such variants are more likely pathogenic
30

. As our coding substitution 

probabilities are influenced both by forces of mutation (estimated from the noncoding 

genome) and selection, we hypothesized that the ratio of these probabilities quantifies the 

action of selective pressure, and could be used to prioritize pathogenic variants. To test this 

hypothesis, we calculated the log ratio of intergenic noncoding and coding substitution 

probabilities, defined as sequence constraint score, for missense (n = 48,450) and nonsense 

(n = 12,054) variants present in the Human Gene Mutation Database (HGMD, Methods)
31

. 

We observed that the distribution of sequence constraint scores for HGMD variants was 

shifted towards larger values (intolerance) compared to 1KG variants (P ≪ 10−100, Fig. 3A), 

compatible with the “intolerant variant, pathogenic variant” hypothesis. Moreover, the 

distribution of scores based on our 7-mer model was further shifted towards intolerance with 

a thicker tail, compared to a 3-mer model (P ≪ 10−100, Supplementary Fig. 14). These data 

demonstrate that a coding model that includes codon and a 7-mer context improves 

identification of variants that are potentially pathogenic.

Describing genic intolerance to mutation via 7-mer context

Several groups have argued that the power to identify causal disease genes from clinical 

resequencing data could be enhanced by incorporating estimates of selective constraint on 

genes
12,32,33

. The underlying hypothesis behind this concept is that genes that are under 

selective constraint are more likely to have functional consequences and are therefore most 

likely to be pathogenic and have fewer functional variants (“intolerant gene, pathogenic 
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gene”). The community has successfully applied this concept to neurodevelopmental and 

psychiatric disorders
34

, however the existing approaches have not incorporated the 7-mer 

sequence or codon context in their models.

Therefore, we applied our 7-mer coding substitution probabilities to develop an intolerance 

score (Supplementary Table 15, Methods) quantifying the difference between the expected 

and observed number of functional variants at a gene, with higher scores consistent with 

functional constraint. To further validate, we found gene scores on a separate, larger exome 

sequencing data set and observed a strong correlation between the two (Supplementary Fig. 

15). We found that genes belonging to putatively essential or ubiquitously expressed 

categories, scored strongly for genic intolerance (P ≪ 10−100, Fig. 3B). In contrast, gene 

sets representing Keratin and Olfactory categories were found to be highly tolerant of 

functional changes (Fig. 3B). Next, we applied this to OMIM genes or known genes behind 

several neuropsychiatric disorders like Autism
35

, Epilepsy
36

, Developmental disorder
37

 and 

Intellectual disability
38–40

, and found them to have significantly higher intolerance scores (P 

≪ 10−100, Fig. 3B). We then compared our gene scores to previously reported scores 

(Supplementary Fig. 16, Methods), and found that our approach improved classification or 

performed comparably to other approaches
32

 for genes in each set, including the disease 

categories (Supplementary Table 16). These results demonstrate that the most accurate 

scoring of genic tolerance to functional substitution can be achieved by modeling 7-mer 

sequence and coding context.

An amino acid score for pathogenic variant prioritization

Beyond the average rate of amino acid replacement that a gene might tolerate, genes could 

be further intolerant to specific types of amino-acid substitutions, signifying added localized 

selective constraint or importance for gene functionality. Therefore, we developed a score 

measuring the intolerance at amino acid replacement level in a gene (Supplementary Table 

17, Methods), after quantifying the difference between the expected and observed number 

of functional variants for a specific amino acid at a gene. Across all genes represented in 

HGMD with a large number of putatively pathogenic amino acid changes for a specific 

substitution, we found they segregate larger intolerance scores for that amino acid (empirical 

P < 10−10). Moreover, a gene might score “tolerant” for functional substitution, but 

intolerant for specific amino acid changes. For example, Von Willebrand Factor (VWF), a 

blood glycoprotein involved in hemostasis, is tolerant to substitution overall (within top 8% 

of gene tolerance) but intolerant to cysteine substitution (within top 3.5% of cysteine 

intolerance). This data is consistent with a causal mechanism for von Willebrand disease; 

protein misfolding when cysteine residues are substituted
41

. We note that 5,652 genes 

segregate a profile similar to VWF: average genic tolerance, but amino acid intolerance.

Interpretation of de novo mutations discovered in Autism

Autism spectrum disorder is a disease with complex etiology, and recent efforts have aimed 

to identify de novo mutational events that may contribute to disease. To highlight the utility 

of gene
12,32

 and amino-acid scores, we applied them to interpret de novo mutations 

collected from 2,508 Autism spectrum disorder
42

 cases and 1,911 control family trios. First, 

we found that the most intolerant genes based on our gene score segregated a significant 
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burden of de novo mutations in cases as opposed to controls (OR = 1.66, P < 0.0001, Fig. 

4A, Methods), even after removing known autism genes
35

 (OR = 1.54, P < 0.001), and 

similar, though slightly attenuated burden using other scores (Fig. 4A). Next, we found that 

the average amino acid scores for de novo mutations at Autism genes in cases was higher 

(more intolerant) than that found in controls, or at other genes in cases (P = 0.002, Fig. 4B, 

Methods). We further observed higher (intolerant) average amino acid scores for variants in 

genes with a positive variant burden in cases, relative to controls (+2 or +3 allele count 

excess in cases, both P < 0.01, Fig. 4B). Finally, several genes from the excess allele count 

set stood out with amino-acid specific intolerance (all within top 4 percentile of intolerance): 

MYO9B, WDFY3, NAV2, STIL, and SCUBE2. Aside from WDFY3, these genes are 

generally ‘tolerant’, based on their gene-score, indicating utility of sub-gene wise 

measurement of functional intolerance. While MYO9B has been implicated in autism
35

 and 

WDFY3 deletions in a murine model has been shown to cause Autism like symptoms
43

, our 

analysis points to the remaining candidates for future follow-up.

DISCUSSION

We report a sequence context model that explains patterns of nucleotide substitution 

observed in the human genome. Our motivation was based on the need to statistically 

evaluate competing models for sequence context. We demonstrate that the commonly used 

context that includes one nucleotide flanking a polymorphic site does not fully capture the 

complete spectrum of where, what type, and how frequently nucleotides are expected to 

change. Furthermore, by using population level data, rather than de novo or somatic events, 

we were able to improve the resolution of substitution models and identify novel mutation 

promoting motifs. Our approach also characterized average selective pressures operating in 

the coding genome at a finer level of detail. Our model indicates substantial variability 

across all amino acid replacement classes, and, in some cases, synonymous substitutions that 

were less prone to change than missense or even nonsense substitutions. We suggest that 

inference of the presence and strength of selection on genes might further benefit by 

incorporating information at this resolution.

One question in the field has been how much sequence context can explain patterns of 

nucleotide substitution in genomes
44

. Our results suggest that a substantial fraction can be 

robustly predicted by sequence context alone, although specific substitution classes may 

require more than sequence context for their prediction. In evolutionary genetics studies, the 

set of substitutions that occur at nearly constant rates proportional to the lineage (i.e., most 

“clock-like”) is important for accurate dating divergence events
45

. While we did not apply 

our model to other species, the strong correlation with divergence suggests our features are 

potentially conserved across primates.

We acknowledge that a number of features remain to be formally evaluated in the genome
46

, 

for example, recombination in the coding genome
47

 or replication timing
48

. Our framework 

has the flexibility to model the complexity found in any sequences that contain features 

hypothesized to be important. We also acknowledge that context models beyond three 

flanking nucleotides were not considered. The regression approach we presented does 
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suggest that the 7-mer models could be refined, perhaps allowing broader context to be 

considered.

With an appropriate background model for nucleotide substitution, novel statistics for 

clinical re-sequencing studies can be envisioned, based on the occurrence of discovered 

variation. Such approaches may complement statistics that assay allele frequency differences 

between cases and controls at one or more polymorphic sites. Moreover, comparative 

genomics applications to identify non-neutrally evolving regions, genome alignments, or 

tree reconstruction
49

, would benefit from accurate models of nucleotide substitution. While 

the underlying mechanisms that determine how nucleotide sequences change over time 

remain to be addressed, we posit that features identified from our model provide important 

clues in elucidating these fundamental principles.

ONLINE METHODS

Sourcing population samples

Samples were obtained from phase 1 of the 1KG Project. We considered only the variants 

from African, European, and East Asian ancestries.

Selection of intergenic noncoding sequences

Intergenic sequences were defined as the full set of genomic sequences that are not 

annotated in ENSEMBL Biomart (version 75) and RefSeq Genes. We then removed 

centromeric, telomeric, repetitive regions and sequences not present in the accessibility mask 

(version 20120824) filter of the 1KG project. Within these intergenic regions, we identified 

variants for the three populations for use in downstream analysis. More details in 

Supplementary Note.

Statistical framework to model substitution probabilities for intergenic noncoding regions

We initially describe a simple model that does not take into account local sequence context, 

and then build upon this by incorporating additional local sequence contexts.

Suppose that we observe nC occurrences of nucleotide C in the reference genome. A subset 

of these nC sites will be polymorphic within the population of individuals. Let nCA represent 

the number of sites where a nucleotide change C-to-A has occurred. Similarly, nCG is the 

number of sites where a change C-to-G has occurred and nCT is the number of sites where a 

change C-to-T has occurred. Then the probability of nucleotide substitution or 

polymorphism within the population can be described using a multinomial distribution:

(1)
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where the probabilities of observing a substitution from C-to-A, C-to-G, and C-to-T are 

expressed as αCA, αCG, and αCT, respectively. After iterating over all possible substitutions 

(i.e., A-to-C, A-to-G, A-to-T, C-to-A, C-to-G, C-to-T, T-to-A, T-to-G, T-to-C, G-to-A, G-to-

C, G-to-T), we merged the reverse-complementary pairs (e.g., A-to-C was merged with T-to-

G, etc.) to yield 6 “substitution classes” as parameters for the simple model, which we refer 

to as the “1-mer” model. We then use maximum-likelihood estimation (MLE) to find the 

substitution probability estimates for all possible substitutions.

This model can be naturally extended to consider the effects of local sequence context by 

replacing the count of nx occurrences of nucleotide X with the count of occurrences of a 

particular nucleotide sequence context. For example, if we want to consider the local 

sequence context ACA, then we count the number of times the 3-mer sequence ACA occurs 

(nACA) in the reference genome. A subset of nACA will be polymorphic at the middle 

position C within a given population. Thus, let nACA→AAA represent the number of sites 

where a nucleotide change C-to-A has occurred at the middle position, nACA→AGA for 

changes from C-to-G and nACA→ATA for changes from C-to-T at the middle position. After 

iterating over all possible nucleotides combinations at the two ends (4 possibilities at either 

side for a total of 16) and substitutions at the middle position (3 possible changes per 

nucleotides for a total of 12), we merged the reverse complementary pairs yielding 96 

substitution classes as parameters for the “3-mer” model.

Analogously, we extended the size of the sequence context window to evaluate the “5-mer” 

model and the “7-mer” model by considering additional fixed nucleotides (2 and 3, 

respectively) on either side of the polymorphic site, thereby estimating a total of 1,536 

parameters for the 5-mer model and 24,576 parameters for the 7-mer model. More details in 

Supplementary Note.

Log-likelihood ratio testing for model comparison

We initially find the likelihood of the observed distribution of polymorphic sites using the 

substitution rate parameters for a sequence context model. We then calculate the likelihood 

ratio test statistic as:

(2)

where S1 and S2 represent parameters estimated from two competing sequence context 

models. The test is chi-squared distributed, with degrees of freedom equal to the difference 

in the number of parameters between the two models (e.g., comparing the 3-mer model 

versus the 1-mer model requires 90 degrees of freedom; comparing the 7-mer model versus 

the 3-mer model requires 24,480 degrees of freedom).

Selection of HapMap variants

Single nucleotide polymorphic variants were obtained from phase 3 release of the HapMap 

project. We considered only the variants from African ancestry present in our intergenic 

noncoding sequences. More details in Supplementary Note.
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Incorporating prior information into the statistical framework

Since the likelihood of our framework is based on a multinomial distribution, we utilize its 

conjugate prior, i.e., the dirichlet distribution, for different sequence context models. For 

inference in the intergenic, noncoding genome, we selected the objective version of the prior 

for our analysis, with all concentration parameters of the dirichlet prior as 1. We then use 

MAP to find the substitution probability estimates for all possible substitutions. More details 

in Supplementary Note.

Bayes Factor analysis for model comparison

We calculated the approximate posterior likelihood, using the Chib’s method, on the overall 

data using the maximum a posteriori (MAP) estimates of the substitution probabilities for a 

specific sequence context model found before. We then calculate the approximate Bayes 

factor as:

(3)

where S1 and S2 represent parameters estimate from two competing sequence context 

models. We use the Jefferey’s scale for interpreting the approximate Bayes Factors, where 

the ratio if greater than 100 is considered to be decisive evidence against the Model1. More 

details in Supplementary Note.

Regression modeling and feature selection

We considered each substitution class separately and created an additional substitution class 

for each of the three possible changes within a CpG context, resulting in nine substitution 

classes. For each substitution class, we considered the initial regression model:

(4)

where the probability that a nucleotide changes from X1 to X2 is modeled using a position-

base variable p, a set of bases (e.g., {C, G, or T} where A is the reference base) denoted by 

the superscript for p, each position (= 1, 2, 3, 5, 6, or 7) denoted by the subscript for p within 

sequence context S, intercept α, and error term ε. We assigned A as the reference nucleotide 

at each position and encoded the single nucleotide present at each position as the 

combination of three thermometer variables (e.g., 0,0,0 = A; 0,0,1 = C; 0,1,0 = G; 1,0,0 = T). 

Next, we examined non-additivity (i.e., interactions) between nucleotides at sequence 

context positions. Rather than including all possible interaction terms, we employed feature 

selection (i.e., model training and testing to select the most informative features) and 

incorporated these terms into the final model. We considered 2-way, 3-way, and 4-way 

interactions across positions within the 7-mer as:
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(5)

where the probability that a nucleotide changes from X1 to X2 is modeled as described in 

Equation 4, and a set of additional terms related to interactions is also incorporated.. The 

effect of the interaction is represented by terms βa for 2-way interactions, βb for 3-way 

interactions, and βc for 4-way interactions. We then divided the genome into two distinct sets 

for feature selection, using all even-numbered chromosomes for training and all odd-

numbered chromosomes for model testing. During training, we performed stepwise forward 

regression for each level of interaction in order of increasing complexity (i.e., first 2-way, 

then 3-way, and finally 4-way). For each level of interaction, we further trained the model by 

sequentially incorporating interaction terms, one at a time, and evaluating whether each term 

improved the model using the ANOVA F-test. The most informative interaction term was 

added to the model at each step. For higher-order (3-way and 4-way) interactions, we 

ensured that a proposed feature maintained the hierarchy constraint (i.e., a selected 4-way 

term must bring with it all of its associated 3-way and 2-way terms), thereby adding degrees 

of freedom to our F-test assessment. We repeated this process until no additional features 

further improved the model (i.e., all proposed features were P > 0.001 by the F-test). As our 

final model, we selected the trained model with the lowest mean-squared error, calculated 

via cross-validation within each substitution class. The 3-mer calculations considered all 2-

way interactions plus single (i.e., position 3 and 5 only) features. More details in 

Supplementary Note.

Sourcing CpG methylation data

We obtained CpG methylation data for our intergenic regions of interest from whole genome 

bisulphite sequencing studies performed on germline
19

 (sperm, oocyte), blastocyst, blood 

and brain
20

 tissues. We performed our analysis on the 7,059,740 intergenic CpG sites that 

were methylated and the 651,479 intergenic CpG sites that were unmethylated in all 3 

samples in the sperm tissue. We summarized the methylation signal across all samples for a 

tissue by calculating the mean intensity.

Sequence motif Identification

We examined the top and bottom 10 sequences for each substitution class, and manually 

identified a total of 6 motifs that we tested in each substitution class, stratified by CpG 

context. This results in a total of (9 substitution classes) * (2 tails, high and low) * (6 motifs) 

= 108 total tests. Note that we required a nominal P = 4.6 × 10−4 (Bonferroni correction for 

multiple testing). Testing was performed via Fisher’s exact test. More details in 

Supplementary Note.
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Recombination and substitution rates

We obtained recombination rate map of the YRI population from the phase 1 release of the 

1KG project, and segregated our intergenic noncoding regions of interest into high (rate >3 

cM/Mb) and low recombination rate (rate < 0.05 cM/Mb) regions. More details in 

Supplementary Note.

Human and primate divergence

We obtained human-chimpanzee and human-macaque chain and netted alignments from the 

golden path directories in the UCSC genome browser and found divergence between the 

human-primate pair by calculating fixed differences between the aligned intergenic 

noncoding sequences at each 7-mer sequence context. More details in Supplementary Note.

Variants across the frequency spectrum

We defined the rare variants as those occurring fewer than two times in the population, and 

low or high frequency variants as those with MAF >1%. We only considered the intergenic 

noncoding variants present in 1KG project belonging to the African ancestry, and found 

2,789,383 rare and 8,019,893 low/high frequency variants. More details in Supplementary 

Note.

De novo mutations

We only considered the de novo mutations occurring in the accessible regions of the 1KG 

project. For each motif class, we found the expected number of mutations under a 

normalized 1-mer sequence context model. More details in Supplementary Note.

Extension of the substitution probability framework in the coding region

To model substitution probabilities for the coding genome, we utilized the statistical model 

developed for intergenic regions with the following modifications: First, we accounted for 

codon position-effects (i.e., a given sequence context around a polymorphic site may occur 

at three different positions on a codon), which can lead to amino acid changes that may be 

subject to different levels of selective constraint. Second, we utilized probabilities learned 

from the intergenic noncoding region model as our Bayesian prior for the coding model. The 

parameters for this dirichlet distribution prior include the weighted baseline probabilities 

from the intergenic noncoding region as shape parameters. More details in Supplementary 

Note.

Selection of coding sequences

We selected exonic coordinates of the longest transcript for each gene annotated in 

ENSEMBL Biomart (version 75). We only considered those transcripts where (i) total 

exonic region length was a multiple of 3 and (ii) 90% or larger of it was present in the 

combined accessibility mask (version 20120824) filter of the 1KG project. This yielded 

16,386 autosomal transcripts and 679 transcripts from the X chromosome.

To test our model in a different data set, SNP sites for ~4300 individuals of European 

ancestry were obtained from the Exome Variant Server (EVS, downloaded on August 26th 
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2013). For EVS data, to obtain a representative spectrum of allele frequencies (and impact of 

background selection) observed from the smaller set of individuals found in the 1KG data, 

we only considered variants with frequency greater than 0.03%. More details in 

Supplementary Note.

Annotation of SNP variants in the autosomal coding genome

For both 1KG and EVS data, we manually annotated the type of codon change caused by 

each variant specific to the transcript.

Scaling the substitution probability estimates for a larger sample

To calibrate our model (built using the 1KG dataset) for use with the larger EVS dataset, we 

rescaled the substitution probabilities estimated using 1KG data to make them proportional 

to the EVS dataset. We used a constant scaling factor defined as:

(7)

on all substitution probabilities in the new dataset.

Simulating variability in substitution probabilities within amino acid replacement classes

We start by randomly distributing the observed substitutions within the amino acid 

replacement class, using a fixed rate model. We then calculate the respective 7-mer 

probabilities from the randomized data set using our multinomial distribution model for 

randomization, and then find the variance in the new substitution probability estimates for 

that class. We use 106 simulations to generate the distribution of substitution probabilities.

Measuring the effects of selection on polymorphisms in the coding region

To minimize the effects of selection on initial estimates of substitution probabilities, we 

selected intergenic noncoding intervals for model development. Assuming that the 

mechanisms that introduce new mutations into coding regions are similar to those at work in 

the noncoding genome, we inferred that the relative ratio of coding-to-noncoding 

substitution probabilities could indicate natural selection occurring in the coding genome. To 

quantify the effect of selection on substitution probabilities, we measured the log10 ratio of 

coding-to-noncoding substitution probabilities using all coding variants observed in the 1KG 

African group. More details in Supplementary Note.

Calculating tolerance scores for genes

We find the expected distribution of polymorphism levels for each gene by performing 

simulations from the standard multinomial distribution using our coding substitution 

probability estimates. We then normalize the difference between the observed levels of 

polymorphism and those generated from simulations, to obtain gene tolerance score defined 

as:
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(8)

where μNS and σNS represent the mean and standard deviation of nonsynonymous 

polymorphisms generated from simulations based on our model, and nNS is the empirical 

number of nonsynonymous polymorphism observed in the data. A positive gene score 

indicates that the number of observed substitutions is fewer than expected, and identifies 

genes experiencing stronger than average purifying selection.

Categorizing genes based on tolerance scores

We subdivided genes into various categories – i.e., essential genes (where the mouse 

homolog knock-out is lethal), ubiquitously expressed genes, genes with known phenotypes 

described in OMIM, immune-related genes, keratin genes, and olfactory genes. The dataset 

from
33

 was used to find the first two categories, while
32

 was used to classify OMIM genes. 

OMIM sub-categorizes genes according to mutational models, including de novo, dominant, 

haploinsufficient, or recessive. In our analysis, we merged OMIM’s de novo, dominant, and 

haploinsufficient categories, treating them as a single category. We used the DAVID 

ontology database (version 6.7) to classify immune-related, keratin, and olfactory genes. We 

considered the gene list published in the latest de novo sequencing analysis papers of 

Autism
35

, Epilepsy
36

, Intellectual disability
38–40

 and Developmental disorder
37

, as the gene 

set belonging to these diseases. We merged the gene lists of the aforementioned diseases, 

treating them as single category belonging to “All Neuropsychiatric disease”.

AUC comparison between competing gene scores on different gene sets

We used the receiver operating characteristic (ROC) curve to compare the performance of 

our gene scores against previously annotated scores for classifying genes into the gene sets 

we described above. We fitted a linear classifier using the three different gene scores, on 

each gene set and found the area under the curve (AUC) for each. More details in 

Supplementary Note.

Calculating tolerance scores for amino acids

We find the expected distribution of polymorphism levels for a specific amino acid within a 

gene by performing simulations from the standard multinomial distribution using our coding 

substitution probability estimates. Within a given gene, we then normalized the difference 

between the observed numbers of changes at a specific amino acid versus the number of 

changes expected from simulation using the equation:

(9)

where μAA and σAA represent the mean and standard deviation of the specific amino acid 

replacement polymorphisms generated from simulations based on our model, and nAA is the 

empirical number of amino acid replacement polymorphisms observed in the data. We 
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consider the normalized value in Equation 9 as the final tolerance score for that amino acid 

within the given gene. We interpret a positive amino acid (AA) tolerance score to indicate 

that the observed number of changes for that specific amino acid within the given gene was 

even fewer than expected. Thus, the AA tolerance score serves to identify amino acids 

experiencing stronger than average purifying selection.

Sourcing information about pathogenic variants

We used the Human Gene Mutation Database (HGMD professional 2014.4) to identify 

pathogenic variants for our autosomal genes of interest, which supplied 60,504 variants 

distributed over 3,647 genes for 5,359 putative human disorders.

Application of gene and amino acid score on Autism spectrum de novo sequencing data

We used the de novo sequencing data for Autism spectrum disorder
42

, to test the efficacy of 

our gene and amino acid score approach in identifying and prioritizing novel genes and 

variants associated with Autism. We found the de novo mutations belonging to cases and 

controls separately for each of our genic sequences of interest and considered a total of 

2,171 mutations in 2,508 cases and 1,421 mutations in 1,911 controls. For a uniform 

comparison of gene scores across different approaches
12,32

, we only considered the top 752 

intolerant genes identified from each approach. We choose 752 genes because this was the 

number of intolerant genes identified in
12

, which mapped to our autosomal genic sequences 

of interest (i.e., which pass the stringent criteria of sequencing quality in the 1KG project). 

We used the Odds ratio to find the burden of de novo mutations in cases as opposed to 

controls, in the set of intolerant genes. Fisher’s exact test was used to compare the 

significance of burden. For amino acid score, all statistical comparisons were performed 

using the Wilcoxon sum ranked test. More details in Supplementary Note.

Code Availability

The computational pipelines used for probability estimation for the noncoding and coding 

genomes, and for forward regression and feature selection are available on request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
C-to-T substitution probabilities and methylation patterns within 7-mer CpG sequence 

contexts. (a) Simulations based on a fixed C-to-T substitution rate (blue) at CpG contexts do 

not capture the observed distribution of substitution probabilities (red) within the 7-mer 

sequence context. Rates predicted from our regression model (black) closely match the 

substitution probabilities observed under the 7-mer sequence context (R2 = 0.93). (b) 
Correlation between average methylation intensity versus probability of C-to-T substitution 

in CpG 7-mer context.
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Figure 2. 
Posterior probabilities of all classes of nucleotide substitution in the intergenic noncoding 

genome, estimated using the 7-mer context model. Sequences contexts are further stratified 

by color to indicate either the presence of a CpG (C at the polymorphic 4th position and G at 

the 5th position, for C-to-A, C-to-G and C-to-T substitution classes = CpG+; else CpG−) or 

the ApT state (A at the polymorphic 4th position and T at the 5th position, for A-to-G and 

A-to-T substitution classes = ApT+; else ApT−). For A-to-C, the ApT state did not 

significantly contribute to variability in the estimated probability distribution.
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Figure 3. 
Prioritizing pathogenic variants and causal genes using constraint scores. (a) log10 ratios of 

substitution probabilities from the 7-mer sequence context model using coding sequences 

matched to the intergenic noncoding sequences, for each type of substitution (synonymous, 

missense and nonsense) for all variants in the 1KG project or Human Gene Mutation 

Database (HGMD). Larger values indicate fewer substitutions in the coding genome than 

expected from matched noncoding sequences, consistent with the action of selective 

constraint. *** represents P ≪ 10−100 and ** represents P < 10−29. (b) Box and whisker plot 

of gene scores from the model, stratified into statistically significant gene classes. Positive 

gene scores indicate intolerance to substitutions that change an amino acid. For the boxplot, 

the center line in each box denotes the median. The inter-quartile range (25th and 75th) is 

indicated by the ends of each box. The whiskers extend 1.5x the inter-quartile range, and 

data points beyond this range are plotted as open circles.
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Figure 4. 
Applications of gene and amino acid intolerance scores on de novo ASD mutational data. (a) 

Forest plot of the odds ratios (ORs), 95% confidence intervals (CIs), and p-values when 

comparing the de novo mutational burden in cases versus controls, on intolerant genes using 

different gene scoring methods. Scores are calculated including and excluding known 

Autism genes, as indicated. “Aggarwala” indicates gene scores from this report, while 

“Samocha” and “Petrovski” refers to the intolerant gene list from those works
12,32

. (b) 
Forest plots of the mean amino acid scores (with 95% CIs) found from de novo mutations in 

various gene collections. Average scores were based on variants ascertained in cases, except 

where noted (i.e., the first row: all genes in controls). W/o: without. +AC: excess count of 

missense or nonsense changes in cases relative to controls. For example, +3 indicates that a 

gene has 3 more missense or nonsense changes in cases relative to controls. *: P < 0.01.
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