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Parkinson’s disease (PD) is marked by different kinds of pathological features, one
hallmark is the aggregation of α-synuclein (aSyn). The development of aSyn pathology
in the substantia nigra is associated to the manifestation of motor deficits at the time of
diagnosis. However, most of the patients suffer additionally from non-motor symptoms,
which may occur already in the prodromal phase of the disease years before PD
is diagnosed. Many of these symptoms manifest in the gastrointestinal system (GIT)
and some data suggest a potential link to the occurrence of pathological aSyn forms
within the GIT. These clinical and pathological findings lead to the idea of a gut-brain
route of aSyn pathology in PD. The identification of pathological aSyn in the intestinal
system, e.g., by GIT biopsies, is therefore of highest interest for early diagnosis and
early intervention in the phase of formation and propagation of aSyn. However, reliable
methods to discriminate between physiological and pathological forms of enteral aSyn
on the cellular and biochemical level are still missing. Moreover, a better understanding of
the physiological function of aSyn within the GIT as well as its structure and pathological
aggregation pathways are crucial to understand its role within the enteric nervous
system and its spreading from the gut to the brain. In this review, we summarize
clinical manifestations of PD in the GIT, and discuss biochemical findings from enteral
biopsies. The relevance of pathological aSyn forms, their connection to the gut-brain
axis and new developments to identify pathologic forms of aSyn by structural features
are critically reviewed.
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INTRODUCTION

Alpha synuclein (aSyn) is a small protein that consists of 140 amino acids and is primarily
found as a monomer in the cellular cytosol. Here, it plays a role in synaptic plasticity and
interacts with presynaptic vesicles (Lashuel et al., 2013). Under pathological conditions, aSyn
monomers aggregate and form amyloids, which have been shown to exert neurotoxic properties
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(Lashuel et al., 2013; Riederer et al., 2019). These aSyn amyloids
can be found in patients suffering from neurodegenerative
disorders collectively known as synucleinopathies, comprising
Parkinson’s disease (PD), multiple system atrophy (MSA) and
dementia with Lewy bodies (DLB) (Spillantini et al., 1997;
Goedert et al., 2017; Riederer et al., 2019).

In PD patients, aSyn aggregates form Lewy bodies and Lewy
neurites and are detected in post-mortem brains (Spillantini
et al., 1997; Braak et al., 2003). Dopaminergic neurons residing
in the substantia nigra pars compacta are the most affected
central nervous system (CNS) cell population during the disease
course. A loss of these neurons leads to a reduction of the
neurotransmitter dopamine, thereby influencing feedback loops
within the basal ganglia, resulting in clinical symptoms including
rigidity, bradykinesia and tremor (Kalia and Lang, 2015).
However, in recent years, aSyn and its aggregates were also
found in the gastro-intestinal tract (GIT) of PD patients and
symptoms outside the CNS were described including obstipation
and reduced peristalsis (Braak et al., 2006; Postuma et al.,
2012; Beach et al., 2016). This gave rise to the hypothesis that
manifestations in the brain and in the gut are two sides of
the same coin. Some researchers even favor the idea that PD
pathology can spread from the gut to the brain and/or vice versa
(Braak et al., 2006; Breen et al., 2019; Leclair-Visonneau et al.,
2020) and a transmission of aSyn pathology via the vagal nerve
was suggested at least in an animal model (Kim S. et al., 2019;
Challis et al., 2020).

At the cellular level, different compartments are of interest
when looking at aSyn homeostasis and pathological aggregation
pathways. aSyn can be degraded via the proteasomal or via the
lysosomal system, where different cathepsins have been proposed
to mediate aSyn degradation (Webb et al., 2003; Sevlever et al.,
2008; Cullen et al., 2009; Mak et al., 2010; Xilouri et al., 2013).
Elevation of the physiological aSyn level via increased production
(e.g., gene duplication or triplication) or reduced degradation
leads to an accumulation of intracellular aSyn. This accumulation
results in the aggregation of the aSyn protein leading to the
formation of different conformers, including toxic and non-toxic
oligomers, tetramers and fibrils (Bartels et al., 2011; Lashuel
et al., 2013; Wong and Krainc, 2017; Zunke et al., 2018), with
β-sheet rich fibrils being the endpoint of the aggregation process
(Cremades et al., 2012; Lashuel et al., 2013). Aggregated aSyn
was also shown to escape from the lysosome to the cytosol via
still not well understood pathways (Jiang et al., 2017; Karpowicz
et al., 2019). Moreover, aSyn conformers can be released from
the entire cell, most importantly not only from dying cells, but
also within CNS-derived extracellular vesicles (exosomes), which
can be found in the blood and CSF (Shi et al., 2014; Fussi et al.,
2018; Parnetti et al., 2019; Jiang et al., 2020; Figure 1). These
peripheral aSyn species can be taken up by cells for degradation,
but have also be shown to act as aggregation seeds, leading to
an accelerated aggregation of toxic aSyn species, explaining the
spreading and seeding capacity of the protein (Wood et al., 1999;
Luk et al., 2009, 2012; Rey et al., 2019).

In this review, we highlight different aspects of aSyn pathology
in PD patients, with an emphasis on the GIT. We will cover
clinical aspects, look at basic findings that connect the GIT to

PD development, discuss the role of enteral aSyn as a biomarker
in PD, and evaluate methods to differentiate aSyn species on the
cellular and structural level. At the end, we will conclude how
these different research areas could be brought together for a
better understanding of especially early PD stages.

ASYN IN THE GASTRO-INTESTINAL
SYSTEM: PHYSIOLOGICAL
EXPRESSION AND FUNCTION

While aSyn is well known for its pathological features, its
physiological expression and function in the CNS as well as in
the enteric nervous system (ENS) is not fully understood yet.

Physiological aSyn expression, including its phosphorylated
forms, has been observed not only in the CNS, but also other
peripheral tissues including the GIT (Bottner et al., 2012;
Visanji et al., 2015; Barrenschee et al., 2017). Until now, our
understanding of the physiological functions of aSyn in the CNS
is incomplete, but even less is known about its impact and
properties within the ENS. Whereas aSyn aggregates were first
reported in vasoactive intestinal peptide (VIP)-positive neurons
in humans (Wakabayashi et al., 1990), expression in both, VIP-
positive (Chen et al., 2018) and cholinergic enteric neurons,
potentially influencing cholinergic synaptic transmission, has
been described in rodents (Wang et al., 2012; Swaminathan et al.,
2019). A morphological and a co-localizing study gave evidence
that aSyn is physiologically associated to the synaptic vesicle
apparatus of enteric neurons (Böttner et al., 2015). Expression of
aSyn is regulated by cyclic AMP (Paillusson et al., 2010) and aSyn
secretion is activity-dependent in enteric neurons (Paillusson
et al., 2012). Despite these interesting first findings, there is
still a crucial lack of information regarding aSyn regulation and
functions in the GIT under physiological conditions.

GASTROINTESTINAL SYMPTOMS IN PD:
INDICATIONS FOR A START OF ASYN
PATHOLOGY IN THE GUT

The occurrence of cardinal motor symptoms in PD is
accompanied by aSyn aggregation in the substantia nigra,
leading to the conclusion that aSyn pathology plays a pivotal
role in PD. However, the disease is also characterized by a
variety of non-motor symptoms. Amongst them, symptoms
of impaired gastrointestinal function are very common, with
approximately 80% of PD patients being affected by at least
one gastrointestinal symptom during the course of the disease,
indicating an additional (aSyn) pathology in the GIT (Edwards
et al., 1991; Cersosimo et al., 2013). These symptoms do not only
play an important role in the disease burden for the patient, but
also affect treatment of the disease, as medication is less regularly
absorbed. Additionally, gastrointestinal affection also gives an
important insight into underlying pathological mechanisms and
etiologic factors.

Already in his first description of PD, James Parkinson
mentioned the severe symptom of reduced bowel movements
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FIGURE 1 | Summarizing figure. To analyze PD progression during the disease course, patient samples have to be taken from appropriate sources to allow multiple
sampling of the same patient. These include biopsies (e.g., rectal biopsies during colonoscopy for cancer screening), serum, plasma or exosomes from blood
samples and CSF from lumbar puncture. Biochemical and structural analysis could then link the different aSyn species to different cell types either via structure
determination after (multiple rounds of) amplification by PMCA or through the purification of cell-type specific exosomes. Identification of markers that discriminate
patients from each other or patients from control individuals could then be mirrored into clinical practice and be linked to patient outcome. Also, the gut microbiome
has been shown to be involved in disease pathology and further studies will have to untangle the relationship between PD, aSyn aggregation and gut dysbiosis.

with a frequent need for pharmacological or even physical
intervention (Palacios-Sanchez et al., 2017). Since then, several
gastrointestinal symptoms have been identified, affecting nearly
all parts of the gastrointestinal system starting from the
salivary glands and esophagus (hypersalivation and dysphagia),
including the stomach (gastroparesis/delayed gastric emptying),
the small intestine and colon (constipation) and the rectum
and anus (anorectal/defecatory dysfunction) (Pfeiffer, 2018).
These symptoms reveal that besides neurons of the CNS, also
large parts of the peripheral nervous system (PNS), including
the parasympathetic (Nervus vagus), the sympathic (Nervi
splanchnici) nervous system and the ENS are affected in PD.

The individual description of gastrointestinal symptoms by
PD patients has been complemented by a variety of objective
imaging techniques. Methods to quantify functional impairments
of the gastrointestinal system include esophageal and gastric
scintigraphy to display dysphagia and delayed gastric emptying
(Hardoff et al., 2001; Potulska et al., 2003), MRI (magnetic
resonance imaging) techniques to measure colonic enlargement
(Knudsen et al., 2017a) and Donepezil PET to display cholinergic
denervation of the gut (Gjerloff et al., 2015). Recent studies

with ingestible capsule systems using the radio opaque marker
technique or SPECT/CT confirmed a high prevalence of
reduced intestinal transit time in PD (Sakakibara et al., 2003;
Dutkiewicz et al., 2015; Knudsen et al., 2017b). Interestingly,
objective imaging techniques were found to be more sensitive
than subjective ratings of patients (Knudsen et al., 2017a).
Additionally, sonographic studies confirm a direct impairment of
the vagal nerve by displaying nerve atrophy with high-resolution
ultrasound (Pelz et al., 2018; Walter et al., 2018).

Importantly, clinical symptoms of gastrointestinal
dysfunction, particularly constipation, are not only an expression
of advanced disease, but occur also in very early phases, often
years before the onset of the typical motor symptoms. The phase
of ongoing neurodegeneration preceding the clinical diagnosis is
defined as the prodromal phase of PD, with constipation being
one of the most important prodromal symptoms. Findings of
large retro- and prospective studies showed that constipation
is also one of the earliest prodromal symptoms, occurring up
to twenty years before cardinal motor signs manifest (Abbott
et al., 2001; Gao et al., 2011; Ross et al., 2012). This clinical
observation, together with the breakthrough pathological
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findings of Braak et al. (2003), who histologically described
ascending aSyn pathology, led to the hypothesis that pathology
in PD may start in and spread from the gut at least in a
subpopulation of patients (Figure 1). The Braak staging system
proposed a first conceptual link between the presence of aSyn in
the GIT and its spreading via the vagal nerve to its dorsal motor
nucleus (DMV) in the brainstem. This presumed ascending
propagation of aSyn pathology via the vagal nerve was clinically
reassured by findings of lower incidence of PD in individuals
receiving vagotomy (Svensson et al., 2015). However, Braak et al.
already assumed in their dual-hit hypothesis that pathology does
not always follow the gut-brain route and proposed a secondary
propagation path via the olfactory bulb (Hawkes et al., 2007).
Indeed, in recent years, evidence is slowly emerging that the
gut-brain-propagation in PD may define a subtype of the disease,
with distinct underlying pathological mechanism and clinical
phenotypes (Figure 1). One approach to identify subtypes of PD
already in the prodromal phase is the clinical identification of
different non-motor symptom clusters (Marras and Chaudhuri,
2016), not only comprising gastrointestinal dysfunction, but also
the occurrence of REM sleep behavior disorder (RBD). This
parasomnia is associated with neuronal damage in the brainstem
and individuals with idiopathic RBD have an over 80% risk of
developing PD in the future (Romenets et al., 2012; Iranzo et al.,
2014; Postuma et al., 2019).

Knudsen et al. (2018) were recently able to show in
RBD patients both, cholinergic denervation of the gut using
Donepezil PET and cardiac sympathetic denervation using
metaiodobenzylguanidine (MIBG) scintigraphy. Additionally,
the lower brainstem (as shown by neuromelanin-MRI) but not
(yet) the nigrostriatal system (displayed using F-DOPA PET)
were affected by the neurodegenerative process.

Taken together, affection of the GIT is not only relevant for
patients and the basis for clinical and imaging markers, but may
also serve as a source for the identification of molecular markers
within the GIT, which is far easier to access than the CNS. It is
therefore of highest interest to understand the role of pathological
aSyn as potential molecular marker in the GIT.

ASYN IN THE GASTRO-INTESTINAL
SYSTEM: PATHOLOGICAL
IMPLICATIONS

First characterizations of aSyn aggregates in the ENS of PD
patients has been performed on autopsied specimens in the late
80’s by the group of Wakabayashi et al. (1988). Twenty years
later, Lebouvier and co-workers characterized the presence of
phosphorylated aSyn in routine colorectal biopsies of PD patients
(Lebouvier et al., 2008). Since then, an increasing number of
studies has aimed at evaluating the use of aSyn detection in
the GIT as a potential biomarker for PD development (Tsukita
et al., 2019). It is important to note that aSyn was not only
detected in the colon and rectum, but also in other parts of
the gastrointestinal system, including the salivary glands, lower
parts of the esophagus and the stomach, corresponding to the
above-mentioned clinical manifestations (Fayyad et al., 2019). In

fact, many studies confirmed a rostro-caudal gradient of aSyn
aggregates, questioning the colon and rectum as most suitable
regions for biopsy studies (Braak et al., 2006; Beach et al., 2010;
Adler et al., 2014). However, apart from the easy accessibility
(e.g., in routine colonoscopies), the idea of dysbiosis as potential
trigger of neurodegeneration still argues for colorectal biopsies to
detect pathological changes of PD at the very beginning (Pietrucci
et al., 2019; Nishiwaki et al., 2020).

One major issue regarding the development of aSyn as a
biomarker for PD suitable for use in GIT-samples has been the
difficulty to discriminate between native and pathologic forms of
this protein in intestinal tissues. Indeed, native or phosphorylated
forms of aSyn, as well as proteinase-K-resistant aggregates of
aSyn have been detected in intestinal samples of PD patients,
but no clear consensus has yet emerged about a detection
method of pathological aSyn aggregates in the GIT (Beach
et al., 2018). Despite these controversies, two independent studies
reported increased aSyn deposits in early and prodromal PD
patients (Shannon et al., 2012; Stokholm et al., 2016). One study
performed by the multi-center Systemic Synuclein Sampling
Study (S4) consortium demonstrated that aSyn expression
patterns in the sigmoid colon can be used to distinguish
between PD and healthy controls by trained neuropathologists
with a sensitivity and specificity of almost 100% on a small
cohort of 3 PD patients (Beach et al., 2018). Although globally
encouraging, none of the methods published so far has reached
sufficient specificity, sensitivity or reproducibility to serve as
the basis for a potent biomarker for clinical diagnosis. On the
contrary: characterization of aSyn pathological aggregates in
human intestinal tissues is still the focus of vivid debates in
literature (Schneider et al., 2016; Scheperjans et al., 2018; Bu et al.,
2019; Tsukita et al., 2019).

Apart from intestinal tissues, the involvement of the vagal
nerve in the spreading of PD from the gut to the brain has
gained further support from animal models, following the above-
mentioned hypothesis of Braak et al., For instance, either human
pathologic or human recombinant aSyn was detected in the DMV
of rats six days after its first introduction in the GIT (Holmqvist
et al., 2014). Similar propagation of pathological aSyn to the
CNS after injection in the GIT was confirmed in recent studies
(Kim J. Y. et al., 2019; Van Den Berge et al., 2019; Challis
et al., 2020). In these studies, injection of aSyn fibrils in the
GIT even led to the development of PD-like symptoms. Both,
spreading of aSyn accumulation and resulting symptoms were
shown to depend on the integrity of the vagal nerve, as well as
on the expression of endogenous aSyn in these models (Kim S.
et al., 2019; Figure 1). Additionally, it was shown that injection
of aSyn fibrils in the duodenal mucosa led to pathological
aggregations of aSyn within the ENS, accompanied by intestinal
inflammation, altered intestinal motility and further propagation
of the disease to the CNS in aged mice (Challis et al., 2020).
Interestingly, neuronal GBA1 [encoding for β-glucocerebrosidase
(GCase)] overexpression partially rescued the induced aSyn
accumulation and GIT dysfunction observed in these mice,
indicating that GCase may play an important role in the
regulation of aSyn life-cycle and pathological aggregation in
enteric neurons (Challis et al., 2020). Here, the enzymatic
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substrate of GCase, β-glucosylceramide, might play an important
role as it was shown to stabilize pathologic forms of aSyn (Zunke
et al., 2018). Additionally, caudo-rostral propagation of aSyn was
detected in rats after expression of human aSyn in the medulla
oblongata via adeno-associated viral vectors toward the pons,
midbrain and forebrain (Ulusoy et al., 2013).

Until now, little is known about the mechanisms regulating
the formation of pathological aSyn species in the GIT.
Proteinase-K-resistant aSyn aggregates were also observed in
the vermiform appendix of healthy humans (Killinger et al.,
2018). Appendectomy was associated with a decreased risk to
develop PD, suggesting that pathological forms of aSyn in the
vermiform appendix may contribute to spreading of the disease
(Killinger et al., 2018). Further, recent evidence indicates that
aSyn regulation and inflammatory processes are remarkably
linked to each other, although a clear picture about their mutual
imbrication is still missing [see for reviews (Rolli-Derkinderen
et al., 2019; Tan et al., 2020)]. For instance, it was shown
that a common infection in the human GIT results in an
upregulation of aSyn expression in enteric neurons that positively
correlated with the degree of acute and chronic inflammation
in the intestinal wall and that monomeric and oligomeric aSyn
have chemoattractant activity causing the migration of immune
cells (Stolzenberg et al., 2017). Additionally, aSyn expression,
but not its pathologic aggregation, is increased in the ENS
of patients with Crohn’s disease (Prigent et al., 2019b) and
inoculation of aSyn fibrils in the GIT is associated with an
increased expression of inflammatory mediators in intestinal
tissues (Challis et al., 2020). However, by contrast, it was
seen that acute inflammatory stress inhibits aSyn expression in
primary enteric neurons (Prigent et al., 2019a). Interestingly,
inflammatory parameters, pathological aSyn aggregation and
motor deficits were demonstrated to be regulated by microbiota
in aSyn overexpressing mice (Sampson et al., 2016). The same
group demonstrated that curly fibers derived from the bacterial
amyloid CsgA, regulate not only the pathological aggregation
of aSyn, but also the further development of intestinal and
motor symptoms and inflammation in a similar mouse model
(Sampson et al., 2020). Expression of aSyn in the intestinal
mucosa does not seem to be limited to the ENS, but was also
found in enteroendocrine cells (EECs) and in transit between
enteric neurons and EECs through their neuropods (Chandra
et al., 2017). Although the contribution of ECCs to PD pathology
remains largely unclear, these cells are also interconnected to
vagal efferents (Kaelberer et al., 2018), offering a direct potential
road for the propagation of PD pathology from the intestinal
mucosa to the brain, which may even bypass the ENS.

STRUCTURAL ASPECTS OF ASYN
PATHOLOGY

As described in the previous parts, there are good arguments
that favor the onset and manifestation of PD in the GIT at
least in a subpopulation of patients. The challenge is still the
discrimination of patients and controls utilizing GIT-derived
samples and an aSyn specific detection system. From a clinical

but also cell-biological and biochemical view there are some
arguments that favor GIT-specimens (especially from the colon)
over other described sources as e.g., skin or blood (Fayyad
et al., 2019; Ma et al., 2019). Interestingly, mice overexpressing
human aSyn in neuronal cells (CNS and ENS), exhibit intestinal
dysfunction besides the motor impairments (Chesselet et al.,
2012). This indicates that aSyn aggregation has the ability and
potential to cause gastrointestinal impairments. The cell type
affected by aberrant protein accumulation in the GIT (enteric
neurons) is post-mitotic as neurons from the CNS. This allows
for a similar aggregation time of pathological aSyn species in both
cell-types which is presumably years in PD patients. Although
aSyn was also detected in erythrocytes (Barbour et al., 2008;
Tian et al., 2019), these cells are short lived and might not
display the same aggregation mechanism as long-lived neuronal
cells. In colon samples the influence of dysbiosis can also be
evaluated as the colon forms the interface to most commensal or
pathologic bacteria.

In recent years, a better understanding of cellular processes
involved in aSyn processing has helped to identify specific aSyn
conformers in vitro and in vivo. As brain samples and aSyn
structure can only be collected and characterized post-mortem,
exclusively endpoint measurements of PD can be made. Here,
samples from the GIT that can be taken at different stages of the
disease might also show transient forms of aSyn aggregation. To
study aSyn structure and mechanistic of aggregation, there are in
principle three sources for aSyn species: (i) protein isolated from
patients/animals/cells, (ii) in vitro aggregated aSyn conformers
and (iii) amplified aSyn species from patient samples by utilizing
a protein-misfolding cyclic amplification assay (PMCA) (Paciotti
et al., 2018), which was initially established for prion protein
analysis (Saborio et al., 2001).

The use of recombinant aSyn monomers purified from E. coli
(Huang et al., 2005) enables studying and inducing aSyn fibril
formation in a very controlled and clean environment. For
this, different protocols can be applied, however, many involve
constant agitation (120–1,000 rpm) for different timeframes in
different buffer systems (Narkiewicz et al., 2014; Candelise et al.,
2020). It was also described, that the addition of a single glass
or PTFE (poly tera-flour-ethylene) bead enhances the formation
of aSyn fibrils (Buell et al., 2014; Narkiewicz et al., 2014). Using
transmission electron microscopy and single particle analysis
helped to produce near atomic resolution structures of such an
aSyn fibril (Guerrero-Ferreira et al., 2018; Li et al., 2018). This
fibril consists of aSyn dimers that form an antiparallel β-sheet
at the contact site with the core part ranging from amino acid
50–57. Stacking of these dimers results in the formation of
amyloid fibrils that report with a pitch of 239 nm and a width
of 10 nm (compared to 5 nm for an aSyn proto-fibril). A high
resolution (1.4Å) structure of the NAC core domain (forms
the interface of both aSyn monomers in a fibril) determined
by micro electron-diffraction electron microscopy reveals the
molecular interface and shows that the two aSyn monomers
are not within one plane (Rodriguez et al., 2015). They are
shifted upward/downward by 2.4Å. Two aSyn monomers are
stacked in a distance of 4.8Å. There were also structures described
for aSyn monomers carrying single amino acid exchanges also
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found in PD patients (Guerrero-Ferreira et al., 2019). The main
question is of course, how well do these fibrils represent
structures that form in patients’ brains or GIT as agitation
at 1,000 rpm is not physiological. ‘Natural’ aSyn aggregates
can be characterized from PD patient samples, as shown in a
study analyzing aSyn fibrils derived from the CSF (Shahnawaz
et al., 2020). To obtain these fibrils, CSF was taken from PD
patients and the pathological aSyn species were amplified by
PMCA. For this, small amounts of patient material were used
as a seed and a large surplus of monomeric aSyn was added
and samples were agitated to induce attachment of monomeric
aSyn to the pathological aggregates adopting their conformation
[PMCA; (Paciotti et al., 2018)]. Applying negative stain, cryo-
tomography on the resulting conformers, revealed fibrils with
a pitch of ∼260 nm and a width of 9 nm for PD patients
(Shahnawaz et al., 2020). Both aSyn fibrils, recombinantly
produced and amplified from patient CSF, show a similar pitch
and width, and therefore, at least at the present resolution,
recombinantly generated fibrils might resemble a pathological
form present in PD patients. Interestingly, a different fibrillary
architecture was found for MSA patients, where the cellular
source of aggregated aSyn is not neuronal, but stems from
oligodendrocytes (Shahnawaz et al., 2020). Hence, the cellular
environment seems to influence the aggregation pattern and
fibrillary structure of aSyn significantly (Candelise et al., 2020).
Thus, high-resolution structural comparison of GIT- and CNS-
derived aSyn conformers could help to better understand the role
of the gut-brain axis in PD.

Other methods to study aSyn oligomerization and amyloid
formation within GIT samples could imply fluorescent
complementation assays (Herrera et al., 2012) or intercalating
dyes, like Thioflavin (Vassar and Culling, 1959; Hashimoto
et al., 1998; Wordehoff and Hoyer, 2018). Moreover, analysis
of density and stability of different purified aSyn strains, e.g.,
from gastro-intestinal samples, proteinase-K, SDS or formic
acid treatment could be applied (Takeda et al., 1998; Lashuel
et al., 2013). The proteinase-K serine protease exerts endo- and
exopeptidase activity and after aggregation of aSyn some of the
cleavage sites are inaccessible for the protease resulting in an
incomplete digestion, which can be visualized using coomassie
stained SDS-PAGE (Cremades et al., 2012; Zunke et al., 2018).
For different amyloid aSyn species, structure-specific antibodies
have been raised over the last years that could be very useful for
a better understanding of aSyn conformation within the GIT
and disease pathology (for a comprehensive list see Harsanyiova
et al., 2020). Native dot blot analysis enables the detection of
folded/aggregated protein species and might help to identify
conformations in patient samples of the GIT (or other sources)
that are absent in controls. Characterization of GIT-derived aSyn
from different PD stages by biochemical (conformation-specific
aSyn antibodies) and structural (PMCA with subsequent TEM
analysis) analyses as above mentioned might help to identify
aggregation pathways in patients. This understanding will help
to identify and characterize clinically relevant aSyn aggregates
and serve as a basis to develop recombinant/cellular/animal
models that can be utilized in pre-clinical intervention studies as
discussed in the following paragraph.

IMPLICATION FOR THERAPEUTIC
STRATEGIES IN PD

Recent years brought increasing evidence that the reciprocal
connection between gut and brain may have a decisive influence
on symptomatic treatment. On the one hand, it became
evident that dopaminergic medication, especially Levodopa,
used to improve motor function, did not improve and instead
sometimes even worsens gastrointestinal symptoms such as
constipation (Schaeffer and Berg, 2017). On the other hand,
gastrointestinal dysfunction may affect the bioavailability and
efficacy of Levodopa and therefore has a direct effect on motor
function. Evidence in this respect has been seen for impaired
gastric emptying (Muller et al., 2006; Doi et al., 2012) and
small intestinal bacterial overgrowth as an expected result from
impaired motility of the small intestine (Gabrielli et al., 2011;
Fasano et al., 2013; Tan et al., 2014).

However, apart from symptomatic therapy, the
gastrointestinal system might also be an important target
for future disease-modifying treatment strategies. Of high
interest is the possibility of influencing the microbiome
in the gut (Figure 1). An increasing number of studies
indicates that dysbiosis in the gastrointestinal system may
play a crucial role for the pathogenesis of PD by promoting
intestinal permeability, gastrointestinal inflammation and aSyn
aggregation and propagation (Lubomski et al., 2019). Nutrition-
based components, such as probiotics, might be able to alter
enteral dysbiosis as part of pathology in PD very early in the
disease. Moreover, the concept of a gut-brain route of aSyn
pathology, may provide great opportunities to intervene in the
earliest phase of formation and propagation of aSyn. Several
compounds to modulate aSyn accumulation, aggregation and
propagation are currently being investigated (Deeg et al., 2015;
Wrasidlo et al., 2016; Jankovic et al., 2018). However, clinical
studies still have two major short comings: first, the compound
is administered in the clinical stages of the disease, in which the
synucleinopathy has already wide spread and second, there is a
lack of sensitive outcome parameters to verify treatment effects,
as they are still mainly limited to clinical symptoms. The fairly
easy accessibility of the gastrointestinal system, e.g., for biopsy
studies to detect and quantify aSyn, and the development of
imaging techniques to visualize gastrointestinal function and
pathology, may therefore not only be of significant importance
to detect individuals in the earliest phase of the disease, but also
to evaluate treatment effects of disease-modifying therapies.

QUESTIONING THE GUT-BRAIN AXIS IN
PD – WEAKNESSES AND CHALLENGES
OF THE HYPOTHESIS

Although the above-mentioned points argue in favor
of a gut-brain route as pathological basis in PD, this
hypothesis is still subject of controversial debate, following
contradictory results of clinical, pathological and animal studies
[reviewed in Lionnet et al. (2018); Scheperjans et al. (2018);
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Leclair-Visonneau et al. (2020)]. In this respect, it is especially
important to critically review the pathological findings of Braak
et al., which were an important trigger for many following studies
investigating the gut as primary starting point of pathology
in PD. However, it must be noted that a variety of following
autopsy studies could not confirm the proposed caudo-to-rostral
propagation and showed that aSyn pathology in the CNS is quite
often present without the occurrence of aSyn in the ENS or
the vagal nerve (Jellinger, 2019). Equally, the above-mentioned
studies investigating the association of vagotomy and future risk
of PD were questioned by following studies, which could not
find a lower PD risk in individuals receiving vagotomy (Tysnes
et al., 2015; Liu et al., 2017). Additionally, the hypothesis of an
exclusively caudo-rostral aSyn dissemination is questioned by
both pathological findings and clinical presentation of Dementia
with Lewy bodies (DLB). There is increasing consensus in the
scientific community that PD and DLB belong to the same
disease spectrum (Kosaka, 2014), whereby the early occurrence of
cognitive dysfunction together with necortical/limbic pathology
in DLB (preceding pathology in the SN) point to a rostral to
caudal spread of the disease.

The alternative hypothesis of a central to peripheral spread of
a-syn pathology has also been reinforced by results from animal
studies, showing for example a transmission of aSyn from the
midbrain via the vagus nerve into the stomach, following a CNS
to PNS route (Ulusoy et al., 2017). Moreover, a recent study could
show that injection and consecutive overexpression of adeno-
associated aSyn in the SN lead to neuronal loss and functional
alterations in the ENS, even without detectable spreading of the
exogenous aSyn to the gut (O’Donovan et al., 2020). Moreover,
in this study changes in the microbiome followed aSyn pathology
in the SN, questioning the role of the microbiome in etiology of
PD. In fact, although many studies confirmed alterations of the
microbiome in PD patients, the results have to be interpreted with
caution regarding potential confounders in already manifested
clinical PD, such as dopaminergic medication and impaired
gastrointestinal motility. More studies in prodromal cohorts and
longitudinal observations are still warranted to clarify the role of
the microbiome (Keshavarzian et al., 2020).

Taken together, the gut-brain hypothesis is challenged by a
variety of studies in favor for a brain-to-gut transmission of
aSyn pathology in PD. However, how can these two competing
hypotheses be brought together? One possible way is to
acknowledge possible subtypes in PD, with different ways of aSyn
propagation, following either a PNS-first or CNS-first route, as
proposed by Borghammer and Van Den Berge (2019). Another
possible explanation was given by the Threshold theory from
Engelender et al., proposing the parallel occurrence of pathology
in the CNS and PNS (Engelender and Isacson, 2017). Either
way, it remains of high importance to further elucidate the
interaction of gastrointestinal dysfunction with aSyn formation

and propagation to understand the role of the gastrointestinal
system for the pathophysiology in PD.

CONCLUSION

In the past years, progress has been made in understanding
PD as a disease with many faces and one of these faces are
alterations in the GIT homeostasis. As patient material from the
CNS is limited to post-mortem samples, other sources have to
be exploited. Here, samples from the GIT that contain enteric
neurons might be of paramount importance. They can be taken
during colonoscopy from the same patient at different stages
of the disease. Enteric neurons in these samples constitute a
post-mitotic neuronal cell population and with a direct interface
to microbiota they might also show differences in patients
with dysbiosis (Figure 1). Especially the identification of early
biomarkers for the prodromal phase of PD is highly desired and
these markers can only come from a non-CNS source. As GIT
symptoms such as constipation often manifest years before the
appearance of cardinal motor symptoms, enteric neurons might
be a good cellular source for in vivo aggregated aSyn conformers.
However, clear data to separate patient and control individuals
is still missing. Importantly, amplification of pathological aSyn
forms (PMCA) can generate aSyn conformers suitable for
structure determination (and maybe antibody generation) to
provide a better understanding of aSyn aggregation in patients.
Demonstrating these aggregates in patients could well be circled
back into clinical practice and might help to better define
disease stages. In the future, a close collaboration between
different clinical disciplines (e.g., neurology, gastroenterology,
and radiology) and basic researchers (biochemists, structural
biologist) will help to better understand PD on the macroscopic
clinical and microscopic/biochemical level and hopefully enable
new approaches toward clinical intervention studies.
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