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Abstract
Osteoarthritis (OA), a prevalent degenerative joint disease, affects a substantial global population. Despite the elusive etiol-
ogy of OA, recent investigations have implicated mitochondrial dysfunction as a significant factor in disease pathogenesis. 
Mitochondria, pivotal cellular organelles accountable for energy production, exert essential roles in cellular metabolism. 
Hence, mitochondrial dysfunction can exert broad-ranging effects on various cellular processes implicated in OA develop-
ment. This comprehensive review aims to provide an overview of the metabolic alterations occurring in OA and elucidate 
the diverse mechanisms through which mitochondrial dysfunction can contribute to OA pathogenesis. These mechanisms 
encompass heightened oxidative stress and inflammation, perturbed chondrocyte metabolism, and compromised autophagy. 
Furthermore, this review will explore potential interventions targeting mitochondrial metabolism as means to impede or 
decelerate the progression of OA. In summary, this review offers a comprehensive understanding of the involvement of 
mitochondrial metabolism in OA and underscores prospective intervention strategies.
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Introduction

Osteoarthritis (OA) is a prevalent musculoskeletal disorder char-
acterized by the degeneration of cartilage, subchondral bone, 
and other joint structures [1]. It represents a leading cause of 
pain and disability globally, particularly among the elderly popu-
lation. The prevalence of OA rises with age, with approximately 
10% of men and 18% of women aged 60 and above experienc-
ing symptomatic OA worldwide [2]. This condition imposes 
a substantial burden on healthcare systems, resulting in high 
healthcare costs and productivity loss. In the United States 
alone, the annual cost of OA is estimated at $128 billion [3]. 
Risk factors for OA include advancing age, obesity, joint injury 
or trauma, genetic predisposition, and joint malalignment [4]. 

Unfortunately, there are currently no disease-modifying thera-
pies available for OA, and the primary treatment goals revolve 
around pain relief and improvement of joint function. As a 
result, OA remains a significant unmet medical need and an 
area of active research.

Mitochondria, the organelles responsible for cellular 
metabolism and energy production in eukaryotic cells, play 
a pivotal role in maintaining cellular homeostasis. They 
are the primary source of ATP, the universal energy cur-
rency, through a process called oxidative phosphorylation 
(OXPHOS) [5, 6]. In addition to energy generation, mito-
chondria contribute to various cellular processes, including 
apoptosis, calcium signaling, and the production of reactive 
oxygen species (ROS) [7]. Perturbations in mitochondrial 
function and metabolism have been implicated in numer-
ous diseases, such as cancer, neurodegenerative disorders, 
and metabolic disturbances [8, 9]. Therefore, gaining a com-
prehensive understanding of the mechanisms underlying 
mitochondrial dysfunction is crucial for the development of 
effective therapeutic strategies for these conditions (Fig. 1).

Recent studies have revealed the significant contribution of 
mitochondrial dysfunction and disrupted energy metabolism 
to the pathogenesis of OA. Impaired mitochondrial function 
leads to the accumulation of ROS, which contribute to cartilage 
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degradation and chondrocyte apoptosis. Research has demon-
strated that elevated levels of mitochondrial ROS can acceler-
ate cartilage degeneration and facilitate OA development [10]. 
Additionally, chondrocytes derived from OA patients exhibit 
reduced mitochondrial membrane potential and increased ROS 
production, resulting in oxidative stress and cell death [11]. 
Moreover, mitochondrial dysfunction impairs ATP production, 
leading to compromised chondrocyte function and cartilage 
degradation [12]. Animal studies have further substantiated the 
link between mitochondrial dysfunction and OA. For instance, 
an investigation utilizing a mouse model of OA demonstrated 
that inhibiting mitochondrial respiration promoted increased car-
tilage degradation and synovitis [13]. Notably, Durán-Sotuela 
et al. recently identified a correlation between the mtDNA vari-
ant m.16519C and an elevated risk of rapid knee OA progression 
[14]. Their findings indicated that m.16519C increased mtDNA 
copy number while decreasing mitochondrial biosynthesis. Fur-
thermore, m.16519C led to heightened mitochondrial ROS lev-
els, diminished expression of the mitochondrial fission-related 
gene fission mitochondrial 1, and impaired autophagic flux. 
These results further underscore the significant role of mito-
chondrial dysregulation in OA. Significantly, researchers have 
explored the potential involvement of mitochondrial biogenesis, 

the process responsible for the generation of new mitochondria, 
in OA. A study revealed that treatment with a mitochondrial 
biogenesis inducer resulted in enhanced mitochondrial function 
and improved cartilage health in a rat model of OA [15].

Collectively, these investigations highlight the involvement 
of mitochondrial dysfunction and altered metabolism in the 
development and progression of OA, thereby suggesting that 
targeting mitochondrial metabolism holds promise as a poten-
tial therapeutic strategy. However, further research is necessary 
to fully comprehend the underlying mechanisms of mitochon-
drial dysfunction in OA and to develop effective treatments 
targeting mitochondrial metabolism.

Mitochondrial dysfunction in osteoarthritis

Factors leading to mitochondrial dysfunction 
in osteoarthritis

Mitochondrial dysfunction has been implicated in the 
pathogenesis of OA. Studies indicate that mitochondrial 
dysfunction occurs prior to cartilage degradation and con-
tributes to chondrocyte death [16]. Several factors have 

Fig. 1   .
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been identified as contributors to mitochondrial dysfunc-
tion in OA. Notably, oxidative stress is a key factor that can 
induce mtDNA damage, impair mitochondrial respiratory 
function, and activate mitochondrial-mediated cell death 
pathways [17]. Inflammatory cytokines and ROS produced 
by chondrocytes and synovial cells further exacerbate oxi-
dative stress and mitochondrial dysfunction. Inflammatory 
cytokines such as IL-1β and TNF-α have been reported to 
reduce mitochondrial activity and ATP production, impair 
mitochondrial respiration in chondrocytes, and contribute 
to mitochondrial dysfunction in OA [18]. Additionally, 
proper mitochondrial dynamics, including fission and 
fusion, are critical for maintaining mitochondrial function. 
Increased fission and decreased fusion result in fragmented 
and dysfunctional mitochondria, leading to reduced ATP 
production and increased ROS generation [19]. Studies 
have shown that abnormal mitochondrial fission is associ-
ated with elevated phospho-Drp1 (Ser616) expression in 
OA chondrocytes [20]. Moreover, Zhang et al. reported 
downregulation of MFN1/2 and OPA1, along with abnor-
mal translocation of DRP1 from the cytoplasm to the mito-
chondria, in OA chondrocytes [21]. Other mechanisms, 
such as altered mitochondrial biogenesis and mitophagy, 
have also been implicated in mitochondrial dysfunction 
in OA. Dysregulation of the PGC-1α/NRF-1 axis, a key 
regulator of mitochondrial biogenesis, has been observed 
in OA chondrocytes, leading to decreased mitochondrial 
mass and function [22]. Mitophagy, the selective deg-
radation of damaged mitochondria, is disrupted in OA, 
resulting in the accumulation of dysfunctional mitochon-
dria [10]. Abnormal expression of Parkin and P62, which 
mediate mitophagy, has been reported in OA [23]. Addi-
tionally, Kim et al. documented that the downregulation 
of PGC1α in OA could activate the PRKN-independent 
selective mitophagy pathway through the upregulation 
of BCL2 and BNIP3 [24]. In summary, multiple factors 
contribute to mitochondrial dysfunction in OA, including 
inflammation, oxidative stress, mitochondrial dynamics, 
biogenesis, and mitophagy. Understanding these mecha-
nisms may offer potential targets for the development of 
novel therapies aimed at improving mitochondrial function 
and slowing or preventing the progression of OA.

Changes in mitochondrial morphology and function 
in osteoarthritis

Mitochondria play a vital role in maintaining cellular func-
tion, and alterations in their morphology and function have 
been observed in OA. Studies utilizing human OA chon-
drocytes have demonstrated an increase in mitochondrial 
size and a decrease in mitochondrial number, indicating a 
shift towards elongated, dysfunctional mitochondria asso-
ciated with oxidative stress and inflammation [25]. Recent 

literature suggests that the AMPK-SIRT3 positive feedback 
loop plays a critical role in regulating OA development and 
progression, partially by modulating chondrocyte mitochon-
drial quality [26]. Imbalances in mitochondrial fission and 
fusion may contribute to abnormal mitochondrial distribu-
tion and dysfunction, thereby influencing OA pathogenesis. 
Another investigation identified increased mitochondrial 
fragmentation in OA chondrocytes, resulting in reduced ATP 
production and heightened apoptosis [27]. It was reported 
that TBK1 participates in the OA process by directly phos-
phorylating DRP1 at Ser637, thereby influencing mitochon-
drial morphology remodeling [27]. In addition to morpho-
logical changes, mitochondrial function is also affected in 
OA, with decreased mitochondrial respiration and ATP syn-
thesis observed in OA chondrocytes [23]. Furthermore, OA 
chondrocytes exhibit elevated mitochondrial oxidative stress 
and reduced antioxidant capacity, leading to mitochondrial 
DNA damage and dysfunction. Regulation of mitochondrial 
biogenesis is crucial for maintaining mitochondrial function, 
and evidence suggests a reduction in mtDNA content and a 
decrease in key regulators of mitochondrial biogenesis in 
OA, including PGC-1α and TFAM [28]. During OA pro-
gression, chondrocytes and synoviocytes tend to adapt their 
mitochondrial metabolism by shifting from oxidative phos-
phorylation to glycolysis, primarily regulated by the AMP-
activated protein kinase (AMPK) and mechanistic target of 
rapamycin (mTOR) pathways [29]. Moreover, altered lipid 
and amino acid metabolism have been observed in these 
cells [29]. Additionally, changes in mitochondrial metabo-
lism may lead to disturbances in cellular redox balance and 
the accumulation of reactive oxygen species (ROS) in OA. 
Recent research suggests that alterations in mitochondrial 
metabolism may contribute to the development of low-grade 
inflammation in OA [29]. Zhang et al. reported that Meta-
Defensomes could reprogram the mitochondrial metabolism 
of M1 macrophages by scavenging mitochondrial ROS and 
inhibiting mitochondrial nitric oxide synthase, thereby 
increasing TFAM expression and restoring aerobic respira-
tion, which suppresses synovial inflammation and early OA 
progression [30].

Overall, it is evident that mitochondrial dysfunction is a 
significant characteristic of OA and likely plays a key role in 
its development and progression. Therefore, gaining a better 
understanding of the mechanisms underlying mitochondrial 
dysfunction in OA holds promise for the development of 
new and effective therapeutic approaches to address this 
debilitating condition.

The impact of mitochondrial dysfunction 
on chondrocytes and cartilage tissue

Studies have provided evidence of the substantial impli-
cations of mitochondrial dysfunction in chondrocytes for 
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cartilage matrix production, chondrocyte apoptosis, and 
senescence, all of which contribute to the development and 
progression of OA [31]. Chondrocytes play a critical role 
in maintaining the extracellular matrix of cartilage tissue. 
Impaired mitochondrial function can disrupt ATP produc-
tion, increase oxidative stress, and result in the accumula-
tion of damaged proteins and lipids, all of which contribute 
to chondrocyte apoptosis [11]. Chondrocyte apoptosis is a 
key factor in cartilage degradation in OA, and mitochon-
drial dysfunction has been shown to heighten chondrocytes’ 
susceptibility to apoptosis triggered by mechanical stress, 
cytokines, and oxidative stress. The reduction in chondro-
cyte population due to apoptosis leads to diminished produc-
tion of extracellular matrix components, including collagen 
and proteoglycans, ultimately resulting in cartilage degrada-
tion and the progression of OA [32].

Furthermore, mitochondrial dysfunction not only impacts 
chondrocyte apoptosis but also influences the composition 
and structure of the extracellular matrix in cartilage tissue. 
Studies have demonstrated that mitochondrial dysfunction 
can modulate the expression of matrix-degrading enzymes 
such as matrix metalloproteinases (MMPs), thereby contrib-
uting to extracellular matrix degradation [33]. Yang et al. 
reported that aurora kinase A (AURKA)-mediated degrada-
tion of SOD2 contributes to mitochondrial ROS and dysreg-
ulation of matrix metalloproteinase-13 (MMP-13), thus pro-
moting the occurrence of OA through ubiquitination [34]. 
Additionally, mitochondrial dysfunction affects the produc-
tion and organization of collagen and proteoglycans in car-
tilage tissue, leading to structural alterations and heightened 
vulnerability to mechanical stress [35]. Downregulation of 
GSK3β in chondrocytes enhances mitochondrial oxidative 
stress and damage, leading to increased nuclear translocation 
of Runx-2 and β-catenin, calcium deposition, cell death, and 
remodeling of the extracellular matrix, including MMP-1 
and MMP-13 [35]. In summary, mitochondrial dysfunction 
exerts significant effects on chondrocytes and cartilage tis-
sue, resulting in chondrocyte apoptosis, alterations in the 
composition of the extracellular matrix, and changes in bone 
metabolism. Understanding the underlying mechanisms of 
mitochondrial dysfunction in OA holds promise for the 
development of innovative therapies aimed at preventing 
and treating this debilitating disease.

Mitochondrial metabolism 
and inflammation in osteoarthritis

Inflammatory processes play a pivotal role in the patho-
genesis of OA, contributing to disease development and 
progression [36]. Key cytokines, including interleukin-1 
(IL-1), tumor necrosis factor-alpha (TNF-α), and inter-
leukin-6 (IL-6), have been identified as crucial drivers 

of inflammation in OA. These cytokines stimulate chon-
drocytes and synovial cells to produce matrix-degrading 
enzymes and pro-inflammatory mediators, resulting in 
cartilage degradation and joint destruction [37]. Besides 
cytokines, other factors such as adipokines, chemokines, 
and danger-associated molecular patterns (DAMPs) also 
contribute to the inflammatory response in OA. Adi-
pokines, including adiponectin and leptin, produced by 
adipose tissue, induce the production of pro-inflamma-
tory cytokines, thereby promoting inflammation [38]. 
Chemokines, such as monocyte chemoattractant protein-1 
(MCP-1), recruit immune cells to the joint, further exacer-
bating inflammation [39]. DAMPs, such as high-mobility 
group box 1 (HMGB1) and S100A8/A9, activate toll-like 
receptors (TLRs) on immune cells, triggering an inflam-
matory response [40].

Targeting inflammation has been explored as a potential 
therapeutic strategy for OA. Nonsteroidal anti-inflamma-
tory drugs (NSAIDs) are commonly employed to manage 
pain and inflammation in OA patients, but long-term use 
is associated with adverse effects such as gastrointesti-
nal bleeding and cardiovascular events [41]. Other anti-
inflammatory agents, including interleukin-1 receptor 
antagonists and tumor necrosis factor inhibitors, have been 
investigated for OA treatment, but their efficacy remains 
controversial [42, 43].

Recent studies have provided insights into the influ-
ence of mitochondrial dysfunction on modulating inflam-
matory processes in OA. Mitochondrial dysfunction can 
initiate the release of mitochondrial DNA (mtDNA) and 
mitochondrial reactive oxygen species (mtROS), activat-
ing the inflammasome and stimulating the production of 
pro-inflammatory cytokines such as interleukin-1β (IL-1β) 
and interleukin-18 (IL-18) in chondrocytes and synovial 
cells [44, 45]. These cytokines contribute to extracellular 
matrix breakdown and expedite OA progression. Addition-
ally, mitochondrial dysfunction can impact the nuclear fac-
tor kappa B (NF-κB) signaling pathway, a key regulator of 
inflammation [46]. Mitochondrial ROS activate the NF-κB 
pathway, triggering the production of pro-inflammatory 
cytokines like TNF-α and IL-6 [47]. NF-κB activation 
also promotes the expression of matrix metalloproteinases 
(MMPs), contributing to extracellular matrix degradation 
and cartilage tissue damage [48].

Moreover, mitochondrial dysfunction can disturb the bal-
ance between pro-inflammatory and anti-inflammatory fac-
tors in synovial tissue. Accumulation of damaged mitochon-
dria leads to the production of pro-inflammatory cytokines 
and chemokines such as monocyte chemoattractant pro-
tein-1 (MCP-1) and macrophage inflammatory protein-1α 
(MIP-1α) [49]. Furthermore, mitochondrial dysfunction 
decreases the production of anti-inflammatory factors like 
adiponectin, which impedes pro-inflammatory cytokine 
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production and supports cartilage tissue repair [50]. Con-
sequently, targeting mitochondrial dysfunction represents a 
promising therapeutic approach for managing inflammation 
in OA.

Several studies have proposed that targeting mitochon-
drial metabolism could serve as an effective therapeutic 
strategy for OA by addressing both mitochondrial dysfunc-
tion and inflammatory processes. Activation of the AMP-
activated protein kinase (AMPK) pathway, known for its 
role in mitochondrial biogenesis and function, has demon-
strated anti-inflammatory effects in OA chondrocytes [51]. 
Furthermore, the use of mitochondria-targeted antioxidants 
has been shown to reduce inflammation and protect against 
cartilage degradation in OA models [52]. Researchers have 
also investigated the therapeutic potential of targeting the 
mitochondrial pyruvate carrier (MPC), a critical regulator of 
mitochondrial metabolism, for various diseases [53]. Inhibit-
ing MPC has been found to reduce mitochondrial respira-
tion, ROS production, and the production of inflammatory 
mediators [54], making it a potential therapeutic approach 
for OA. Additionally, activation of hypoxia-inducible factor 
1-alpha (HIF-1α) has been shown to decrease inflammatory 
cytokine synthesis, preserve the chondrogenic phenotype, 
regulate glycolysis and mitochondrial function in OA, and 
delay cartilage degradation by promoting a denser collagen 
matrix [55]. Hence, HIF-1α represents a crucial therapeutic 
target for OA by regulating chondrocyte inflammation and 
mitochondrial metabolism. Moreover, blocking LncHOTAIR 
has been found to improve mitochondrial activity, suppress 
IL-1β-induced chondrocyte inflammation, and reduce ROS 
levels in OA via the miR-222-3p/ADAM10 axis, suggesting 
LncHOTAIR as a potential therapeutic target for OA [56].

Furthermore, recent studies have indicated that the gut 
microbiota plays a role in regulating mitochondrial metabo-
lism and inflammation in OA. Imbalances in the gut micro-
biota, referred to as dysbiosis, have been associated with 
increased inflammation and mitochondrial dysfunction in 
OA models [57]. Treatment with probiotics or prebiotics 
has been shown to restore gut microbial balance, improve 
mitochondrial function, decrease inflammation, and mitigate 
cartilage degradation [57]. Another potential drug target is 
peroxisome proliferator-activated receptor gamma coactiva-
tor 1-alpha (PGC-1α), a transcriptional coactivator involved 
in mitochondrial biogenesis and function. Activation of 
PGC-1α has demonstrated the ability to enhance mitochon-
drial function and reduce inflammation in chondrocytes and 
animal models of OA [58].

Mitochondrial dysfunction and inflammation are closely 
interconnected in the development and progression of OA. 
Targeting mitochondrial metabolism holds promise as a 
therapeutic strategy for OA, with natural compounds and 
pharmacological agents aimed at improving mitochondrial 
function and reducing inflammation showing potential. 

However, further research is necessary to establish opti-
mal dosing and treatment durations, evaluate potential side 
effects, and explore the potential of gene therapy approaches.

Mitochondrial metabolism and apoptosis 
in osteoarthritis

Mitochondria plays a pivotal role in the regulation of apop-
tosis, and their dysfunction can initiate apoptotic pathways. 
Apoptosis is a tightly controlled process that can be trig-
gered through intrinsic and extrinsic pathways. In patients 
with OA, mitochondrial dysfunction has been associated 
with the activation of caspase-3, a key mediator of chon-
drocyte apoptosis [59]. Imbalances in apoptosis regulation 
have been observed in chondrocytes of OA patients, charac-
terized by increased expression of the pro-apoptotic protein 
Bax and decreased expression of the anti-apoptotic protein 
Bcl-2 [60]. These imbalances are correlated with reduced 
mitochondrial membrane potential and elevated production 
of mitochondrial ROS, both indicative of mitochondrial dys-
function [60].

Moreover, mitochondrial damage can lead to the release 
of cytochrome c from the mitochondrial intermembrane 
space into the cytosol, where it activates the caspase-9 
pathway and subsequently triggers caspase-3 activation 
[61]. Additionally, mitochondrial dysfunction can influence 
autophagy, a cellular process responsible for the degrada-
tion of damaged organelles and proteins, ultimately leading 
to apoptosis [62]. Disrupted mitochondrial metabolism can 
activate cell death pathways while inhibiting cell survival 
pathways, contributing to various diseases. In the context of 
OA, mitochondrial dysfunction contributes to chondrocyte 
apoptosis and cartilage degeneration. Studies have reported 
that Regulated in Development and DNA Damage Response 
1 (REDD1) downregulates mitochondrial biogenesis mark-
ers, such as PGC-1α and TFAM, leading to chondrocyte 
death in a mouse model of OA [63]. Furthermore, orphan 
nuclear receptor subfamily 4 group A member 1 (NR4A1), 
an important transcription factor, promotes mitochondrial 
dysfunction and triggers chondrocyte apoptosis in OA [64]. 
Dysregulation of mitochondrial dynamics markers, includ-
ing Drp1 (a mitochondrial fission marker), Tom20 (a mito-
chondrial outer membrane protein), and MFN1 (a mitochon-
drial fusion marker), has been associated with IL-1β-induced 
chondrocyte apoptosis, suggesting that IL-1β-induced mito-
chondrial dynamics dysfunction may accelerate chondrocyte 
apoptosis [11, 65].

Recent research has explored the potential of mitochon-
dria-targeted therapies to prevent chondrocyte apoptosis in 
OA. One approach involves the use of mitochondrial-tar-
geted antioxidants, which accumulate within mitochondria 
to scavenge ROS produced by dysfunctional mitochondria, 
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thus mitigating chondrocyte apoptosis. Delco et al. dem-
onstrated that treatment with the mitochondrial-targeted 
antioxidant SS-31 reduced ROS levels and prevented car-
tilage degradation in a rat model of OA [66]. Similarly, Liu 
et al. showed that treatment with the mitochondrial division 
inhibitor Mdivi-1 reduced chondrocyte apoptosis and car-
tilage degradation in a rat model of OA [67]. Additionally, 
Verhagen et al. found that treatment with the mitochondrial 
permeability transition pore inhibitor cyclosporin A reduced 
chondrocyte apoptosis and cartilage degradation in a rat 
model of OA [68]. Synthetic mitochondrial-targeted anti-
oxidants, such as MitoQ and SkQ, have been investigated in 
various diseases to decrease mitochondrial ROS production, 
inhibit cell inflammation and apoptosis, and hold promise 
for OA treatment [69, 70]. Another strategy involves the 
use of small molecules that specifically target mitochondrial 
pathways involved in apoptosis, such as the Bcl-2 family 
proteins. For example, ABT-263 can inhibit the anti-apop-
totic protein Bcl-2 and induce chondrocyte apoptosis in OA 
[71]. Additionally, circFAM160A2 has been reported to 
promote mitochondrial stabilization and suppress apoptosis 
in OA chondrocytes by targeting miR-505-3p and SIRT3, 
offering a potential therapeutic target for OA therapy [72]. 
Furthermore, AMPK activation via SIRT3 has been shown 
to limit oxidative stress, suppress apoptosis, and improve 
mitochondrial DNA integrity and function in OA chondro-
cytes, highlighting the protective effect of AMPK-SIRT3 
activation in OA [73]. Therefore, targeting mitochondrial 
metabolism and function emerges as a promising therapeutic 
strategy for managing OA.

Mitochondrial metabolism and cartilage 
matrix degradation in osteoarthritis

Cartilage matrix degradation is a characteristic feature of 
OA, and mounting evidence suggests that mitochondrial 
dysfunction contributes to this process. Several mecha-
nisms have been identified through which mitochondrial 
dysfunction influences the degradation of the extracellular 
matrix (ECM) in cartilage. One mechanism involves the 
activation of MMPs, which are responsible for ECM deg-
radation [74]. Mitochondrial dysfunction can upregulate 
MMP expression and activity in chondrocytes, leading to 
the breakdown of ECM components such as collagen and 
aggrecan [75]. Inhibition of mitochondrial dysfunction using 
various compounds has been shown to reduce MMP activity 
and attenuate cartilage degradation in OA models [76, 77]. 
Furthermore, oxidative stress resulting from mitochondrial 
dysfunction can contribute to cartilage matrix degradation. 
ROS generated during mitochondrial dysfunction can oxi-
dize and cleave ECM components, thereby promoting matrix 
degradation [78].

The impact of mitochondrial dysfunction on matrix-
degrading enzymes in chondrocytes has also been docu-
mented. It has been observed that mitochondrial dysfunction 
increases the production of MMPs, which play a pivotal role 
in ECM degradation, including collagen and proteoglycans 
[79]. Mitochondrial dysfunction activates signaling path-
ways such as MAPKs and NF-κB, leading to the upregu-
lation of MMP expression and activity in chondrocytes. 
For example, inhibition of mitochondrial respiratory chain 
complex III has been found to upregulate MMP expression 
in human chondrocytes [80]. Hydrogen peroxide-induced 
mitochondrial dysfunction has also been shown to increase 
MMP-13 expression and activity in chondrocytes [81]. 
Moreover, mitochondrial dysfunction has been linked to 
alterations in the expression and activity of other matrix-
degrading enzymes, such as ADAMTS and cathepsins. Stud-
ies have revealed that mitochondrial dysfunction upregulates 
the expression and activity of ADAMTS-5, which contrib-
utes to aggrecan degradation [82]. Additionally, mitochon-
drial dysfunction has been associated with increased expres-
sion and activity of cathepsins B, which are involved in the 
degradation of type II collagen, another vital component of 
cartilage ECM [83]. These findings emphasize the impor-
tant role of mitochondrial dysfunction in regulating matrix-
degrading enzymes in chondrocytes, thereby contributing to 
cartilage matrix degradation in OA.

Recent evidence suggests that targeted therapies aimed at 
mitochondria may hold promise in reducing cartilage matrix 
degradation and halting the progression of OA. Several 
studies have demonstrated that inhibition of mitochondrial 
complex I or II can diminish cartilage matrix degradation 
and enhance chondrocyte survival in animal models of OA 
[84]. Furthermore, promoting mitochondrial fusion and 
inhibiting fission has been shown to improve mitochondrial 
function and reduce cartilage matrix degradation [27]. Com-
pounds capable of modulating mitochondrial metabolism 
and improving mitochondrial function, such as nicotinamide 
riboside and pyrroloquinoline quinone, have also been inves-
tigated in the context of OA [85, 86]. These compounds 
promote mitochondrial biogenesis, enhance mitochondrial 
respiration, and reduce oxidative stress and inflammation 
in chondrocytes, ultimately preserving the integrity of the 
cartilage matrix. Additionally, Hung et al. reported that 
inhibiting the SIRT1/AMPK/PGC-1α signaling pathway in 
chondrocytes resulted in mitochondrial dysfunction charac-
terized by increased oxidative stress and apoptosis, leading 
to cartilage matrix loss through upregulation of MMP-13 
expression. This finding provides a theoretical basis for 
understanding OA etiology and intervention [87]. Further-
more, inhibition of LncHOTAIR has been found to improve 
mitochondrial activity and mitigate cartilage matrix degra-
dation by regulating MMP-13, suggesting its potential role 
in OA intervention [56].
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Mitochondrial metabolism and autophagy 
in osteoarthritis

Autophagy, a critical cellular process involved in maintain-
ing cellular homeostasis, is responsible for the degradation 
of unwanted or damaged organelles and proteins through 
lysosomal degradation pathways. This process entails the 
formation of autophagosomes, double-membraned vesicles 
that sequester cytoplasmic cargo and subsequently fuse with 
lysosomes to form autolysosomes for degradation [88]. In 
the context of chondrocytes and cartilage homeostasis, 
autophagy plays a vital role [89]. It facilitates the degrada-
tion of misfolded proteins and damaged organelles, includ-
ing mitochondria, thereby maintaining a healthy chondro-
cyte phenotype [89]. Moreover, autophagy is involved in 
regulating chondrocyte apoptosis and cartilage matrix deg-
radation in OA [90]. Studies have demonstrated that inhib-
iting autophagy in an OA mouse model leads to increased 
cartilage damage and chondrocyte apoptosis, while activat-
ing autophagy promotes chondrocyte survival and reduces 
matrix degradation in OA [11, 91]. However, it is worth 
noting that while autophagy serves as a stress adaptation 
mechanism to prevent cell death, excessive autophagy can 
also lead to cellular demise [92]. Mitochondrial dysfunction 
plays a significant role in disrupting autophagy and contrib-
uting to the development of various diseases, including OA. 
Research has shown that mitochondrial dysfunction in OA 
chondrocytes impairs autophagy, exacerbating mitochondrial 
damage and oxidative stress within the cells [93]. Impaired 
autophagy is associated with the accumulation of damaged 
mitochondria and the activation of inflammatory pathways, 
both of which contribute to the pathogenesis and progression 
of OA [91]. Kim et al. reported that mitochondrial dysfunc-
tion reduces autophagy activity in chondrocytes, resulting in 
increased apoptosis and cartilage degeneration [24].

Enhancing autophagy represents a potential therapeutic 
strategy for treating OA, and targeting mitochondrial dys-
function and improving mitochondrial health can play a 
crucial role in regulating autophagy and promoting chon-
drocyte survival. Studies have shown that administration 
of mitochondrial-targeted antioxidants, such as MitoQ and 
MitoTEMPO, can restore autophagy and reduce cartilage 
degeneration [60, 94]. Wang et al. demonstrated that met-
formin can regulate the mitophagy process through the 
SIRT3-PINK1-PRKN signaling pathway, counteracting 
oxidative stress and imbalance of anabolism and catabo-
lism induced by IL1B in chondrocytes, thus highlighting 
metformin’s potential in the prevention and treatment of 
OA through modulation of mitophagy [95]. Additionally, 
zinc has been found to reverse disturbances in mitochon-
drial metabolism and mitophagy induced by monosodium 
iodoacetate, suggesting its potential protective role against 

OA progression [84]. Overexpression of circErcc2 has 
also been shown to attenuate apoptosis, ECM degradation, 
and enhance mitophagy by targeting Mir182-5p-SIRT1 in 
response to oxidative stress, offering potential therapeutic 
approaches for OA [10]. In summary, these findings sup-
port the notion that mitochondrial-targeted therapies hold 
promise in regulating autophagy and promoting chondrocyte 
survival in OA.

Conclusion and future direction

In summary, the role of mitochondrial metabolism in the 
development of OA is crucial. Dysfunctional mitochon-
dria in chondrocytes contribute to the generation of ROS, 
oxidative stress, inflammation, and apoptosis [96]. Moreo-
ver, impaired cellular energetics and autophagy contribute 
to extracellular matrix degradation, resulting in cartilage 
loss and OA progression [11]. Mitochondrial-targeted 
therapies, including antioxidants, mitochondrial biogen-
esis activators, and mitophagy modulators, hold prom-
ise in mitigating mitochondrial dysfunction and associ-
ated pathological changes in OA. Currently, no approved 
drugs specifically targeting mitochondrial metabolism in 
OA exist. However, preclinical and clinical studies have 
explored various treatments with potential efficacy in this 
regard. For example, metformin, a widely used antidia-
betic medication, activates AMPK and has been shown 
to ameliorate mitochondrial dysfunction and protect 
against cartilage damage in OA models [95, 97]. Clini-
cal trials are underway to assess the potential benefits of 
metformin in human OA patients. Additionally, specific 
nutraceuticals and dietary supplements have been inves-
tigated for their effects on mitochondrial metabolism in 
OA. Coenzyme Q10 (CoQ10), an essential component 
of the mitochondrial electron transport chain, has shown 
promise in improving mitochondrial function and reduc-
ing pain in OA patients [98, 99]. Likewise, resveratrol, a 
polyphenol found in grapes and berries, has been studied 
for its antioxidant and anti-inflammatory properties, which 
may contribute to enhanced mitochondrial function in OA 
[100, 101]. A clinical trial demonstrated that hyaluronic 
acid treatment in OA had a significantly superior effect to 
methylprednisolone, partially attributed to improved mito-
chondrial function [102]. Nonetheless, further research is 
necessary to fully comprehend the intricate interactions 
between mitochondrial metabolism and OA pathophysiol-
ogy. The development and optimization of mitochondrial-
targeted therapies hold the potential to provide effective 
prevention and treatment strategies for this prevalent and 
debilitating joint disease.

Although mitochondrial-targeted therapies have demon-
strated promise in preclinical investigations as a potential 
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treatment for OA, further research is required to com-
prehensively assess their efficacy, safety, and long-term 
effects in human subjects. Subsequent studies could focus 
on optimizing the delivery and dosage regimens of these 
therapies, as well as investigating potential synergistic 
effects when combined with existing treatments such as 
nonsteroidal anti-inflammatory drugs and corticosteroids. 
Additionally, more investigations are warranted to eluci-
date the molecular mechanisms underlying the impact of 
mitochondrial dysfunction in OA and to identify novel 
therapeutic targets. Recent advancements in high-through-
put screening technologies and genomics have facilitated 
the identification of new drug candidates capable of mod-
ulating mitochondrial metabolism and function, offering 
potential avenues for the development of innovative OA 
treatments. Another area of interest pertains to the devel-
opment of biomarkers that could be utilized to monitor 
the effectiveness of mitochondrial-targeted therapies in 
OA patients. Overall, mitochondrial metabolism assumes 
a critical role in the pathogenesis of OA, and targeting 
mitochondrial dysfunction holds promise as a prospec-
tive therapeutic strategy for addressing this incapacitat-
ing condition.

At present, preclinical studies have shown potential ben-
efits associated with mitochondrial-targeted antioxidants 
and other therapies. Nonetheless, further research is nec-
essary to ascertain optimal dosages, administration routes, 
and potential adverse effects in humans. If successful, mito-
chondrial-targeted therapies may provide disease-modifying 
treatment options for OA by promoting chondrocyte survival 
and reducing degradation of the cartilage matrix, thereby 
affording long-term benefits. Furthermore, these therapies 
have the potential to diminish the reliance on conventional 
pain management strategies, including nonsteroidal anti-
inflammatory drugs and opioids, which carry significant 
side effects and risks.

It should be noted that mitochondrial-targeted thera-
pies are not meant to be standalone solutions and can be 
employed in conjunction with existing treatments for OA. 
The integration of mitochondrial-targeted therapies within 
a multimodal approach to OA treatment may yield improved 
outcomes for patients.
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