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Introduction
Accurate detection of germline copy number variants (CNVs) from hybridization-cap-
ture next generation sequencing (NGS) data remains a significant challenge. The sparse 
nature of targeted capture data typically precludes detecting CNVs via paired end map-
ping or split-read analysis, leaving read depth as the primary signal of DNA copy num-
ber. Read depth is subject to many confounding factors, including those that affect each 
region independently, such as GC or CpG content, as well as factors that create cor-
relations in depths between regions, such as the presence of common CNVs or ‘batch 
effects’ produced by variable lab conditions. Elucidation of the true number of copies of 
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an allele requires accounting for both sources of variability in additional to the stochastic 
nature of the fragment hybridization process.

Despite ongoing interest in the topic, several recent reviews and comparison papers 
have documented relatively low sensitivity, reproducibility, and positive predictive 
value (PPV) in read-depth based CNV detection methods. For instance, Hong et al. [1] 
examined four methods and found that PPV varied widely by data set and ranged from 
approximately 10–80% for deletions and was uniformly below 60% for duplications. 
Comparing three methods on whole-exome sequencing (WES) data, Yao et al. [2], found 
similarly low PPV and sensitivity. Tan et al. [3] also noted high Mendelian error rates in a 
set of exome trios and poor concordance of CNV calls between callers. Contrasting per-
spectives can be found in de Ligt [4] and Yamamoto et al. [5], who found relatively high 
sensitivity and specificity in larger, multi-gene CNVs using the Krumm [6] and Fromer 
[7] methods.

Many methods have been proposed to estimate copy-number status from NGS read 
depth data, but most involve two primary tasks. First, raw read depths are ‘normalized’ 
to minimize variability and remove depth artifacts from non-CNV sources. Second, 
these normalized depths must undergo a multiclass segmentation procedure to assign 
distinct copy numbers to each targeted region.

Read depth normalization procedures involve comparing the raw read depth at a par-
ticular base or region to that from a set of control samples. The most straightforward of 
these techniques involve examining the ratio of read depth in the query sample relative 
to the controls, often after correcting for GC-content (e.g. [8–10]). When a large panel 
of control samples is unavailable, some authors have employed LOWESS smoothing 
to reduce stochastic noise (e.g. [11]). Such procedures reduce the target-to-target vari-
ability present in hybridization-capture NGS data, but may fail to eliminate variability 
due to the correlational structure of depths across targets. To ameliorate such effects, 
Krumm et al. [6] and Fromer et al. [7] introduced similar techniques that involve decom-
posing the matrix of depths across control samples using singular value decomposition 
(SVD). The approach removes a configurable fraction of the variation present under the 
assumption that the most prevalent sources of variation are unlikely to be due to CNVs. 
Jiang et al. [12] present an alternative method based on Poisson latent factors that explic-
itly models GC content in addition to systematic biases.

Several techniques have been used for segmenting normalized depths into CNV calls. 
Some methods adopt a thresholding algorithm whereby any target with a normalized 
depth exceeding a threshold value is assigned to a CNV state [6, 8, 9]. Other methods 
employ a Hidden Markov Model (HMM). While HMMs naturally incorporate the sto-
chastic variability in read depths, they are often parameter-rich, requiring choices for 
the transition matrix as well as means, variances, and possibly other parameters for the 
emission distributions associated with every target. Because many NGS studies examine 
ten of thousands of targets, even small errors in fitting the distributions may result in 
a large number of false positive calls and low positive predictive value (PPV). Fromer 
et  al. [7] utilize an HMM in which emission distributions are fixed for all targets and 
must be specified by the user, while Love et al. [13] and Packer et al. [10] construct an 
HMM whose parameters are estimated in a maximum likelihood procedure. In all cases 
the Viterbi algorithm is employed to identify the most likely copy number states at each 
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target. Jiang et al. [12] develop a novel procedure that uses Circular Binary Segmenta-
tion (CBS, [14]) to segment likelihood ratios from a Poisson model. In the context of 
single-cell sequencing, Zhang et al. [11] modeled read depths at each site with a negative 
binomial distribution, and used a numerical optimization method to identify most likely 
copy number states while maximizing overall smoothness and sparsity.

Here, we introduce a method that combines ideas from Love et al. [13], Packer et al. 
[10] and Fromer et al. [7]. Similar to the Fromer et al. [7] work, we use SVD to identify 
and remove common sources of variation from raw read depth data. Our approach com-
bines two innovations. First, we describe a new method of estimating target- and state-
specific emission distribution parameters. Second, in contrast to other HMM-based 
methods, we decode the HMM using the pointwise maximum a posteriori (PMAP) algo-
rithm [15], instead of the more typical Viterbi algorithm, in an effort to maximize the 
number of correctly called targets. We compare Cobalt to six other detection tools using 
both simulated and orthogonally detected CNVs of all sizes. We also demonstrate per-
formance improvements and parallelization opportunities resulting from partitioning of 
the targets into independent groups.

Implementation
Cobalt

Our algorithm operates in two phases, a ‘training’ phase where data from control sam-
ples is used to create a reusable model, and a ‘prediction’ phase where the model is used 
to detect CNVs in a single query sample. An overview of the phases is shown in Fig. 1.

Training

During training, read count depths from multiple samples are used to generate a collec-
tion of parameters referred to as a ‘model’. The samples used for training are termed the 
‘background’ or ‘control’ samples. Read count data must be provided in a BED-format-
ted file, with rows corresponding to targets and columns containing read counts for the 
samples. Targets do not need to be of similar sizes, but should not be overlapping. Our 

Fig. 1  Overview of steps involved in the training (top) and prediction (bottom) phases for CNV detection 
with Cobalt
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implementation does not assume any particular method of obtaining read counts - both 
mean target read depth or the total number of reads overlapping a target region are suit-
able. Under typical use each target corresponds to a single hybridization probe location, 
although special considerations should be taken if there are multiple overlapping probe 
locations.

Read depth data are converted into a n× p matrix D, with n targets and p samples. We 
then compute P such that

After centering each column of P about the column median to produce R, we then com-
pute the k right singular vectors of RT . k is computed as the minimum value such that 
the proportion of variance explained by singular vectors 0..k is at least v, which by default 
is 0.90 but can be changed by the user. In “Target partitioning” we discuss two strategies 
for minimizing computational costs for large n. Setting Vk to be the column matrix of the 
singular vectors, we then compute

The centering procedure removes target-specific biases due to, for instance, genomic 
GC or CpG content, while the SVD procedure removes across-target correlations due to 
CNVs present in the samples or ‘batch effects’ that induce similar changes across sets of 
targets.

For brevity, we refer to the above steps as f, such that T = f (P,Vk) , where Vk is the col-
umn matrix of the top k right singular vectors of R.

Target partitioning

The training procedure above involves computing the matrix VT
k V  , where Vk is k × n , 

which results in an n× n matrix. For large numbers of targets (n) the amount of stor-
age required may exceed the amount of memory available and performance may be 
impacted. We use two strategies to ameliorate performance concerns. First, the rand-
omized SVD algorithm of Halko et al. [16] offers several performance benefits compared 
to traditional decomposition methods. Second, we partition the n targets into disjoint 
sets of approximate size j, and treat each partition independently. j is a user-settable 
parameter, for the results shown here a value of 1,000 is used. Ad-hoc experiments have 
suggested that results are generally insensitive to the choice of j as long as j >> 100 . 
The partitioning algorithm seeks to distribute partitions as uniformly as possible across 
targets. (Early experiments assigned many adjacent targets to a single partition and had 
poor sensitivity to CNVs that occupied a large percentage of the partition.)

Target partitioning greatly speeds the training procedure and reduces memory 
requirements from O(n2) to O(j2) without significantly impacting CNV calling accuracy.

Emission distribution parameter estimation

We assume all emission distributions are Gaussian with means and variances that dif-
fer across both states and targets, and we estimate the mean and variance for each state 
and target separately. Copy number states are described by the expected change in the 

(1)P = ln(D + 1)

(2)T = R− RVT
k Vk
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raw read depth of the target - for instance, we assume a heterozygous deletion reduces 
raw read depth by approximately 50%, while a homozygous duplication increases raw 
read depth by 100%. Let vector s hold the coefficients describing the expected change 
in depth associated with each state. Under typical usage, we define 5 states and set 
s = {0.01, 0.5, 1.0, 1.5, 2.0} , where the elements correspond to homozygous deletion, het-
erozygous deletion, diploid, heterozygous duplication, and homozygous duplication or 
amplification. Special considerations are made for calls on the X and Y chromosomes in 
males, as described below.

To estimate the mean and variance parameters for target t and state i, we form D̂t,i by 
multiplying column t of D by si . We then compute Ts,i = f (Ds,i,C) , and take the sample 
mean and sample variance of column t of T̂t,i to be the mean and variance of the emis-
sion distribution for target t and state i. The above procedure is repeated for every target 
and copy number state and the resulting means and variances recorded for all states and 
targets. We refer to the full collection of parameter estimates and singular vectors C as a 
‘model’, which is persisted and used to facilitate the CNV discovery procedure.

Target resolution calculation

Using the set of stored emission distribution parameters it is possible to calculate an ad-
hoc value that reflects the power of a given target to resolve copy number status in gen-
eral. For some targets emission distributions are well separated and have small variances 
relative to the difference in means between states (e.g. Fig.  2a), while at other targets 
the distributions may overlap substantially (Fig.  2c). CNV identification is likely to be 
impaired when the distributions overlap because posteriors for the states are also likely 
to overlap substantially. In some cases, it may be possible to detect certain CNV states, 
such as homozygous deletions, while resolution for other states may be relatively poor 
(Fig. 2c).

As a proxy for overall target resolution, we compute the Kullback–Leibler divergence 
[17] between the heterozygous deletion state and the diploid state. While the value is 
based only on the difference between two of the five typical states, we note that separa-
tion between the diploid and heterozygous deletion states is often closely correlated to 
separation between other states, and that the heterozygous deletion state is often the 
most relevant from a clinical standpoint. Our implementation can compute this statistic 
for every target in a saved model and emit the results in BED format. In practice, val-
ues less than approximately 10 appear to be associated with relatively poor CNV calling 
accuracy.

This procedure may be useful for understanding which targets are associated with 
poor resolution, and hence should be excluded from routine calling procedures. In a 
panel design context, such information might be used to generate formal statements 
regarding inclusion/exclusion of particular genes or exons.

CNV prediction

Prediction requires a set of parameter estimates and singular vectors as computed dur-
ing training, and a set of sample depths taken over the same set of targets used for model 
training.
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We construct a homogeneous Hidden Markov Model (HMM) with initial state vector 
π = {0.01, 0.01, 0.96, 0.01, 0.01} , a transition probability matrix M, and set of emission 
distribution parameters obtained from the stored model. We assume all emission distri-
butions are Gaussian, with parameters estimed during training (see “Emission distribu-
tion parameter estimation” section). We construct a two-parameter variant of M, where 
one parameter describes the probability of moving ‘away’ from the diploid state and the 
other describes moving back ‘toward’ the diploid state. Specifically, we construct M as:

where α and β are set to 0.0025 by default. Smaller values of the α and β favor fewer, 
larger CNVs, while larger values favor smaller, more numerous CNV calls.

Raw sample depths are transformed via f using singular vectors C obtained during 
training, and the transformed depths are treated as observations to obtain posterior 

M =





1− β β 0 0 0

α 1− α − β β 0 0

0 α 1− 2α α 0

0 0 β 1− α − β α

0 0 0 β 1− β





Fig. 2  Example emission distributions illustrating between target variation. a, b Show well behaved targets 
with adequate separation between emission distributions, c demonstrates a low resolution target with 
substantial overlap between emission distributions
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state probabilities from the HMM using the Forward-Backward algorithm. Finally, we 
produce a list of most likely state probabilities using PMAP (pointwise maximum a 
posteriori, see [15]). Adjacent segments of identical most-likely state are joined into 
single regions, and all non-diploid regions are emitted as CNV calls.

Comparison to other detection tools

We investigate the performance of our method on two different datasets, exomes and a 
large custom panel. The exome data was used for a simulation analysis, while the custom 
panel was used to explore accuracy in detecting CNVs previously discovered by array 
comparative genomic hybridization (aCGH) or multiplex ligation-dependent probe 
amplification (MLPA). Throughout we compare our method to Conifer [6], XHMM [7], 
Convading [8], ExomeDepth [18], Clamms [10], and Codex [12].

NGS data

50 exomes derived from whole blood were captured using the xGen Exome Research 
Panel v1.0 probe set from IDT. Exomes were sequenced on 4 separate runs of an Illu-
mina HiSeq 4000 instrument to a mean read depth of approximately 150 reads. Reads 
were aligned to human reference genome GRCh37 with phiX and decoy sequences 
included using BWA MEM (v0.7.12, [19]). Potential PCR duplicates were identified and 
marked using Sambamba [20].

Read counting was performed using the methods recommended by each caller exam-
ined, often using either the DepthOfCoverage tool from GATK 3.7 [21] or the multicov 
facility in BEDTools [22], although ConVaDINg [8] implements read counting internally. 
For Cobalt, read counting was performed using the PySAM interface to samtools [23], 
and the total number of reads overlapping each CNV target (probe) was recorded.

In addition to the exome data, we analyzed 218 samples captured with a custom probe 
design manufactured by IDT. This large panel targets 4921 genes with 71,163 probes 
and has a footprint of 16 Mb. These samples were sequenced on 5 runs of a HiSeq 4000 
instrument to a mean read depth of approximately 300. Data analysis was identical to 
that for the exomes.

Simulated CNV generation

Simulated CNVs were introduced into exome BAM files by either removing or duplicat-
ing existing reads. CNVs spanning 1, 3 or 10 exons were generated in separate BAM 
files, see Table 1. CNV locations were chosen uniformly from RefSeq alignments on the 
autosomes, and read counts were reduced by 50% to create heterozygous deletions and 
increased by 50% to create heterozygous duplications.

Table 1  Number of simulated CNVs by size

Number of exons Number of CNVs

1 1000

3 300

10 100
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Results
We evaluate CNV caller accuracy with a combination of simulated CNVs and those 
detected by array CGH and confirmed with an orthogonal technology.

Simulation analysis

Sensitivity and positive predictive value (PPV) were tabulated on a sample-by-sample 
basis given the optimal quality score cutoff for each caller and CNV size (see Table 2). A 
50% reciprocal overlap (intersection-over-union/Jaccard) rule was used to determine if a 
simulated CNV was called correctly. Default sensitivity and specificity settings differed 
substantially across callers, preventing a simple comparison of raw CNV calls. To stand-
ardize caller output, we attempted to find the optimal quality score cutoff for each caller 
independently, then compared CNV callers using the caller-specific thresholds. For each 
caller candidate CNVs were called using high sensitivity settings and sensitivity/specific-
ity curves were constructed using the caller-produced CNV call quality. The F1 statistic 
was calculated at 10 different evenly-spaced quality values, and the quality score associ-
ated with the maximum F1 score was chosen as the optimal quality threshold. One caller, 
Conifer, did not produce CNV quality scores and for this caller we did not perform qual-
ity threshold optimization.

For deletions in all size categories Cobalt demonstrated consistently high sensitiv-
ity and PPV, and achieved the highest sensitivity and PPV among all callers for dele-
tions spanning 1–3 exons (Fig.  3a, c). For deletions spanning 10 exons sensitivity was 
slightly higher for CODEX [12], though at the cost of significantly lower PPV (Fig. 1e). 
For duplications spanning 1–3 exons Cobalt demonstrated the highest mean sensitivity 
and PPV of the callers we examined (Fig. 3b, d), although overall sensitivity for 1-exon 

Table 2  Quality thresholds used in simulation analysis

Caller CNV size (exons) Quality 
threshold

1 0.95

Cobalt 3 0.95

10 0.96

1 5

XHMM 3 10

10 8

1 − 6.4

ExomeDepth 3 64

10 12

1 0

Convading 3 0

10 0.3

1 0.85

Clamms 3 0.95

10 0.93

Conifer 1–10 NA

1 0.52

Codex 3 30

10 118



Page 9 of 14O’Fallon et al. BMC Bioinformatics          (2022) 23:285 	

duplications was low (61%). For 10-exon duplications, CODEX again achieved higher 
sensitivity (91% compared to 83%) but significantly lower PPV (70% vs 92%, Fig. 3f ).

Fig. 3  Per-sample sensitivity and positive predictive value (PPV) for simulated deletions (left column) and 
duplications (right column) CNVs spanning 1 (top row), 3 (middle row), and 10 (bottom row) capture targets
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Previously detected CNVs

We examined 68 samples containing CNVs previously detected by aCGH or MLPA in 
addition to 160 ‘background’ samples which had not undergone any CNV detection 
procedure. Unlike the simulation analysis, samples were separated by sex, yielding 
78 male and 82 female background samples. Sequencing and primary analysis were 
performed as described in the “NGS data” section. To determine if a true CNV was 
detected, we computed a modified Jaccard (intersection-over-union) statistic. Spe-
cifically, we computed the intersection of CNV targets in the true CNV and the CNV 
targets overlapped by CNV calls, and compared this to the union of true CNV targets 
and the called CNV targets. If no called CNVs overlapped the true CNV a value of 0 
was recorded. True CNVs with a Jaccard value of 0.5 or greater were labeled as cor-
rectly called. Caller specific quality thresholds were used as given in Table 2.

Cobalt demonstrated a sensitivity comparable to other top-performing callers with 
values near 90% for small (1–4 target) deletions and near 100% for medium to large 
deletions (spanning 5 or more targets). For duplications, Cobalt struggled to detect 
small (1–4 target) CNVs and yielded a sensitivity of near 50%, but correctly detected 
90–100% of medium and large duplication CNVs. CODEX achieved similar sensitiv-
ity levels for deletions and substantially higher sensitivity to small duplications, but 
relatively low sensitivity to large (10 or more target) duplications.

The total number of CNV calls varied substantially across callers (Fig.  3). While 
the true status of these calls is unknown, we suggest that the total number of CNV 
calls is positively correlated with the false discovery rate of the caller for the follow-
ing reasons. First, if our sensitivity data (Figs. 3, 4) are accurate, then approximately 
90–100% of true CNVs are detected, thus large discrepancies in the number of CNV 
calls made in total are more easily explained by additional false positive calls rather 
than very large numbers of true, previously undetected CNVs. Second, prior analysis 
with aCGH has suggested that a typical number of CNVs per sample is between 0–10, 
and that very few samples contain hundreds (or thousands) of CNV calls.

If the total number of CNV calls is correlated with false discovery rate (FDR), then 
Cobalt achieves the second-lowest FDR of all callers (Fig. 5) with a median number of 
12 CNV calls per sample. The other callers that achieved similar sensitivity, CODEX, 
ExomeDepth, and XHMM, discovered 51, 92, and 124 calls per sample. Only Clamms 
yields fewer CNV calls per sample (median 2), although Clamms also demonstrated 
low sensitivity overall with values less than 50% for most CNV classes.

Table 3  Number of previously detected CNVs

Number of CNV targets CNV type Number 
of CNVs

1–4 Deletion 19

5–9 Deletion 14

10+ Deletion 5

1–4 Duplication 9

5–9 Duplication 3

10+ Duplication 12
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Discussion
The Cobalt CNV caller introduces several improvements over previous techniques 
that improve specificity while maintaining high sensitivity. Most importantly, Cobalt 
uses a unique method to generate accurate, target-specific parameters for the HMM. 
For each copy-number state at each target, these parameter estimates are produced 
by modifying the background sample depths to produce a pseudo-CNV, then captur-
ing the mean and variance of the background depths after log-normalization and 

Fig. 4  Sensitivity of Cobalt and other CNV detection tools on a deletion and b duplication CNVs of different 
sizes

Fig. 5  Total number of CNVs, including both true and false positive calls, detected by Cobalt and other callers 
in samples with previously detected CNVs
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removal of singular vectors. For comparison, the HMM of Fromer et al. [7] assumed 
that the means and variances of the emission distributions were constant across all 
targets.

An additional refinement is use of the PMAP (pointwise maximum a posteriori) 
criterion when decoding the HMM. Most previous HMM-based CNV callers employ 
the Viterbi algorithm to assign copy-number states to targets. While Viterbi yields 
the single most likely path through states across targets, it does not necessarily max-
imize the number of correctly called targets, while PMAP does [24]. One drawback 
to PMAP is that it may yield inadmissible paths that have 0 prior or posterior proba-
bility. For instance, it may be the case that PMAP indicates a duplication target adja-
cent to a deletion target, even though the transition matrix specifies 0 probability 
for such a transition. While unsatisfying, we appeal to the approximate nature of the 
HMM transition matrix and note that few real-world cases justify entries of exactly 
0 in the transition matrix. While it is possible to construct a PMAP decoder to yield 
only admissible paths [15], we leave this refinement along with exploration of more 
sophisticated decoding strategies to future work.

When used to predict simulated CNVs in exome data, Cobalt achieved consistently 
high sensitivity and PPV (Fig. 3), with the exception of single exon duplications. The 
Codex algorithm [12] demonstrated somewhat higher sensitivity for several cat-
egories, in particular for large duplications, but the improved detection rate comes 
at the cost of substantially lower PPV. Results for previously detected CNVs were 
similar, although resolution was somewhat impaired by the smaller number of true 
CNVs available. Cobalt yielded sensitivity indistinguishable from other top-perform-
ing callers but made far fewer CNV calls overall (Figs. 4, 5), strongly suggesting that 
Cobalt yields simultaneously high sensitivity and PPV.

PPV is particularly important in the clinical laboratory setting for several reasons. 
Orthogonal confirmation of putative CNV calls is often expensive and time-con-
suming; in fact, a primary motivation for calling CNVs from NGS data is to avoid 
the cost and complexity of running array-based CNV detection in addition to NGS 
on every sample. In the absence of routine orthogonal confirmation, labs seeking 
to avoid erroneous patient results labs must optimize for both sensitivity and PPV. 
In this setting, Cobalt may represent an appealing choice because it offers sensitiv-
ity similar to other high performing callers while making significantly fewer calls 
overall.

Generally speaking, comparisons of CNV detection tools are beset by many dif-
ficulties. First, caller performance is likely to vary substantially with features of 
the input data, including depth, number of targets, and the structure of variability, 
especially batch variability. Some callers may perform well in the face of substan-
tial variability, while others might excel only with minimally variable data. Similarly, 
relative caller accuracy may shift with mean read depth. An additional factor is the 
amount of parameter optimization performed for each caller. In this study we have 
performed only minimal optimization and have relied instead on identification of 
optimal quality score thresholds to normalize results across callers. Nonetheless, 
some callers may have significantly improved relative accuracy with careful tuning 
of parameters.
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Conclusions
Cobalt is a software tool to detect germline copy-number variants from hybrid-capture 
NGS data. By tuning emission distribution parameters individually for each target and 
decoding the HMM with the PMAP algorithm, instead of the typical Viterbi decoder, 
Cobalt maintains high sensitivity while detecting significantly fewer false positive calls 
than other detection tools. Cobalt is freely available as an open source project under the 
permissive GPL (v3) license.
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