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Abstract

Background: Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and
angiogenesis. Cyclins, cyclin-dependent kinases (CDKs), and cyclin-dependent kinase inhibitors play an important role in
vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells
present in the G1 phase have the highest potential to migrate. The molecular mechanism linking these two processes is not
understood.

Methodology/Principal Findings: In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the
nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and
nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of
STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion
of STK35L1 by siRNA lead to an accelerated G1 to S phase transition after serum-stimulation of endothelial cells indicating an
inhibitory role of the kinase in G1 to S phase progression. Cell cycle specific genes array analysis revealed that one gene was
prominently downregulated (8.8 fold) in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16INK4a leading
to G1 arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly
upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis.
Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays.

Conclusion/Significance: The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1
may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear
actin might be critical in the regulation of these fundamental endothelial functions.
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Introduction

Endothelial dysfunction underlies atherosclerosis and coronary

heart disease [1,2]. Migration and proliferation of vascular

endothelial cells are important not only for repair of injured

endothelium, but also for angiogenesis [3]. Cells in the

endothelial monolayer are in a quiescent state residing in the

Go phase of the cell cycle. Injury of the endothelium leads to the

local release of peptide growth factors (such as VEGF, TGF) and

bioactive lipids (i.e. S1P) that stimulate endothelial cell migration

and proliferation crucial for endothelial healing [4,5]. Angiogen-

esis induced by hypoxic tissue conditions or by angiogenic stimuli,

is a complex biological process involving the directional

migration, proliferation, intercellular alignment and adhesion of

endothelial cells [3]. Healing of the endothelium and angiogenesis

require the activation of a genetic program which regulates

endothelial cell proliferation and migration in a coordinated

manner.

Cyclins, the cyclin-dependent kinases (CDKs), and the cyclin-

dependent kinase inhibitors (CKIs) play an important role in

vascular tissue injury, inflammation and wound repair [6,7]. On

stimulation by growth factors or after mechanical trauma,

endothelial cells exit the quiescent state and progress through G1

and S phase of the cell cycle. G1 phase progression is regulated by

the assembly and phosphorylation of CDK complexes. Two

classes of endogenous inhibitors of the CKI are dominant in

cardiovascular biology: the CIP/KIP family, which includes

p21Cip1, p27Kip1, p57Kip2, and the INK4 family, which includes

p15Ink4b, p16Ink4a, p18Ink4c, and p19Ink4d. p16INK4a binds to

cyclin/CDK complexes and causes cell cycle arrest in the G1

phase by inhibiting CDK4/6 mediated phosphorylation of Rb [8].

p16INK4a and p15INK4b are encoded by the alpha-transcript of

CDKN2A and the CDKN2B gene, respectively. Recent genome-

wide association scanning studies identified DNA sequence

variants at chromosome 9p21 that increase the risk of coronary

heart disease, myocardial infarction and, independently, type 2
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diabetes [9,10]. Interestingly, the genomic region of interest was

found to be adjacent to the genes CDKN2A and CDKN2B. The

mechanism by which these genes might influence coronary heart

disease and type 2 diabetes is unknown.

Previous studies of vascular cells show that there is a link

between cell cycle progression and migration [11,12,13]. The

maximal potential of a cell to migrate lies in the mid-late G1

phase, whereas cells in the late S or G2/M phase have a lower or

no ability to move [14,15]. p27Kip1 has been shown to regulate

G1-S phase cell cycle progression and cell migration of

endothelial and smooth muscle cells [13,16]. Endothelial cell

migration requires dynamic changes of the actin cytoskeleton

which is regulated by small GTPases and various protein kinases

[17]. The molecular mechanisms linking in endothelial cells cell

cycle progression and migration are not known.

STK35L1 is a member of the class of serine/threonine protein

kinases; it is mainly localized in the nucleolus and nucleus [18].

Recently we identified the full length coding sequence of the

STK35L1 gene which codes for a protein of 534 amino acids [18].

The biological function of STK35L1 is not known. STK35L1 gene

expression was found to be upregulated in colorectal cancer [19],

and was altered in a rodent model of Parkinson disease [20]. A

kinome-wide RNAi screen revealed that STK35L1 silencing was

among top five hits leading to reduce infection of hepatocytes by

Plasmodium berghei sporozoites [21]. These studies suggest that

STK35L1 may play a role in various human diseases.

In the present study we set out to explore the function of

STK35L1 in endothelial cells. We show that STK35L1 regulates

the expression of CDKN2A alpha-transcript and inhibits the G1-

to S-phase transition of the cell cycle, and that STK35L1 is

essential for endothelial cell migration and angiogenesis.

STK35L1 might be part of a program underlying the integrated

regulation of the cell cycle and cell migration.

Results

The N-terminal region of STK35L1 has functional nuclear
and nucleolar localization signals

We have previously shown that STK35L1 is mainly localized in

the nucleolus and the nucleus [18]. To predict a functional nuclear

localization signal (NLS) in STK35L1, the basic amino acid-rich

motifs of STK35L1 were analyzed by manual comparison with

known NLSs of different proteins. A potential bipartite NLS was

identified within the N-terminal motif (amino acids (aa) 142–153) of

the protein. Unlike the classical bipartite NLS consisting of a defined

spacer of 8–10 non-basic amino acids, the identified potential NLS

of STK35L1 has a 6-amino acids short spacer sequence similar to

LIMK2 (Figure 1A) [22]. The identified NLS is highly conserved

among mammals (Figure S1). Conservation of the identified

bipartite NLS sequence underlies its functional importance.

To analyze whether the predicted NLS is functional, we

prepared various EGFP-tagged deletion constructs of STK35L1

(Figure 1B). As compared with EGFP-STK35L1 that predomi-

nantly localized in the nucleus and nucleolus, the constructs

deleted of the N-terminal 169 aa (EGFP-STK35L1D1-169)

containing mainly the kinase domain, was distributed throughout

the cytoplasm and the nucleus (Figure 1C). The construct

containing the predicted NLS (EGFP-STK35L1-134-201) mainly

accumulated in the nucleus (Figure 1C). These data suggest that

the motif aa 142–153 is the functional bipartite NLS of STK35L1.

Nucleolar localization signal (NoLS) are sequences rich in

arginine and lysine. So far, no specific consensus sequences for

nucleolar localization have been determined. We observed that

several stretches of arginine and lysine amino acids are present in

the N-terminal part of STK35L1 that are also highly conserved

among mammals (Figure S1). These analyses suggest a putative

NoLS in the N-terminal region of STK35L1. We found that the

mutant EGFP-STK35L1D1-133 (aa 1–133 were deleted) was

excluded from the nucleolus but mainly localized in the nucleus

(Figure 1C). This mutant corresponds to the protein previously

described as STK35 [18]. Our data indicate that the N-terminal

aa 1–133 contains a functional nucleolar localization signal (NoLS)

in STK35L1 that is absent in STK35.

EGFP-STK35 interacts with nuclear actin
STK35L1 is localized in the nucleus and nucleolus whereas

STK35 is mainly localized in the nucleus [18]. To identify proteins

which interact with STK35L1 in the nucleus, we immunoprecip-

itated EGFP-FLAG-STK35 protein from nuclear extracts of

EGFP-FLAG-STK35-transfected HEK293 cells using an anti-

FLAG antibody. We found four co-immunoprecipitated proteins

which were identified by MALDI-MS analysis as EGFP-STK35 (2

bands), HSP70B1 and actin (Figure 2A, left panel). The co-

immunoprecipitation of actin with EGFP-FLAG-STK35 was

confirmed by western blotting using a specific anti-b-actin

antibody (Figure 2A, middle panel). The purity of the nuclear

preparation was checked by probing it with an anti-b-tubulin

antibody that detected tubulin in the cytoplasmic fraction only

indicating that the nuclear preparation was free from cytoplasmic

proteins (Figure 2A, right panel). b-actin was present in both the

nucleus and the cytoplasm. These data suggest that STK35L1

interacts with nuclear actin.

To investigate further a possible colocalization of STK35 with

nuclear b-actin, endothelial cells were studied by fluorescence

microscopy. In transfected endothelial cells, EGFP-STK35 (green)

was concentrated in dot-like structures within the nucleus

(Figure 2B left panel). In some of these nuclear structures, b-actin

(red) was colocalized with EGFP-STK35 (Figure 2B right panel).

Together these data suggest that STK35L1 interacts with actin in

the nucleus of endothelial cells.

A potential class III PDZ domain binding motif of
STK35L1 is responsible for its association with actin

To gain insight into protein-protein interaction domains of

STK35L1, we used the Eukaryotic Linear Motif server (ELM) for

investigating candidate short non-globular functional motifs within

the STK35L1 protein [23]. Several protein-binding motifs were

predicted that were mainly located in the first 200 amino acids of

STK35L1 (Table S1). Among the motifs, an internal class III PDZ

domain-binding motif (PDZ-BM) was predicted in the N-terminal

part of STK35L1 (aa 173–176; Figure 3A). PDZ domains are

found in many proteins, also in proteins, that are involved in the

regulation of the actin cytoskeleton [24,25]. To test whether the

PDZ-BM is responsible for actin association, we performed GST

pull down assay of nuclear lysates from HeLa and endothelial cells

using a recombinant GST-tagged protein containing the potential

PDZ-BM (GST-PDM). GST-PDM consists of GST coupled to 30

amino acids (aa position 170 to 204) of STK35L1 containing the

potential PDZ-BM. Indeed, we found that the purified protein

GST-PDM but not GST bound with nuclear actin (Figure 3B).

To further study, whether the PDZ-BM associates of STK35L1 with

actin in vivo, we studied the localization of EGFP-PDM (STK35L1-

170–204) in transfected endothelial cells. We found that EGFP-PDM,

present both in the cytoplasm and the nucleus due to the small size of

the protein and the lack of NLS and NoLS sequences, strongly

associated with actin stress fibers (Figure 3C, left panel). EGFP-PDM

was not only localized on stress fibers, it was also enriched in

membrane ruffles of migrating endothelial cells (Movie S1).

STK35L1 Regulates Cell Cycle and Cell Migration
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To study, whether the PDZ-BM is responsible for the

association of STK35L1 with actin, we investigated the subcellular

distribution of different EGFP-tagged deletion mutants of EGFP-

STK35L1 in transfected endothelial cells. The deletion mutant

containing the PDZ-BM but lacking the NoLS and NLS (EGFP-

STK35L1D1-169) resulted in a more cytoplasmic distribution of

the fusion protein than EGFP-STK35L1 with a partial localization

on fiber-like structures of the cytoskeleton (Figure 3C, middle

panel). The deletion mutant that lacked the PDZ-BM in addition

to NoLS and NLS (EGFP-STK35L1D1-196) was diffusely

distributed throughout the cytoplasm and the nucleus (Figure 3C,

right panel). In none of the transfected cells a fiber-like structure

could be observed.

Together, we suggest that a class III PDZ domain binding motif

is responsible for the association of STK35L1 with actin.

SiRNA-mediated depletion of STK35L1 accelerates G1-S
phase progression of the endothelial cell cycle

To analyze the role of nucleolar STK35L1 in the cell cycle, we

used siRNA to silence the STK35L1 gene. We designed siRNA

directed against three different regions of the STK35L1 gene [18]

which together down-regulated STK35L1 by 80–90% at the level

of transcription (Figure 4A) and at the level of protein [18].

siRNA- or nonspecific siRNA-transfected cells were synchronized

in G0/G1 phase by serum depletion, and thereafter the cells were

released into cell cycle progression by adding 10% serum. In

synchronized cells, over 80% of control and STK35L1-silenced

cells accumulated in the G0/G1 phase. Six hours after release, the

number of control cells in the G1/G0 phase was decreased by 6%,

and 12% of control cells were present in the S phase (Figure 4B).

In STK35L1-silenced cells, the G1-S phase transition was

accelerated: the number of cells in the G1/G0 phase was decreased

by 18% (p,0.05), and the number of cells in the S phase was

increased almost two fold (23%; Figure 4B, 6 hr). Twelve hours

after release, 68% (64%) of control cells were in the G1/G0 phase

and 19% (66%) had entered S phase. After STK35L1 silencing

only 55% cells remained in G1/G0 phase, and 29% of cells had

entered the S phase (Figure 4B).

These data indicate that knockdown of the STK35L1 gene

leads to an accelerated G1 to S phase transition. STK35L1 might

therefore function as a negative regulator of the cell cycle

progression from G1 to S phase.

Figure 1. Nuclear and nucleolar localization signals in STK35L1. A) Prediction of nuclear localization signals in STK35L1. NLS was aligned with
the known monopartite NLS of ESXR1 and bipartite NLSs of Plk1[22], LIMK2 [22] and HDGF [49]. Basic amino acids are shown in red colors. B)
Schematic representation of different EGFP-STK35L1 deletion mutants. The upper axis with coordinates represents the position of amino acids. The
predicted bipartite NLS (aa 142–153) is shown as red box. C) Subcellular distribution of different EGFP-STK35L1 deletion mutants. EGFP-STK35L1 was
mainly localized in the nucleus and nucleolus (Top left panel; white arrow). The nucleolus appears as a dark spot excluded by the DNA staining with
Hoechst-dye (lower left panel, white arrow head). The expression of the various EGFP-STK35L1 deletion mutants in endothelial cells is shown (see text
for details).
doi:10.1371/journal.pone.0016249.g001
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STK35L1 regulates the expression of G1/S phase specific
genes

To determine the influence of STK35L1 on genes involved in

cell cycle regulation, a real-time RT-PCR-based commercial gene

array was used. This gene array measures the expression of 84

genes that include positive and negative regulation of the cell cycle,

phase transitions, checkpoints, and DNA replication (Table S2).

Endothelial cells were transfected with STK35L1 siRNA or

control siRNA, followed by cell synchronization in G0/G1 phase

and then released by serum stimulation.

Since we found in STK35L1-silenced cells an acceleration of

the G1/S- phase transition, we expected that by STK35L1-

silencing the expression of those genes might be altered, which

function during G1/S phase transition. Indeed, the most

prominently downregulated gene (8.8 fold) was p16INK4a

(Table 1). This protein is encoded by the alpha-transcript of

CDKN2A gene [8], inhibits the cell cycle and is responsible for

arresting cells in the G1-phase. We were unable to detect

p16INK4a, which is expressed probably at a very low level in

HUVEC by immunoblotting using commercial antibodies in

HUVEC. Also another study was unable to detect p16INK4a in

HUVEC under normal growth condition [26].

Two other genes were significantly down-regulated in

STK35L1-silenced cells: GADD45A, a protein involved in DNA

repair as well as in G1 cell cycle arrest [27], and DDX11, which

encodes a nucleolar helicase (Table 1). No gene was significantly

upregulated in STK35L1 silenced cells. These data suggest that

STK35L1 might function as a negative regulator for the cell cycle

progression by affecting the expression levels of genes, which

inhibit the G1- to S-phase transition, such as p16INK4a and

GADD45A.

STK35L1 is upregulated during angiogenesis
Endothelial cells cultivated on a basal membrane-like matrix

such as Matrigel, undergo a rapid morphogenesis: they migrate on

the matrix, form cell–cell contacts and a network of cords, but they

do not proliferate. In contrast, cells cultivated on collagen-coated

surfaces undergo mainly proliferation [28]. We reasoned that

STK35L1 expression might inhibit endothelial cell proliferation

on basal membrane-like matrix, and perhaps increase the

Figure 2. EGFP-STK35 intracts with nuclear actin. A) Nuclear actin coimmunoprecipitates with EGFP-FLAG-STK35. HEK293T cells were
transfected with EGFP-FLAG-STK35 and EGFP-FLAG. The nuclei were isolated and EGFP-FLAG-tagged proteins were immunoprecipitated with anti-
FLAG antibody. Bound proteins were resolved by SDS-PAGE and stained with Coomassie blue. The specific bands were cut, in-gel digested by trypsin
and identified by MALDI-TOF and peptide mass fingerprinting. The protein band around 45 kDa (under ‘‘*’’) was as b-actin (left panel). The other
bands were identified as HSP70B1 and EGFP-FLAG-STK35. The same immunoprecipitated samples were blotted with monoclonal anti-actin antibody
and the band of 45 kDa was confirmed as b-actin (middle panel). To check the purity of the nuclear preparation, 10 ml of 100 ml nuclear fraction and
10 ml of 4 ml cytoplasmic fraction were subjected to SDS-PAGE and blotted with an anti-actin and an anti-tubulin antibody. The apparent 50:50 ratio
of nuclear to cytoplasmic actin is due to the high amount of actin in the diluted cytoplasmic fraction. Tubulin (55 kDa) could be detected in the
cytoplasmic but not in the nuclear fraction, demonstrating the nuclear fraction was free from cytoplasmic proteins (right panel). B) EGFP-STK35 and b-
actin colocalized partially in the nucleus. Endothelial cells transfected with EGFP-STK35 (left panel, green) and stained for b-actin (middle panel, red)
with anti-actin monoclonal antibody (clone C4) 8 h after transfection. The overlay (right panel) shows colocalization of EGFP-STK35 and b-actin.
Arrows indicate some sites of colocalization.
doi:10.1371/journal.pone.0016249.g002
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migration potential of the cells by keeping them in the G1-phase.

Therefore, we compared first the effect of the two different

matrices (Matrigel and collagen) on STK35L1 expression of

endothelial cells. Indeed we found that the expression of

STK35L1 transcripts was increased threefold within 4 hours

only in the cells growing on basal membrane-like matrix

(Figure 5A).

Knockdown of STK35L1 inhibits the formation of
endothelial sprouting

Next, we analyzed whether silencing of STK35L1 affects the

morphogenesis of endothelial cells on Matrigel. Endothelial cells

transfected with control siRNA formed six hours after plating a

network of cord-like structures on basal membrane-like matrix

(Matrigel) similar to non-transfected cells (Figure 5B). In contrast,

in STK35L1-silenced cells endothelial sprouting was drastically

inhibited (by 70%; Figure 5B, 5C). The silenced cells also showed

considerably fewer nodes with branching outlets (Figure 5B lower

panel). These data indicate that STK35L1 regulates the

morphogenetic process required for angiogenesis.

STK35L1 silencing inhibits endothelial cell migration
In order to find out, which step of morphogenesis is affected in

STK35L1-silenced cells, we analyzed the migration of STK35L1-

silenced endothelial cells by using two different wound-healing

assays. In the assay using the IBIDI Culture-Insert where no cell

damage occurs, the migration of STK35L1-silenced cells was

drastically inhibited: the cells were not able to move in the

direction of the wound (Movie S2, Figure 6A). In STK35L1-

silenced cells, we could not observe the stable lamellipodia

formation in the direction of migration (like in control), but we

found transient lamellipodia formation in all the directions (Movie

S2). Also after mechanical injury of confluent endothelium, where

cell damage occurs, the migration of STK35L1-silenced cells was

inhibited (Figure 6B, 4C). These results show that STK35L1 is

crucial for endothelial cell migration.

Discussion

The present study demonstrates that the localization of the

novel kinase STK35L1 in the nucleus and nucleolus is regulated

Figure 3. Identification of Putative class III PDZ-binding domains motif in STK35L1 that mediates its interaction with actin. A) Class III
PDZ binding domains motif (PDZ-BM) was predicted by ELM software and its position within the STK35L1 sequence is indicated as green box; kinase
domain: yellow box, NLS: red box. B) GST pull down assay of nuclear lysates from HeLa cells was preformed using recombinant GST or GST-PDM
protein (GST coupled to 30 amino acids (aa position 170 to 204) of STK35L1 containing the potential PDZ-BM). Bound proteins were resolved by SDS-
PAGE and immunoblotted using a monoclonal anti-b-actin antibody C) Subcellular distribution of different EGFP-STK35L1 deletion mutants in
transfected endothelial cells. EGFP-PDM (aa 170–204, contains only the PDZ-BM of STK35L1) was localized to actin stress fibers. EGFP-STK35L1D1-169
mutant (lacking NoLS and NLS) was distributed throughout the nucleus and cytoplasm with a partial localization to fiber like structures of the
cytoskeleton. EGFP-STK35L1D1-96 (lacking NoLS, NLS and PDZ-BM) was diffusely distributed throughout the cytoplasm and the nucleus but no green
fiber like structures were visible.
doi:10.1371/journal.pone.0016249.g003
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by a specific bipartite NLS, and a NoLS both present in the N-

terminal part of the protein. We found an interaction of STK35L1

with nuclear actin that is mediated through a potential PDZ-BM

motif present in the N-terminal part of STK35L1. Furthermore,

STK35L1 regulates the expression of CDKN2A and inhibits the

G1-to S-phase transition of the cell cycle, and STK35L1 is

essential for endothelial cell migration and cord-like structure

formation on Matrigel.

The N-terminal part of STK35L1 is highly basic and rich in

arginine and lysine and contains the bipartite NLS and NoLS. The

identified bipartite NLS sequence was conserved among mam-

mals, and we showed that it was functional in endothelial cells.

Our study further shows that the bipartite NLS (aa 142–153) did

not overlap with the NoLS sequences (aa 1–133) of STK35L1.

Nucleolar localizing proteins are rich in arginine and lysine and

often overlap with the NLS, suggesting a complex regulation of

nucleolar localization [29]. Other studies have identified small

NoLS sequence motifs ranging from 7 to 30 residues have been

identified that can be sufficient to target a protein to the nucleolus

[22,30]. We found that NoLS of STK35L1 had no well-defined

small sequence motif.

In terms of functions, we show that STK35L1 is a negative

regulator of the G1 to S phase progression of the endothelial cell

cycle by increasing directly or indirectly the expression of the cell

cycle inhibitor CDKN2A. Previously, high expression of

CDKN2A was correlated with a low proliferation of colorectal

carcinomas at the invasion front [31]. Moreover, enhanced levels

of STK35L1 transcripts have been reported in tissues obtained

from colorectal cancer patients [19]. Interestingly, by using

Phosphoproteomics of the Kinome across the Cell Cycle,

Figure 4. G1 to S-phase progression is accelerated in STK35L1-silenced endothelial cells. A) STK35L1 expression level of STK35L1 silenced
cells and control cells. B) Cell cycle distribution of control siRNA- and STK35L1 siRNA treated endothelial cells. Cells arrested in Go/G1 phase were
stimulated by serum for various times. Values are mean 6 S.E. of three independent experiments. Asterisk ‘‘*’’ indicates level of significance p#0. 05.
doi:10.1371/journal.pone.0016249.g004
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STK35 (N-terminal 133 aa truncated-form of STK35L1) was

found to be phosphorylated during the cell cycle progression in

HeLa S3 cells. This study identified Thr-12 in STK35 as

phosphorylated amino acid, which corresponds to Thr-145 in

STK35L1 [32]. Notably, Thr-145 is within the bipartite NLS

sequence (STK35L1 aa 142–153) identified in the present study.

Many proteins such as LIMK2, Ca2+/calmodulin-dependent

protein kinase II, and cyclin B1 are phosphorylated near or

within their NLS thereby affecting their nucleocytoplasmic

shuttling [22,33,34]. These results are interesting and lead us to

suggest that phosphorylation of STK35L1 within its NLS during

cell cycle progression might regulate its localization in the nucleus

and/or nucleolus.

Our study shows that STK35L1 is upstream of CDKN2A.

STK35L1 regulation of the CDNKN2A alpha-transcript

(p16INK4a) could be a new signaling pathway regulating G1 to S

phase progression of the cell cycle. It has been shown that nuclear

b-catenin stimulates the expression of p16INK4a in various tumor

cell lines but the mechanism of regulation is not well understood

[31,35]. Interestingly, GSK3b-dependent phosphorylation regu-

lates proteasomal degradation of b-catenin [36] and STK35 is a

potential candidate for GSK3b-regulated proteasomal degrada-

tion [37]. Therefore, there are now two possibilities for regulation

of CDKN2A (p16INK4a): either a novel GSK3b/STK35L1

pathway regulates independently of GSK3b/b-catenin CDKN2A,

or STK35L1 is part of the GSK3b/b-catenin pathway regulating

CDKN2A. These possibilities should be explored further as

CDKN2A expression is important in various human diseases.

We found a crucial role of STK35L1 in endothelial cell

migration as measured by two different cell migration assays. The

question arises, how nuclear/nucleolar STK35L1 can regulate cell

migration? Previous studies showed that G1 to S phase progression

and cell migration are coordinated processes in different cell type:

cells in mid-late G1 phase have the greatest ability to migrate,

whereas cells in G0, S or G2/M phase have a lower or no ability to

move [14,15]. Therefore, it is possible that STK35L1 might

promote endothelial cell migration by keeping cells in the G1-

phase. Many cell cycle proteins have been reported to be involved

in the regulation of cell migration [11,13,38,39]. In endothelial

cells and vascular smooth muscle cells, the CDK inhibitor p27Kip1

blocks cell migration [11,13], however in other studies p27Kip1 has

been reported to promote migration by interacting with the G1/S-

phase specific cyclin D1 [38]. The subcellular distribution of

p27Kip1 was found to be important in its promigratory function:

cytoplasmic but not nuclear p27Kip1 promoted cellular migration

[39]. In our study, we could not find an altered subcellular

distribution of STK35L1 during endothelial cell migration

suggesting that the role of STK35L1 in regulating migration is

restricted to its nuclear/nucleolar localization.

Endothelial cell migration is required for angiogenesis. Endo-

thelial cells on Matrigel migrate, polarize and proceed to form

cord-like structures, but they do not proliferate [28]. Indeed we

found that STK35L1 is upregulated in endothelial cells growing

on Matrigel for 4 hours but not on collagen, and that STK35L1

was crucial for endothelial sprouting. We suggest that STK35L1

regulates this process by keeping endothelial cells in the G1 phase

and thereby promoting cell migration.

We identified nuclear actin as interacting protein of STK35L1.

The interaction of STK35L1 with nuclear actin might be

important for the regulation of both the cell cycle and the

migration of endothelial cells [40,41,42]. It is now well established

that actin is present in various nuclear compartments such as the

nucleolus. Nuclear actin forms structures different of cytosolic

actin structures such as stress fibers [41]. Nuclear actin plays a role

in gene transcription by regulation of transcription factors or as a

component of chromatin remodeling complexes and RNP

particles, and it is closely associated with all RNA polymerases

[42]. For example, nuclear actin regulates the Serum response

factor (SRF) by interacting with MAL, a Myocardin family

transcription factor. SRF activity is a key event during cellular

differentiation of many processes and transcriptionally controls

many genes such as actin isoforms (Actb, Actg, Acta2) and actin-

binding proteins (ABPs; e.g., Gsn) [43,44]. Recently, It has been

shows that SRF’s play a crucial function during cell migration. In

neuronal cells, cell migration is not only depends on cytoplasmic

actin dynamics but also on the nuclear actin dependent functions

such as gene transcription [45]. The nuclear actin/STK35L1

complex might regulate gene transcription of specific cell cycle

proteins such as CDKN2A and genes involved in cell migration.

[45]

Based on our results, it is not clear whether STK35L1

interacts directly or indirectly with actin. We identified a putative

Table 1. mRNA expression of selected cell cycle specific genes in STK35L1-silenced cells.

Reference Sequence Description Gene Symbol Fold Regulation p-value

NM_004701 Cyclin B2 CCNB2 23.605 0.060

NM_001786 Cell division cycle 2 CDC2 22.9966 0.030*

NM_001255 Cell division cycle 20 homolog (S. cerevisiae) CDC20 22.9282 0.055

NM_001259 Cyclin-dependent kinase 6 CDK6 22.7321 0.005*

NM_000077 Cyclin-dependent kinase inhibitor 2A (p16INK4A) CDKN2A 28.8766 0.050*

NM_005192 Cyclin-dependent kinase inhibitor 3 CDKN3 23.4422 0.060

NM_004399 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 DDX11 24.7568 0.014*

NM_001924 Growth arrest and DNA-damage-inducible, alpha GADD45A 24.6482 0.030*

NM_016426 G-2 and S-phase expressed 1 GTSE1 22.9966 0.029*

NM_002417 Antigen identified by monoclonal antibody Ki-67 MKI67 22.7959 0.015*

NM_002875 RAD51 homolog RAD51 22.8613 0.022*

NM_003885 Cyclin-dependent kinase 5, regulatory subunit 1 (p35) CDK5R1 2.09 0.078

Mean fold change of mRNA expression of selected cell cycle specific genes in STK35L1-silenced cells vs. control cells.
*Statistically significant (P value of #0.05).
doi:10.1371/journal.pone.0016249.t001
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class III PDZ domain binding motif in the N-terminal region of

STK35L1 that bound to actin. This suggests that STK35L1 may

be a ligand for a PDZ domain containing protein. Since actin

does not contain a PDZ domain, it is unlikely that STK35L1

through its PDZ domain-binding motif interacts directly with

actin. The interaction should then be mediated by PDZ domain

containing actin-binding proteins. Various PDZ containing

proteins such as PDZ-LIM family proteins (CLP36) are known

to interact with actin indirectly through binding to actin binding

proteins [25,46]. For example, the binding of CLP-36 to stress

fibers is mediated by its binding to actinin [24]. It is not known

whether nuclear actin also interacts with a PDZ domain

containing protein.

Together the present study unravels an important new player in

the orchestrated regulation of cell proliferation and migration of

endothelial cells. STK35L1 by inhibiting the endothelial cell cycle

and being essential for migration is important in regulating

vascular healing and angiogenesis. The interaction of STK35L1

with nuclear actin might be critical in the regulation of these

cellular processes.

Materials and Methods

Materials
Oligonucleotides and siRNAs were synthesized by MWG

Biotech AG (Ebersberg, Germany). Anti-b-actin was purchased

from Chemicon, Germany. Anti-p16INK4A antibody was pur-

chased from Cell Signaling Technology and anti-b-tubulin

antibody from Abcam, Germany. FLAG-M2 gel slurry was

purchased from Sigma, Germany. Complete mini protease

inhibitors tablets were purchased from Roche Diagnostics,

Germany. Glutathione beads and GSTrap FF columns were

purchased from GE Healthcare, Lifesciences, Germany.

Construction of the Expression Plasmids and site-
directed mutagenesis

The full-length coding sequence of STK35L1 was cloned into

pEGFP-C1 vector as described previously [18]. The deletion

mutants of pEGFP-STK35L1 were generated by Quick-Change II

site-directed mutagenesis kit (Stratagene) as per manufacturer’s

instructions. To prepare GST-PDM construct, the PDZ binding

Figure 5. STK35L1 regulates endothelial morphogenesis. A) STK35L1 expression in endothelial cells cultivated in the presence of VEGF on
collagen or on Matrigel. The expression level of STK35L1 transcripts at the indicated time points was analyzed by RT-PCR. The relative expression level
compared to time 0 hr is shown. B) and C) STK35L1 regulates the formation of cord-like structures on Matrigel. Control siRNA and STK35L1-siRNA
transfected cells were grown on Matrigel for 6 h. B) phase contrast micrograph, Scale bar 500 mm. (C) Bar diagram, values are mean 6 S.E. of three
independent experiments; * p,0.05.
doi:10.1371/journal.pone.0016249.g005
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motif (PDZ-BM) containing region (aa position 170 to 204) of

STK35L1 was amplified by PCR. The PCR-amplified product

was cloned into EcoRI and XhoI sites of into pGEX-5X-1 plasmid

(GE healthcare, Lifesciences) to obtain PDZ-BM containing

protein fragment fused with GST.

Cell Culture and Transfection
HUVECs (Human Umbilical Vein Endothelial cells) were

obtained and cultured as described previously [47]. Briefly,

endothelial cells (HUVECs) harvested from umbilical cords were

plated onto collagen-coated plastic culture flasks, and were

Figure 6. STK35L1 is required for endothelial cell migration. A) Migration assay using the IBIDI insert. Endothelial cells transfected with
STK35L1 siRNA (red shaded part) or control siRNA (green shaded part) were seeded into different reservoirs of an IBIDI insert. After 8 hours the insert
was removed and the closure of the gap was observed by video microscopy. The pictures from one experiment representative of three are shown,
Scale bar 100 mm. B) Migration after mechanical injury. Left panel, representative micrographs, cells treated with control siRNA, or cells treated with
STK35L1 siRNA are shown immediately 0 hr or 7 hr after mechanical injury; width of the wound is shown in mm. Right panel, Bar diagram, wound
closure was quantified as described in the method section. Values are mean 6 S.E. of three independent experiments; ‘*’, p,0.05.
doi:10.1371/journal.pone.0016249.g006
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cultured at 5% CO2, and 37uC in complete endothelial growth

medium (endothelial cell basal medium with supplements; Promo

Cell, Germany). In all experiments, HUVECs were transfected

with 5 mg DNA per 16106 cells using the HUVEC nucleofactor

kit from Amaxa GmbH.

Isolation of cell nuclei
Nuclei of EGFP-FLAG-STK35 or EGFP-FLAG-transfected or

non-transfected endothelial and HEK 293T [18] and HeLa cells

(DSMZ - Deutsche Sammlung von Mikroorganismen und

Zellkulturen GmbH) were isolated using nuclei Isolation Kit:

Nuclei EZ prep (Sigma) as per manufacturer’s instructions. Briefly,

the cells grown in tissue culture Ø 10 cm dish, washed with ice

cold PBS twice and then 4 ml of ice cold Nuclei EZ lysis buffer was

added to each dish. The cells were harvested and lysed by

thoroughly scraping and then transferred to a 15 ml centrifuge

tube, The nuclei were collected by centrifugation at 5006g for 5

minutes at 4uC and the nuclei pellet was washed by resuspending

in cold Nuclei EZ lysis buffer. The washed nuclei were collected by

centrifugation at 5006g for 5 minutes at 4uC and use for

immunoprecipitation or GST pull down assay.

Immunoprecipitation of EGFP-FLAG-STK35 from nuclear
lysates

Immunoprecipitation from nuclear lysate was performed using the

Nuclear CO-IP-Kit (Active motif) according to the manufacturers’

recommendations. In brief, the nuclei, EGFP-FLAG-STK35-

transfected cells were resuspended in 50 ml complete digestion buffer

(CDB). Enzymatic shearing cocktail (0.25 ml) was added in the nuclei

suspension, incubated for 90 minutes at 4uC. Subsequently, the

reaction was stopped by addition of 1 ml EDTA (0.5 M). After gentle

vortexing the tube was incubated 5 minutes on ice. The nuclear

debris was removed by centrifugation for 10 minutes at 14,0006g

4uC. The supernatant, containing nuclear proteins, was diluted in

500 ml IP-incubation buffer, and 30 ml of anti-FLAG-M2 gel-slurry

(Sigma; 36 washed with 5 volumes of IP-incubation buffer) was

added to the solution and incubated overnight at 4uC. The next day,

the suspension was centrifuged 30 sec 40006g at 4uC The beads

were washed 6 times with IP-wash buffer and finally resuspended in

60 ml 16 Laemmli-buffer and boiled for 5 minutes at 95uC and

subjected to SDS-PAGE and western blotting.

Western blotting
Western blotting was done as described previously [47] using as

primary antibodies anti-b-actin (1:100 000), anti-p16INK4A (dilution

1:500 to 1:200) and anti-b-tubulin antibody (1:500 dilution).

Mass spectroscopy
The coimmunoprecipitated and coomassie-stained protein

bands were excised from the SDS-PAGE gel and sent to the

Zentrallabor für Proteinanalytik (Ludwig-Maximilians-Universität

Munich, Germany) for protein identification by MALDI TOF-MS

analysis. There, the proteins were in gel digested to peptides by the

endoproteinase trypsin. Peptides were eluted and directly spotted

on a MALDI sample plate. MALDI-TOF measurements were

performed, and the resulting spectra were then analyzed via

Mascot software (Matrix Science, London, United Kingdom)

using the NCBI Protein Databank.

Expression and purification of recombinant GST and GST-
PDM

GST and GST-PDM plasmids were overexpressed in BL21

(DE3) pLysS (Stratagene) at 37uC after the addition of 0.5 mM

isopropyl b-d-thiogalactoside at an A600 of ,0.6 for three hours.

Bacteria were harvested by centrifugation and resuspended in

10 ml of ice cold PBS buffer containing lysozyme (1 mg/ml) and

complete mini protease inhibitors (Roche Diagnostics) and

incubated on ice for 30 minutes. The bacterial cells were lysed

by sonication and then Triton X-100 (1%) was added. Cell debris

was removed by centrifugation at 600006g and the supernatant

was loaded on GSTrap FF column (GE Healthcare, lifesciences)

pre-equibilirated with PBS. The column was then washed with

PBS and bound GST-tagged protein was eluted with elution buffer

(50 mM Tris base, 10 mM Glutathione; pH 8.0). The eluted

fractions were pooled, and concentrated and desalted using

CentriconH Plus-20 (Millipore).

GST pull down assay
The nuclei from three culture flasks (75 cm2) of confluent

endothelial cells were isolated, and nuclear protein extracts were

prepared as described above. Nuclear protein extract (1 ml) was

aliquoted equally in two microcentrifuge tubes. Purified GST or

GST-PDM protein was added to each tube and incubated

overnight at 4uC. Glutathione-Sepharose beads (GE-healthcare,

Lifesciences; 50 ml; 3 times washed with 5 volumes of IP-

incubation buffer) were added and samples were incubated for

one hour at 4uC. The beads were pelleted by centrifugation,

washed 6 times with IP-wash buffer and finally resuspended in

60 ml 16 Laemmli-buffer and boiled for 5 minutes at 95uC and

subjected to SDS-PAGE and western blotting.

Immunofluorescent staining and fluorescence
microscopy

After 8–10 hours of transfection, cells were washed and fixed

with 3.7% formaldehyde in PBS for 10 minutes at 4uC and then

washed briefly 2 times with PBS. For permeabilization, the cells

were incubated in 0.2% TritonX100/PBS for 10 minutes at room

temperature followed by 3 times washing with PBS. For immuno-

staining of nuclear actin, the fixed and permeabilized cells were

incubated with blocking solution (2% fatty acid free BSA in PBS)

for 30 minutes at room temperature, briefly rinsed with PBS and

then incubated with anti-actin monoclonal antibody (clone 4,

1:100 dilution) for one hour in humidified chamber. Cells were

washed three times with PBS and incubated with Alexa FluorH568

goat anti-mouse secondary antibody (1:200 dilution) for 45

minutes at room temperature and then washed 3 times. For

DNA staining, cells were incubated with Hoechst 33258 dye

(1 mg/ml) for 10 minutes. Cells were observed with a Nikon

TE2000E-PFS fluorescence microscope.

STK35L1-silencing
STK35L1 specific siRNAs were designed directed against three

different regions of STK35L1 gene[18]. For silencing, HUVECs

were grown to 90% confluence in 6-well plates in complete

endothelial cell growth medium. Before 24 hours of transfection,

the cell growth medium was changed to OptiMEM medium

containing 0.5% FCS without antibiotics. HUVEC were trans-

fected with a pool of three siRNA using OligofectamineTM

(Invitrogen, Germany) for 48 hours according to manufacturer’s

protocol.

Endothelial cell viability and cell proliferation assay
To measure endothelial cell viability, cells were centrifuged, and

resuspended in PBS buffer after trypsinization. Cells were mixed

with trypan blue (0.4%; Sigma) in a 1:1 ratio and were incubated

for 3minutes at room temperature. Cell viability was calculated by
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counting unstained (viable cells) and stained cells using a

hemocytometer.

For endothelial cell proliferation assay, cells were grown in 24

well plates in complete endothelial growth medium. AlamarBlueH
(Invitrogen) [48] reagent was added (1/10th of volume of growth

medium in each well) at different time points (24 hrs, 48 hours and

72 hours) and incubated for 4 hours at 37uC. The absorbance was

measured at 570 nm and at 690 nm as reference wavelength

(normalized to the 690 nm value) using Mithras LB 940

Multimode Reader. Cell proliferation is directly correlated to the

absorbance value of developed color. The absorbance of control

siRNA treated cells was considered as 100% and the proliferation

was calculated as % of control (Figure S2).

RT-PCR
To measure the STK35L1 expression in silenced-cells, or in

other experiments, the cells, grown on collagen or on Matrigel

were harvested by trypsinization or by using BDTM cell recovery

solution, respectively. Total RNA was isolated from the harvested

cells using RNeasy mini kit (Qiagen, Germany). First-strand

cDNAs were synthesized with Omniscript reverse transcriptase kit

(Qiagen) using random hexamer primers as per manufacturer’s

protocol. The relative expression of a STK35L1 transcript was

measured by quantitative RT_PCR using PuReTaq Ready-To Go

qPCR beads (GE Lifesciences) as per manufacturer’s instructions.

The data was normalized against the b-actin gene.

Cell cycle analysis of endothelial cells
Endothelial cells, transfected with STK35L1 siRNA or control

siRNA, were grown to confluence. Twenty-four hours after

transfection, the cells were trypsinized, split in a 1:2 ratio, replated

and cultivated in serum-free medium for 24 hours. The cells were

then released into the normal cell cycle progression by changing

the medium to endothelial growth medium containing 10% FCS.

The cells were harvested 6, 12, and 24 hours after release from

starvation. Cells were fixed by adding 90% methanol drop-wise to

the cell pellet. The cell suspension was kept for 30 minutes at 4uC
and then cells were pelleted at 800 rpm followed by two times

washing with PBS. Finally the cell pellet was resuspended in

Propidium iodide, incubated at 37u for 1 hour and then analyzed

by FACS (FACSCalibur flow cytometer, Becton Dickinson). The

cell cycle data were analyzed by Modefit software.

Cell-cycle RT2 ProfilerTM PCR Array
Endothelial cells, transfected with STK35L1 siRNA or control

siRNA were grown to confluence for 24 hours. The cells were

trypsinized, splitted in a 1:2 ratio, re-seeded and grown in

endothelial cell basal medium (Promo cell) containing 0.5% serum

for 24 hours. The cells were then released into normal cell cycle

progression by changing the medium to complete endothelial cell

growth medium containing 10% FCS. The cells were harvested six

hours after release from starvation and total RNA was isolated by

using the RNeasy mini kit (Qiagen). The RNA was reverse

transcribed using the specific RT2 First Strand Kit (SA

Biosciences). cDNA (2 mg) of STK35L1-silenced and control cells

were mixed with RT2 qPCR Master Mix. The mixture was

aliquoted into each well of the 96 well PCR array plate containing

pre-dispensed gene specific primer sets. Quantitative real time

PCR of 96 well plate was performed by using the iCycler (BioRad).

Baseline and threshold values of real-time PCR were defined

manually and were kept the same across the PCR array. The

resulting threshold cycle values for all wells were exported to

Microsoft Excel for use with the Data Analysis Template Excel

file. For the analysis of these RT-PCR data, we used 4 control

genes to calculate the normalization factor: b-2-microglobulin

(B2M), hypoxanthine phosphoribosyl-transferase 1 (HPRT1),

ribosomal protein L13a (RPL13A), and glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH). Data were generated from three

independent silencing experiments (n = 3). We considered the

genes, whose expression was significantly up- or down-regulated

by a factor of .4 (P value of #0.05).

Matrigel cord formation assay
MatrigelH (BD Biosciences) was thawed on ice overnight, and

10 ml were pipetted with ice cold pipette tips into the lower

chambers of an IBIDI angiogenesis slide (IBIDI GmbH,) and

allowed to harden for 30 minutes at 37uC. After 48 hours of

siRNA transfection, STK35L1-silenced and control cells were

trypsinized and resuspended in complete endothelial growth

medium. Transfected cells were more than 95% viable. The cell

suspension (50 ml; 36105 cells/ml) was seeded on Matrigel into the

well. The cells were incubated at 37uC and cord formation was

observed on Nikon TE2000E-PFS fluorescence microscope. After

six hours of seeding, pictures were taken and the images were

analyzed with NIS Elements software. Network formation was

quantified by measuring the total cord length and compared

between silenced and non-silenced cells.

Endothelial cell Migration after mechanical injury
HUVECs were seeded onto collagen coated six-well plate and

following 24 hours of starvation the cell layer was scratched once

from one edge to the other edge of the well using a pipette tip. The

cells were washed with endothelial growth medium to remove cell

debris and then incubated in complete endothelial growth

medium. Wound healing was determined by measuring the cell-

free area reaming in the wound, which is inversely correlates with

the ability of the HUVECs to migrate.

Endothelial cell migration using the IBIDI culture insert
An IBIDI culture insert (IBIDI GmbH) consists of two reservoirs

separated by a 500 mm thick wall. For the endothelial migration

assay, a BIDI culture insert was placed into one well of the 24 well

plate and slightly pressed on the top to ensure tight adhesion. An

equal number of control and STK35L1-silenced endothelial cell

(70 ml; 46105 cells/ml) were added into the two reservoirs of the

same insert and incubated at 37uC/5% CO2. After 10 hours, the

insert was gently removed creating a gap of ,500 mm. The well

was filled with complete endothelial growth and the migration was

observed by live cell imaging using Nikon TE2000E-PFS

microscope.

Supporting Information

Figure S1 Protein sequence alignment of mammalian
STK35L1. N-terminal region and kinase domain of STK35L1

are shaded in gray and yellow color respectively. The conserved

bipartite NLS (boxed) is marked in red color. Stretches of arginine

and lysine are colored in gold.

(PDF)

Figure S2 Endothelial cell prolifiration using Alamar-
BlueH. HUVECs were seeded (25000 cells/well) in 24 well plates

and were grown for 24 hours, 48 hours and 72 hours. Before four

hours of every time points, cells were incubated with AlamarBlue

reagent as described in Materials and methods. The absorbance of

control siRNA treated cells was considered as 100% and the

proliferation was calculated as % of control.

(JPG)
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Table S1 Prediction of protein-binding motifs within
STK35L1 using the ELM web server. Predicted binding

motifs within STK35L1 are shown. The consensus binding

sequence for the given binding domains is labeled in red. LIG,

binding for.

(PDF)

Table S2 List of genes and their position on the RT-PCR
array 96 well plate.
(PDF)

Movie S1 Live cell imaging of human endothelial cells
transfected with EGFP-PDM. EGFP-PDM containing the

PDZ-binding motif (see text for details), distributes thought the

cytoplasm and the nucleus. In migrating cells, it concentrates in

membrane ruffles at the leading edge as indicated by white arrows.

Pictures were taken every four minutes for 90 minutes. Movie was

edited with QuickTime Pro and iMovie software from Apple Inc.

(MOV)

Movie S2 Migration assay using the IBIDI insert.
Endothelial cells transfected with STK35L1 siRNA (left side) or

control siRNA (right side) were seeded into different reservoirs of

an IBIDI insert. After 8 hours the insert was removed and the

closure of the gap was observed on Nikon TE2000E-PFS

fluorescence microscope equipped with incubation camber

(37uC) and CO2 supply. The microscope function was controlled

by NIS elements software. Pictures were taken every 7 minutes for

15 hours. Movie was edited with QuickTime Pro and iMovie

software from Apple Inc.

(MOV)
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