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Introduction

Although the impacts of CBFB-MYH11 transcript variants on acute myeloid leukemia (AML) survival out-
comes have been reported in adult patients with AML,1 this finding has not yet been tested in cohorts
that include children and adolescents. Furthermore, the underlying reasons for these outcome differences
have not been well studied. Therefore, we harnessed transcriptome sequencing performed on diagnostic
AML samples of 1776 pediatric patients enrolled on front-line Children’s Oncology Group (COG) clinical
trials. This comprehensive dataset includes 186 patients with CBFB-MYH11 fusions (supplemental
Table 1; Figure 1A). Our analysis of these transcriptomes demonstrates that fusion transcript subtype
predicts relapse in pediatric CBFB-MYH11 AML and deepens our understanding of how CBFB-
MYH11 fusion transcripts may impact underlying leukemia biology and outcomes.

Methods

Patient samples and RNA-sequencing

AML samples were collected with informed consent from patients (0-28 years of age) enrolled on COG
trials CCG-2961 (#NCT00002798),2 AAML03P1 (#NCT00070174),3 AAML0531 (#NCT00372593),4

and AAML1031 (#NCT01371981).5 Institutional review board approval for each protocol was obtained
at each participating institution and submitted to the Cancer Trials Support Unit (CTSU) regulatory office.
Each protocol was conducted in accordance with the Declaration of Helsinki. Total RNA derived from
peripheral blood or bone marrow diagnostic specimens was purified using AllPrep DNA/RNA/miRNA
Universal Kits. Purified RNA samples were then prepared for either strand-specific polyadenylated
enriched messenger RNA libraries or strand-specific ribosome RNA-depleted libraries by the British
Columbia Genome Sciences Center. Paired-end sequencing was performed on Illumina HiSeq 2000/
2500 platforms, and sequence reads were aligned to the GRCh37 reference genome using BWA
(v0.5.7).6 Reads were discarded based on mapping quality or if they failed the Illumina chastity filter, and
duplicate reads were marked using Picard (v1.11). Gene level coverage analysis was performed using
the British Columbia Genome Sciences Center pipeline v1.1 with Ensembl v69 annotations and was
normalized based on RPKM or TPM.
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Key Points

� CBFB-MYH11
transcripts and KIT
mutations predict
relapse in AML.

� High-risk CBFB-
MYH11 transcripts
are associated with
distinct transcriptional
landscapes and
upregulation of early
hematopoiesis genes.
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Figure 1. CBFB-MYH11 fusion transcript subtype predicts relapse in AML. (A) CBFB-MYH11 fusion transcripts within our cohort with line weights that correspond

to the associated prevalence. (B) Kaplan-Meier estimates for the probability of EFS, OS, and RR in patients with CBFB-MYH11 AML stratified based on fusion transcript

(E5-E33 vs all others). (C) Oncoplot with associated somatic driver mutations based on fusion transcript status. KIT mutations are more prevalent in E5-E33 CBFB-MYH11

AMLs compared with others (Fisher’s exact test, P value 5 .0003). (D) Kaplan-Meier estimates for the probability of EFS, OS, and RR in patients with CBFB-MYH11 AML

stratified based on fusion transcript and E17 KIT mutation status. (E) Age distribution comparing Schwind et al (adults) and patients from our cohort (pediatrics).
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Figure 2. CBFB-MYH11 fusion transcript subtypes are associated with distinct transcriptional landscapes. (A) GSEA comparing E5-E33 CBFB-MYH11 AMLs

with all others, using gene sets available through the Molecular Signature Database (hallmark, curated, and oncogenic signature gene sets). Three gene sets that define

CBFB-MYH11 transcriptional signatures are significantly enriched in E5-E33 CBFB-MYH11 AMLs. Specifically, the Ross et al gene set is associated with a normalized
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Fusion calling

Fusion calls were made using CICERO, STAR-Fusion, and Trans-
ABySS as previously described.7–9 In order to maximize detection
sensitivity, CBFB-MYH11 transcript breakpoints called by one or
more fusion callers were accepted after manual examination using
Bambino.10 Overlapping calls between CICERO, STAR-Fusion, and
Trans-ABySS for CBFB-MYH11 fusion transcripts were concordant
at the level of exon transcript calling.

Variant calling

Variant calling was performed based on RNA sequencing and tar-
geted DNA sequencing studies. RNA-seq libraries were constructed
and sequenced as described above. All computational analyses were
performed on a dedicated compute and storage infrastructure
designed and implemented at St. Jude as previously described.11

Briefly, RNA reads were mapped using the StrongARM pipeline.12

Paired-end reads were aligned to 5 reference human genome data-
bases (including GRCh37) using BWA,6 and the final BAM file was
constructed by selecting the best of the 5 alignments. SNVs and
Indels were called using Bambino10 and RNAIndel,13 followed by val-
idation and pathogenicity classification as previously described.14,15

Statistical analysis

Event-free survival (EFS) and overall survival (OS) analysis was per-
formed using Kaplan-Meier estimates. EFS was defined as the time
from enrollment to first event (relapse, induction failure, or death) or
last follow-up. OS was defined as the time from study enrollment to
death or last follow-up. Relapse risk (RR) was defined as the time
since end of Induction I to relapse or last follow-up. Cox proportional
hazard regression models were employed to estimate hazard ratios
for univariable and multivariable analyses of EFS, OS, and RR. Dier-
ences in EFS, OS, and RR between groups were determined using
log-rank testing. The x2 test was used to test the significance of
observed differences in proportions, and Fisher’s exact test was
used when data were sparse. Differences in medians were com-
pared by the Mann-Whitney U test. A P value ,.05 was considered
statistically significant.

Gene expression analysis

Uniform manifold approximation and projection (UMAP) was per-
formed using the uwot (v0.1.10) R package. Gene set enrichment
analysis (GSEA) was performed using command line tools.16 In
order to ensure a more uniform RNA-seq cohort, only ribosomal
RNA-depleted sequenced libraries were included in the gene
expression analysis.

Results and discussion

CBFB-MYH11 fusions in the 186 pediatric AML cases analyzed
are predominantly composed of transcribed products from the
fusion of exon 5 of CBFB with exon 33 of MYH11 (Figure 1A),
hereafter referred to as E5-E33 CBFB-MYH11. To assess the

prognostic significance of the E5-E33 transcript, we evaluated the
probability of EFS, OS, and RR in our cohort stratified based on
fusion transcript location (E5-E33 vs all others) (Figure 1B). Patients
with E5-E33 had an EFS of 52% 6 8.1% (n 5 156) at 5 years
from diagnosis compared with an EFS of 80% 6 14.7% (n 5 30)
for those with other fusion transcripts (P value 5 .01).

We next harnessed variant calls on the same cohort of patients (n
5 186) to elucidate the mutational landscape of CBFB-MYH11
AMLs. KIT mutations were significantly enriched in E5-E33 CBFB-
MYH11 AMLs with a prevalence of 42% in the E5-E33 cohort vs
7% in the Other cohort (P value 5 .0003; Figure 1C; supplemental
Table 1). In contrast, the prevalence of FLT3, NRAS, KRAS, and
WT1 mutations was not significantly different between the 2 groups
(Figure 1C). We have previously demonstrated that exon 17 (E17)
KIT mutations are associated with adverse outcomes in patients
with core-binding factor AML.1,17 Therefore, we assessed for their
impact on survival within our E5-E33 cohort and found that they
were strongly associated with a significantly worse EFS of 32% 6
16.8% for E17 KIT1 at 5 years from diagnosis compared with an
EFS of 56% 6 10.5% for E17 KIT2 patients (P value 5 .042)
(Figure 1D) and was notably independent of E17 KIT variant allele
frequency (supplemental Figure 1). Conversely, exon 8 (E8) KIT
mutations were associated with no difference in survival (supple-
mental Figure 2).

The prognostic impact of E5-E33 transcripts on EFS was main-
tained in multivariable survival analysis that included age, white
blood cell count, and E17 KIT mutations (supplemental Tables 2
and 3) and in survival analysis that excluded KIT mutant AMLs (sup-
plemental Figure 3). Furthermore, the inferior outcomes associated
with E5-E33 CBFB-MYH11 AMLs that are significantly worse in
the presence of an additional E17 KIT mutation are particularly rele-
vant because they address a gap in knowledge based on previously
studied demographic age groups (Figure 1E) and further support
the hypothesis that CBFB-MYH11 transcript subtypes impact leu-
kemia biology and/or chemoresistance.

Interestingly, and in contrast to Schwind et al,1 despite adverse EFS
in E5-E33 patients, OS did not differ based on fusion transcript (Fig-
ure 1B,D) suggesting that relapses in children, adolescents, and
young adults with E5-E33 CBFB-MYH11 AMLs 6 E17 KIT muta-
tions are highly salvageable. Because hematopoietic stem cell trans-
plantation (HSCT) in first complete remission is deferred to after an
initial relapse in favorable risk pediatric patients (with only 1 of 186
patients within our cohort undergoing HSCT in first complete remis-
sion), we hypothesize that leukemia cells with CBFB-MYH11 fusion
oncogene are highly susceptible to the allogeneic effect of the HSCT.

Next, we performed unbiased GSEA comparing E5-E33 CBFB-
MYH11 AMLs with all others with alternative breakpoints across the
Molecular Signature Database18,19 (specifically, the hallmark, curated,
and oncogenic signature gene sets). We excluded KIT mutant AMLs
because they have been shown to be associated with a distinct gene
expression profile.20 Intriguingly, 3 previously published gene sets

Figure 2. (continued) enrichment score of 2.42 (P value ,.0001) with the displayed heatmap of enriched genes. (B) UMAP analysis revealed that E5-E33 CBFB-MYH11

AMLs occupy a different cluster than most other CBFB-MYH11 AMLs. (C) GSEA comparing E5-E33 CBFB-MYH11 AMLs with all others and using a gene set derived by

Mandoli et al based on CBFB-MYH11 chromatin immunoprecipitation sequencing (ChIP-seq) occupancy reveals significant enrichment (normalized enrichment score of

1.37, P value ,.0001) in E5-E33 CBFB-MYH11 AMLs (100 most enriched genes shown). Violin plots of representative genes within the Mandoli et al gene set that are

associated with hematopoietic stem cells or early hematopoiesis (Mann-Whitney U test).
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that established and defined CBFB-MYH11 AML transcriptional sig-
natures are significantly enriched in E5-E33 CBFB-MYH11 AMLs
compared with non–E5-E33 CBFB-MYH11 AMLs (Figure 2A), sug-
gesting that non–E5-E33 CBFB-MYH11 AMLs represent a distinct
transcriptional subtype. Indeed, performing UMAP analysis revealed
that E5-E33 CBFB-MYH11 AMLs occupy a distinct cluster from
most other CBFB-MYH11 AMLs (P , .001), which are more hetero-
geneous in their transcriptional clustering (Figure 2B).

To uncover candidate mechanisms to explain the differences in sur-
vival outcomes and transcriptional landscapes between E5-E33
CBFB-MYH11 AMLs and others, we analyzed our transcriptome
data in the context of established CBFB-MYH11 ChIP-seq experi-
mental data.21 We found that E5-E33 CBFB-MYH11 AMLs were
enriched in the gene set that encompasses all genes located near
high-confidence CBFB-MYH11 ChIP-seq sites (Figure 2C), which
included genes implicated in hematopoietic stem cell self-renewal,
such as LRRC33,22 JAG1,23 MKRN2,24 BCOR,25 DEGS1,26

ID1,27 KEAP1,28 IL10RA,29 IL1RAP,30 and CD34.31–35 On the
basis of their locations in close proximity with experimentally vali-
dated CBFB-MYH11 ChIP-seq sites and their differential expres-
sion based on CBFB-MYH11 transcript subtypes, these genes
represent candidate transcriptional markers associated with inferior
survival outcomes and present an opportunity for further functional
validation and/or therapeutic targeting studies.
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