
Opinion

A proposal for capturing interaction and effect

modification using DAGs

John Attia ,1,2,3* Elizabeth Holliday1 and Christopher Oldmeadow3

1School of Medicine and Public Health, The University of Newcastle, NSW, Australia, 2Division of

Medicine, Hunter New England Health Local Health District (HNELHD), NSW, Australia and 3Hunter

Medical Research Institute, NSW, Australia

*Corresponding author. School of Medicine and Public Health, University of Newcastle, HMRI, New Lambton Heights,

NSW 2308, Australia. E-mail: john.attia@newcastle.edu.au

Received 9 August 2021; Editorial decision 5 May 2022; Accepted 26 May 2022

Background

Directed acyclic graphs (DAGs) are a helpful tool for

depicting causal relationships among variables and are

widely used to understand the impact on causal effect esti-

mates when different variables are conditioned upon.

Despite their significant utility, a relative gap remains in

the inability to graphically represent interaction or effect

modification in the conventional DAG framework.

In 2007, VanderWeele and Robins published two clas-

sic papers on interaction and effect modification based on

DAG theory. The first1 proposed a system for classifying

an effect modifier variable into one of four different types,

according to its causal relationships with variables consti-

tuting the cause and the effect: direct effect modification,

indirect effect modification, effect modification by proxy

and effect modification by a common cause. Although this

classification captured different causation structures, it did

not address graphical representation of effect modification.

The second paper2 showed how Rothman’s sufficient

component cause model could be incorporated into the

causal DAG framework, allowing the definition of inde-

pendencies arising from conditioning on a common effect.

However, this framework could only be applied to binary

exposures and outcomes. For those not well versed in

causal inference literature, these papers were also mathe-

matically dense and conceptually challenging.

Although the terms ‘interaction’ and ‘effect modifica-

tion’ are frequently used interchangeably, they have

different meanings in causal inference, as elaborated by

VanderWeele.3 Limiting cases were also described in which

interaction can happen without effect modification and ef-

fect modification can happen without interaction.3

In a commentary,4 Weinberg lamented that the conceptu-

alizations offered by VanderWeele and Robins were ‘DAG-

specific’ and not necessarily intended to be ‘biologically

meaningful’. Weinberg spoke for many in the epidemiologic

community when she expressed her frustration that ‘many

important kinds of causal relationships are not captured

graphically by DAGs’, such as effect modification.

Weinberg suggested a number of ways in which DAGs could

incorporate ‘arrow on arrow’ paths to capture interaction

and effect modification. However, although conceptually

appealing and heuristically helpful, these relationships can-

not be ‘read’ as conventional DAGs and cannot be drawn

using standard DAG software (e.g. DAGitty5).

Nilsson et al.6 recently proposed a new type of DAG for

capturing interaction—the interaction DAG (IDAG),

which replaces the outcome node with a node representing

the causal effect. Although this notation preserves the

usual DAG conventions regarding reading and interpreting

the IDAG, this framework separates the interaction from

the main effect, i.e. requires two separate DAGs to capture

main effects and interactions. In some situations it may be

useful to show both main effects and interactions in a sin-

gle DAG, and in this paper we propose a simple approach

to graphically depict this in a manner conforming to usual
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DAG conventions and which can be drawn using available

DAG software.

Interaction

Interaction occurs when there is interest in the causal

effects of two exposures on an outcome and the effect of ei-

ther exposure depends upon the value of the other, i.e. the

causal effect of each exposure ‘varies’ across levels of the

other. In the presence of interaction, the expected value of

the outcome cannot be derived from a simple arithmetic

function (e.g. sum or product) of the two independent ex-

posure effects for all members of a population. To define

what is ‘expected’, either an additive or multiplicative

model may be used, usually when estimating absolute and

relative measures of effect, respectively. However, additive

models can also be applied to relative measures of effect

and it is recognized that interaction is always judged with

respect to the effect measure or scale chosen and the model

used to define what is ‘expected’, given the two separate

exposures.

In his 2009 paper, VanderWeele3 describes an example

in which a binary exposure E is a randomized weight-loss

drug for obese children, a binary exposure G is exercise

and the outcome D is a child’s weight after a trial

(Figure 1). An interaction (on the additive scale) is postu-

lated between exercise and drug therapy, such that:

E DjE ¼ 1;G ¼ 1ð Þ � E DjE ¼ 0;G ¼ 1ð Þ
6¼ E DjE ¼ 1;G ¼ 0ð Þ � E DjE ¼ 0;G ¼ 0ð Þ

That is, the effect of the weight-loss drug upon final

weight differs according to whether a child has exercised.

However, although the DAG indicates that E and G are

both causes of D, there is nothing to indicate the proposed

interaction between the two causes.

Although there is nothing wrong with omitting the in-

teraction term in terms of what arrows in causal DAGs

represent (causal effects in at least one person of the popu-

lation), we believe that explicitly capturing interaction is

likely to be helpful for a few reasons:

i. As a heuristic in helping researchers explicitly articu-

late their hypotheses about cause and effect. As Miguel

Hernán has said: ‘Draw your assumptions before

drawing your conclusions.’7 We argue (as does Clarice

Weinberg in the quoted editorial) that as a tool for

communication, capturing interaction and effect modi-

fication explicitly in a DAG is a step forward.

ii. Confounding bias: a DAG that explicitly captures

interactions would potentially prompt the researcher

to think about factors that increase the likelihood of

having both exposures present simultaneously; if such

factors also affect the risk of the outcome, then these

would constitute a back-door path. Although such

back-door paths could also be captured by having

arrows into both exposures, the notation in Figure 1

does nothing to prompt such thinking.

iii. Faithfulness: this is the assumption that arrows indi-

cate a probabilistic dependence of the child node on its

parent. When there is qualitative interaction (effect of

an exposure on outcome occurs in the opposite direc-

tion within levels of a third variable) the average causal

effect can cancel out giving the appearance of d-sepa-

ration between the exposure and outcome, when in re-

ality there is a causal effect in at least one member of

the population. Allowing interactions to be included in

the DAG might prompt the researcher to think about

this possibility, although we acknowledge that this co-

incidental and exact cancellation of effects is likely to

be a rare event.

To graphically represent interaction between two expo-

sure effects, Weinberg4 suggested the addition of arrows

emanating from each exposure (see Figure 2a). However,

whilst conceptually appealing, this representation can nei-

ther be interpreted using conventional DAG theory nor

depicted using available DAG software. This limits its util-

ity with respect to defining causal effects.

We suggest that interaction between the effects of E and

G upon D could be graphically represented via the DAG

shown in Figure 2b.

Here, inclusion of the E � G node represents an addi-

tional effect on D that is present only when E and G are

both present; it formally represents the assumption that the

causal effect of exposure E on outcome D (on the scale of

Figure 1 DAG adapted from VanderWeele (2009).3 E is a weight-loss

medication, G is exercise and D is child’s weight. There is nothing in

this DAG suggesting the possibility of interaction between the effects of

E and G on D.
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interest) depends upon the value of G, or equivalently that

the causal effect of exposure G on outcome D depends

upon the value of E. A biological example of interaction is

seen with smoking, asbestos and lung cancer; although

both smoking and exposure to asbestos increase the risk of

lung cancer, in the presence of both factors together there

is an additional risk of the outcome, which can be repre-

sented by the interaction E � G node.

The graphical representation in Figure 2b has previ-

ously been suggested by both Slaug et al.8 and Spiller et

al.9 In both cases, this graphical depiction has been pre-

sented as an intuitive way to express interaction and used

to guide other analyses without further exploration of its

properties in the conventional DAG framework. We de-

scribe key features of this graphical representation of in-

teraction below:

i. Because interest is in the causal effect of exposures

E and G; assuming interaction between E and G;

causal diagrams can be constructed by specifying all

three nodes E; G and E � G as exposure variables.

This implies interest in the causal effects of

E; G and E � G, allowing for biasing (e.g. con-

founding) paths between any exposure and the out-

come by other, causally related variables, which can be

depicted in the usual way.

ii. The DAG depicts the assumption that each exposure

E and G has a direct causal effect on D, but also rep-

resents in an intuitive way that when E and G are pre-

sent together there is an additional effect on D. It

should be noted that with the inclusion of the interac-

tion node, these ‘main’ effects no longer represent av-

erage causal effects in the population, but rather the

average causal effect of each exposure at a specified

(e.g. reference) value of the other exposure. One as-

sumption of DAGs is that arrows denote probabilistic

relationships, whereas the arrows from E and G into

E � G might appear deterministic, i.e. where E and G

are present, E � G is always present. We argue that

these arrows are not in fact deterministic and do not

violate DAG conventions. The presence of E does not

influence the presence of G and vice versa, hence the

arrow from E to E � G still encodes a probabilistic

dependence. Likewise, not everyone with E and G to-

gether will develop D, i.e. there will be some people

with E and G who do not develop D, so this arrow

also encodes a probabilistic dependence. We grant

that this probability may be high, but as long as this

probability does not equal 100%, the assumptions be-

hind DAGs are not violated. On the other hand, if this

probability equals 0, then we may be led to close some

Figure 2 (a) Proposal by Weinberg (2007) for capturing interaction from Figure 1. (b) DAG representing the independent effects of exposures E and G

and their combined effect E � G (interaction effect) on D. (c) Potential confounding affecting an interaction effect.
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back-door paths that are not present and, at worst,

this may lead to a small degree of overadjustment.

iii. The interaction DAG depicts the assumed causal effect

of E � G; representing an average causal effect for

one or more patterns of joint values of G and E. These

potential patterns are defined according to the scales of

G and E and the corresponding definitions of ‘main’

effects. This node is thus a probabilistic common effect

of E and G, conditioning on which induces conditional

association between E and G in at least one of the

strata of D.9 For the case of binary E and G, the arrow

between E and D in this DAG would imply that there

is at least one person in the population of people with-

out G (i.e. the referent strata) who would have the out-

come directly due to E; similarly the arrow between G

and D implies that there is at least one person in the

population without E who would have the outcome

due to G. The arrow connecting the interaction E � G

implies that there is at least one person in the popula-

tion for whom if both E and G are present, their out-

come would be different to the situation in which they

had either E or G alone. We do caution that although

it is convenient to think of nodes as people, the DAG is

actually graphically encoding relationships of condi-

tional dependence and independence between

variables.

iv. This conceptual depiction of interaction allows for the

effect of E � G to be either positive or negative, ac-

commodating positive or negative interaction. This is

standard in causal diagrams, in which arrows do not

depict whether causal effects are positive or negative.

v. The interaction node E � G is also a mediator of the

effect of E on D (and G on D). Although some may see

this as confusing the concepts of interaction and medi-

ation, we believe that this actually makes explicit that

the total effect of E on D is split into a direct effect and

an additional effect due to interaction with G (and

similar with the effect of G on D).

vi. Because the DAG is non-parametric, this representation

can be used to represent exposures and outcomes on any

scale. The representation is thus also agnostic to the se-

lected type of effect measure, including whether an abso-

lute or relative measure is chosen, and the assumed

model of interaction (additive or multiplicative). As

stated by Hernán,10 the DAG is drawn based on an un-

derstanding of the biological phenomena. Thus, if an in-

teraction is suspected on one scale or another, it can be

denoted in the DAG using the interaction node.

As a specific example of Point (vi), consider the case in

which the outcome D and exposures E and G are all bi-

nary. In this case the E � G node could represent an

assumed difference in the causal risk difference for the ef-

fect of E on D, according to the value of G, i.e.

Pr De¼1;g¼0 ¼ 1ð Þ � Pr De¼0;g¼0 ¼ 1ð Þ

6¼ Pr De¼1;g¼1 ¼ 1ð Þ � Pr De¼0;g¼1 ¼ 1ð Þ

Or equivalently, the E � G node represents a differ-

ence in the causal risk difference for the effect of G on D,

according to the value of E. This can be parameterized us-

ing a generalised linear model (GLM) with a binomial re-

sponse distribution and natural logarithm link with

corresponding model equation:

g E Dið Þð Þ ¼ ln pið Þ ¼ b0 þ b1Ei þ b2Gi þ b3 E�Gð Þi

where pi represents the predicted probability that response

D ¼ 1 for individual i, conditional on their covariate pat-

tern Ei;Gi; E � Gð Þi.

As a second example, consider the case in which the

outcome D and exposures E and G are all continuous. In

this case the E � G node may reflect the assumption that

the predicted mean response, conditioned upon the value

of either exposure variable, differs according to the value

of the other exposure variable. This can be parameterized

using a GLM with Gaussian response distribution and

identity link with model equation:

g E Dið Þð Þ ¼ li ¼ b0 þ b1Ei þ b2Gi þ b3 E�Gð Þi

In both examples above—i.e. regardless of the scale of

the response and exposure variables—inclusion of the inter-

action node in the DAG simply represents an assumption

that b3 6¼ 0, where b3 represents the assumed interaction

effect(s) (on the scale of interest). This generalizes naturally

to other GLMs and combinations of exposure scales.

A potential limitation of this graphical depiction is that

the interaction node initially appears to be completely de-

termined by the two parent nodes, which appears to violate

the principle that causal arrows comprise a combination of

systematic and random effects, meaning all endogenous

nodes are affected by both exogenous disturbances and en-

dogenous ancestors of the node.

However, the implied relationship between each parent

E;G and the descendant E � G is consistent with a causal

relationship as defined probabilistically in DAG theory.

For example, assuming binary exposures, conventional

DAG theory defines causality of parent E upon E � G as:

Pr E�Ge¼1 ¼ 1½ � 6¼ Pr E�Ge¼0 ¼ 1½ �

and for parent G upon E � G as:

Pr E�Gg¼1 ¼ 1½ � 6¼ Pr E�Gg¼0 ¼ 1½ �

And both of these conditions are met by the included inter-

action node E � G.
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Any potential collider stratification bias when condi-

tioning on G � E is not problematic since E, G and E �
G are the three exposure variables of interest in such a

model and cause no confounding bias via influencing mini-

mal adjustment sets. For example, when considering the

causal effect corresponding to the arrow from G to D, as-

suming all known confounders of G and D have been con-

trolled for, the presence of the E � G interaction node

initially creates an open back-door path (since we are con-

ditioning on the E � G collider); however, adjusting for E

in this model closes the back-door path. It is possible that

there are factors that influence the likelihood of both expo-

sures occurring concurrently (marked by an arrow into the

interaction E�G node) and also influence disease risk

(marked by an arrow into the disease D node); such a fac-

tor would create a back-door path and this would be ex-

plicitly visualized in the DAG (see Figure 2c). Continuing

with our example of smoking (E), asbestos (G) and lung

cancer (D), a potential confounder (C) would be a factor

that increases the likelihood of both smoking and asbesto-

sis exposure, such as socio-economic status. Although this

back-door path could also be captured by arrows from C

to both E and G if the E � G node were omitted, the inter-

action node prompts the researcher to think about factors

that affect both exposures simultaneously.

Effect modification

Effect modification occurs when there is interest in the

causal effect of a single exposure on an outcome and this

causal effect depends on the value of a third variable,

termed an effect modifier. The key distinction between in-

teraction and effect modification is that with effect modifi-

cation, interest is in the causal effect of only a single

exposure, whereas with interaction, interest is in both

causal effects. This definition of effect modification corre-

sponds to what was previously termed ‘exposure

modification’.11

VanderWeele and Robins1 depict effect modification as

shown Figure 1, which was also used to depict interaction.

In that example, the exposure E was a medication, the out-

come D was hypertension and the variable G was a geno-

type that modifies the effect of E on D. As an example, G

may be a polymorphism in a gene encoding a cytochrome

P450 enzyme, with the polymorphism causing the drug to

be metabolized either more or less quickly than usual, de-

creasing or increasing, respectively, the causal effect of E

on D. There is nothing in this DAG that suggests that the

effect of genotype (G) on disease (D) is present only if the

medication (E) is taken.

Weinberg4 suggested that such effect modification could

be captured by the DAG in Figure 3a. However, as men-

tioned before, this representation can be neither depicted

using available DAG software nor interpreted using stan-

dard DAG theory.

We propose that effect modification could be graphi-

cally depicted as shown in Figure 3b. Here, inclusion of the

E � G node represents an assumption that the causal ef-

fect of E on D is modified by G.

We are not aware of this graphical representation being

previously suggested. This representation shares several

key features of the proposed representation of interaction

and also has some differences:

i. The assumed effect modification can be graphically

depicted and interpreted using existing software and the-

ory. Because interest is in the causal effect of exposure

Figure 3 (a) Proposal by Weinberg to capture effect modification by ge-

notype (G) of medication (E) on hypertension (D). (b) DAGs representing

the independent effect of exposure E on outcome D and modification of

this effect by G.
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E, assuming effect modification by G, causal diagrams

can be constructed by defining both E and E � G as

exposure variables. This allows for the specification of

additional, biasing paths involving other causally related

variables, and the identification of conditional indepen-

dencies and minimum adjustment sets.

ii. It is possible to specify either that the effect modifier G

has a direct causal effect on outcome D; or that it does

not, depending on the assumed causal model. Because

G is not an exposure variable in the effect modifier

case, its causal relationship with D is relevant only for

identifying adjustment sets. In either case - i.e.,

whether G does or does not have a causal effect on D

— the minimum sufficient adjustment set for estimat-

ing the total effect of E and E � G on D contains G,

as necessary to estimate causal effects of E and E �
G conditioned upon G. Given that a DAG should code

all relevant causal effects in order to accurately specify

all back-door paths and hence the minimal adjustment

set, we propose that the term ‘effect modification’

should only be reserved for situations in which the

second factor does not have a direct effect on the

outcome, i.e. Figure 3b. If the second factor does have

a direct effect on the outcome, then the term ‘interac-

tion’ should be used; this would provide some clarity

on terminology.

iii. If the genetic polymorphism G only affects disease D

in the presence of the medication E, then exchange-

ability on G is not required and it could be argued

that G should not appear in the DAG at all.

However, we would argue that including G in the

DAG provides clarity that the E � G node is not sim-

ply a mediator of the effect of E on D, and also

prompts the researcher to consider potential back-

door paths that might influence both G and D, e.g.

ethnicity might influence the frequency of the poly-

morphisms as well as disease risk.

iv. The DAG depicts the assumption that E has a direct

causal effect on D. With the E � G node included, this

‘main’ effect represents the average causal effect of

E for a subpopulation with specified (e.g., reference)

values of E and G, rather than representing the average

causal effect of E in the population. Conditional on E,

the E � G node then represents the average causal ef-

fect for one or more other, joint values of E and G.

v. This depiction allows for the direction of effect modifi-

cation to be positive or negative, for exposures and

outcomes to be on any scale, and for different assumed

models of effect modification.

Weinberg4 proposed a further diagram to capture ‘pure’

interaction in which neither G nor E has a direct effect on

D and they only have an effect when present together (see

Figure 4a).

We suggest that this ‘pure’ interaction could be cap-

tured by the DAG shown in Figure 4b. An example of this

is phenylketonuria in which phenylalanine in the diet (E)

and the absence of the enzyme to break it down (phenylal-

anine hydroxylase, G) are both needed in order for a dis-

ease to manifest (intellectual disability, D).

Specific features of this representation include:

i. The DAG depicts the assumption that neither E nor G

has a direct effect on D. Because interest is only in the

causal effect of a specified combination of values of

exposures E and G, causal diagrams can be constructed

Figure 4 (a) ‘Pure’ interaction in which neither G nor E has a direct effect

on D and they only have an effect when present together. (b) ‘Pure’ in-

teraction in which the causal effect of exposures E and G on outcome D

is only present for specific joint values of E and G.
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by defining only the node E � G, as an exposure vari-

able. However, we argue that drawing the DAG includ-

ing both the E and G nodes in this way is also helpful

for clarity about the causal effects.

ii. Using conventional DAG theory, this representation

defines a minimum sufficient adjustment set for esti-

mating the total effect of E � G on D that contains

both E and G, as necessary to estimate the causal effect

of E � G conditioned upon E and G. However, as is

usual, when interpreting regression parameter esti-

mates, interest is restricted to the single exposure vari-

able E �G, representing the ‘pure’ interaction effect.

iii. The DAG depicts the assumption that E and G only

have a causal effect on D, conditional on the values of

E and G, i.e. is a causal effect only for selected, joint

values of E and G.

DAGs have been a tremendous boon in clarifying think-

ing around causal inference and articulating the fact that

epidemiologists are indeed interested in biological cause

and effect relationships, not just abstract ‘association’. It

has been a gap that there is no easy way to capture biologi-

cally meaningful interaction or effect modification using

conventional DAG models. Our proposal is hopefully a

step forward in this respect.
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