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Park4, Jeffrey T. Schouten5, Homer L. Twigg, III6, Lawrence Corey2, James I. Mullins1,2, John E. Mittler1*

1 Department of Microbiology, University of Washington, Seattle, Washington, United States of America, 2 Department of Laboratory Medicine, University of Washington,

Seattle, Washington, United States of America, 3 Department of Experimental Immunology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic

Medical Center of the University of Amsterdam, Amsterdam, The Netherlands, 4 Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington,

United States of America, 5 General Surgery, University of Washington, Seattle, Washington, United States of America, 6 Division of Pulmonary and Critical Care, Indiana

University Medical Center, Indianapolis, Indiana, United States of America

Abstract

Background: HIV-1 is frequently detected in the lungs of infected individuals and is likely important in the development of
pulmonary opportunistic infections. The unique environment of the lung, rich in alveolar macrophages and with specialized
local immune responses, may contribute to differential evolution or selection of HIV-1.

Methodology and Findings: We characterized HIV-1 in the lung in relation to contemporaneous viral populations in the
blood. The C2-V5 region of HIV-1 env was sequenced from paired lung (induced sputum or bronchoalveolar lavage) and
blood (plasma RNA and proviral DNA from sorted or unsorted PBMC) from 18 subjects. Compartmentalization between
tissue pairs was assessed using 5 established tree or distance-based methods, including permutation tests to determine
statistical significance. We found statistical evidence of compartmentalization between lung and blood in 10/18 subjects,
although lung and blood sequences were intermingled on phylogenetic trees in all subjects. The subject showing the
greatest compartmentalization contained many nearly identical sequences in BAL sample, suggesting clonal expansion may
contribute to reduced viral diversity in the lung in some cases. However, HIV-1 sequences in lung were not more
homogeneous overall, nor were we able to find a lung-specific genotype associated with macrophage tropism in V3. In all
four subjects in whom predicted X4 genotypes were found in blood, predicted X4 genotypes were also found in lung.

Conclusions: Our results support a picture of continuous migration of HIV-1 between circulating blood and lung tissue, with
perhaps a very limited degree of localized evolution or clonal replication.
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Introduction

HIV-1 infection is associated with a variety of infectious and

non-infectious pulmonary complications, and pulmonary infec-

tions appear to accelerate the progression of HIV-related disease

[1,2,3,4,5,6]. Although pulmonary lymphocytes appear to be the

major reservoir for HIV-1 DNA in the lung [7,8,9], the lung is

distinguished from other organs in having a high percentage of

resident macrophages (alveolar macrophage, AM) [10] as potential

targets of infection and as sites where HIV replication may occur.

Previous studies examining HIV-1 in the lung and blood suggest

that lung viruses contain amino acid signatures associated with

macrophage tropism [11], have higher percentages of monocyto-

tropic viruses [12], are more likely to be CCR5-tropic [13], and

are more homogenous than virus found in blood [11,14]. These

studies all indicate some degree of genetic compartmentalization

between lung and blood as well, though the methods used to

define compartmentalization varied. In contrast, an autopsy study

[15] reported no simple relationship between syncytium-inducing

(SI) and non-syncytium-inducing (NSI) genotypes in the lung from

three subjects, though they also observed phylogenetic clustering

of lung sequences apart from virus in other tissues in two of the

three subjects. Genetic compartmentalization has also been

observed in C2-C3 env sequences from blood and pleural fluid in

four of eight HIV-infected subjects with pleural TB [16].

While these studies generally point to genetic compartmental-

ization between blood and lung, the causes, degree, and extent of

compartmentalization have not been fully resolved. The studies

cited above all sampled a relatively small number of viruses from a

small number of patients, and compartmentalization was not

observed in all subjects, nor was it rigorously defined. Certain key

studies [11,14], moreover, focused on a very limited section of the

viral genome, the V3 loop. In addition, several of these studies

relied on population sequencing, a process that can result in biased
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estimates of viral diversity and recognition of only major viral

genotype(s). Finally, there remains the unresolved issue of why

lung viruses should show patterns of compartmentalization

consistent with macrophage tropism when most of viral RNA

and DNA isolated from the lung comes from pulmonary

lymphocytes [8,9].

In this study, we addressed these issues using a more

comprehensive data set: HIV-1 env C2-V5 sequences from lung

and blood from 18 sets of paired blood and lung samples in which

viral sequences were PCR amplified via limiting dilution to avoid

viral template resampling and thus obtain an accurate view of

variant representation, within the context of the ever-present

possibility of biased PCR amplification due to primer selection.

The 18 sets consisted of nine pairs of induced sputa (IS) and blood

samples and nine pairs of bronchoalveolar lavage (BAL) and blood

samples, including four who were sampled before and after

antiretroviral therapy. We applied phylogenetic and bioinformatic

analyses to these sequence data to test the following hypotheses: (i)

Are lung viruses genetically compartmentalized compared to those

in the blood? (ii) Does lung preferentially contain viruses of the R5

phenotype? (iii) Does the lung serve as an archival reservoir for

viral genotypes present earlier in infection? Contrary to previous

reports, which painted a fairly simple picture of viral compart-

mentalization in the lung, we find a mixed pattern in which virus is

compartmentalized in some patients and not compartmentalized

in other patients. In all cases where virus did compartmentalize,

the effects were subtle; i.e., detectable using statistical tests, though

not always immediately obvious from visual inspection of

phylogenetic trees. Attempts to relate compartmentalization to

diversity, divergence, cell tropism, or clinical indicators such as

viral load, CD4+ T cell count, and time infected, did not yield any

significant correlations.

Methods

Study Populations
Paired lung and blood samples were obtained from three

sources: Induced sputum (IS) and bronchoalveolar lavage (BAL)

from HIV-infected subjects collected at the University of

Washington (UW-BAL), and BAL samples collected from four

serially sampled HIV-infected subjects initiating HAART at

Indiana University (IU-BAL) with informed consent using human

subjects protocols approved by both institutions. Under all three

protocols, blood samples were taken within two hours of initiating

IS or BAL. All samples came from HIV+ adults (.18 yrs). The IS

and UW-BAL samples came from patients with no overt evidence

of lung disease. The IU-BAL samples came specifically from

subjects with elevated pulmonary lymphocyte counts who did not

have evidence of serious pulmonary infections. The IU-BAL

patients initiated triple-drug HAART after the initial BAL, and

were lavaged again after 4, 24, and 52 weeks. Treatment

information and other clinical parameters are summarized in

Table 1. The IU-BAL procedures, undertaken in part to address

the effects of HAART on pulmonary lymphocytes, have been

previously described in detail [17].

Processing of blood, induced sputum, and BAL
Blood was collected into BD ACD vacutainer tubes (Becton

Dickinson 364606) for isolation of plasma (PL) and peripheral

blood mononuclear cells (PBMC) by Ficoll density gradient

centrifugation using Lymphocyte Separation Medium (LSM)

(Cappel 50494, Aurora, OH). At UW, PBMC were fractionated

into peripheral blood lymphocytes (PBL) and peripheral blood

monocytes (PBM). For the UW IS subjects, monocytes were

isolated from PBL using monocyte adherence as described [18].

For the UW BAL subjects, monocytes were isolated from PBL

using MACS CD14 microbeads and MACS LS column according

to the manufacturer’s instructions (Miltenyi Biotec, cat# 130-050-

2010).

Induced sputum (IS) were obtained and processed as detailed

(Frenkel et al., 2009 submitted). Due to interfering squamous

epithelial cells (5–75% of IS cells) in most sputum samples, we

fractionated the IS-derived cells using LSM. Alveolar macrophag-

es (AM) and lymphocytes were isolated in the LSM band, and

squamous epithelial cells, red blood cells, and dead cells were

found in the LSM pellet. We did not attempt isolation of AM from

lymphocytes due to low live cell recovery from most induced

sputum samples. At all steps in the process small aliquots were

taken and cytospins performed for determination of IS cell

differential.

Bronchoalveolar lavage (BAL) was performed by advancing a

flexible bronchoscope into subsegmental bronchi in the right and

left lungs at both UW and IU. Five 30 ml aliquots of sterile 0.9%

saline was injected into each subsegment and gently suctioned into

a trap [19]. The recovered BAL fluid was passed through a nylon

filter to remove clumps and mucus then centrifuged at 300 g for

10 minutes to obtain BAL fluid supernatant (BALF) and BAL cells

(BALC). At UW, AM in the BALC were enriched first by

fractionation on LSM: AM and lymphocytes were isolated in the

band; red blood cells and dead cells were in the pellet. CD3+
lymphocytes were removed from the LSM banded BALC using

MACS CD3 microbeads and MACS LC column according to the

manufacturer’s instructions (Miltenyi Biotec, cat#130-050-101).

These are referred to as BALC*. One exception to the above

process was BALC from UW-BAL10. In this case BALC were

fractionated on 46% Percoll gradients (GE Healthcare, cat#
17089102) prior to CD3+ lymphocyte removal (BALC**). Half of

these BALC** were adhered to plastic for 2 hours, rinsed three

times with PBS to remove any non-adherent cells, and adherent

cells detached with ice-cold PBS-EDTA (BALC***). At all steps in

the process small aliquots were taken and cytospins performed for

determination of BAL cell differential. BAL fluid supernatant,

plasma, and cell pellets were frozen at 280uC for later analysis.

Although the BAL samples were clear on visual inspection,

small amounts of blood were detected in the pellets from UW-

BAL5 and UW-BAL8. While differential analysis of cytospins

showed that the BALC* samples from UW-BAL5 and UW-BAL8

were free of blood lymphocytes, the BALF from these subjects

could contain a small amount of viral RNA from plasma.

PCR and sequencing procedures
Viral RNA was isolated from plasma (PL) and from the BAL

fluid of two subjects (BAL05 and BAL08–the two subjects from

which we observed a small amount of blood in the BAL pellets)

and converted to cDNA as described [20]. Genomic DNA from all

other tissues was isolated and purified by the Tissue Protocol of

QIAampHDNA Mini Kit (Qiagen Inc., Valencia, California).

DNA and cDNA isolated from patient samples were used to

generate PCR products and HIV-1 env gp120 sequences of regions

C2 through V5 (HXB2 coordinates 6582–7700).

PCR was performed using AmpliTaqH DNA polymerase with

GeneAmpH 10X PCR Buffer II and MgCl2 solution (Applied

Biosystems, Foster City, California), balanced dNTPs at 200 mM

(GE Healthcare Life Sciences, Buckinghamshire, U.K.), with outer

primers in a first round PCR at 0.3 mM (Invitrogen, Carlsbad,

California) -PE1 (59-TAGAAAGAG CAGAAGACAGTGG-

CAATGA-39) and PE2 (59-GCCTGGAGCTGTTTGATGCCC

CA-39), and inner primers (in a second round PCR) ED5 (59-
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ATGGGATCAAAGCCTAAAGCCATGTG-39) and BH2 (59-

CCTTGGTGGGTGCTACTCCTAATGGTTCA-39). The PCR

conditions used for the first round PCR were an initial 94uC
denaturation of 2 minutes, followed by 35 cycles of 94uC for 15

seconds, 55uC for 30 seconds, 72uC for 2 min, concluding with a

72uC extension for 7 min. Conditions used for the second round

PCR were identical, except for a cycled extension step of 90 seconds

at 72uC. To avoid template re-sampling, we performed limiting

dilution PCR, calculating the sample volume necessary to equal one

theoretical copy/PCR reaction with the ‘‘Quality’’ program (http://

ubik.microbiol.washington.edu/computing/quality/jquality.htm)

[21],

Independent PCR products were separately cloned using

Invitrogen TOPO TAH Cloning kits (Invitrogen Corporation,

Carlsbad, California), with each transformation cultured on LB

agar, in separate wells of 24-well plates. To prevent template

resampling, single colonies were picked from each well and

cultured in LB broth overnight, with plasmids isolated using

QIAprep spin miniprep kits (QIAGEN Inc.) according to the

manufacturer’s instructions.

Sequencing was performed by the University of Washington

Department of Biochemistry DNA Sequencing Facility (http://

depts.washington.edu/biowww/dna/index.html). Before initiating

more detailed phylogenetic analyses, we compared sequences

against the HIV-1 database using ViroBLAST [22] and grouped

them into phylogenetic trees using a neighbor-joining algorithm.

Sequences that closely matched viruses in the database or that

clustered with sequences from another patient were flagged as

possible contaminants.

Phylogenetic Analysis
Nucleotide sequences were aligned with ClustalW version 1.4

[23] and the alignment refined using MacClade v4.08 software

[24]. Version 3.06 of Modeltest [25] was used in conjunction with

PAUP* 4.0 [26] to estimate the best evolutionary model for the

construction of each maximum likelihood (ML) tree using the

Akaike Information Criterion [27]. Each subject alignment was

carefully examined for regions of highly variable, ambiguous

alignment, in which a preponderance of indels and repeats

occurred, making a probable alignment difficult. These regions

were excluded on a by-patient basis, while retaining as much of the

alignment as possible. PAUP* was used to calculate each patient

ML tree with its optimal model from Modeltest in a heuristic

search with a neighbor-joining start and SPR branch swapping.

Three subtype B reference sequences from the LANL database

(accession numbers M63929, U63632, and U95413) were used as

outgroup sequences to root the trees. Diversity distances were

calculated as the total pair-wise distances in PAUP* between all

sequences within each compartment, under the same best-

estimated model defined by Modeltest to calculate the tree.

Divergence was calculated as the pairwise distance from each

sequence to the most recent common ancestor, which is the

sequence estimated at the basal root node of the tree node where

the outgroup sequences join the ingroup sequences. Statistical

comparisons between tissue pairs in each individual were

calculated using the Wilcoxon Rank Sums test. Intra- and inter-

subject statistical comparisons of diversity between tissue pairs for

pooled data were calculated using a statistical that accounts for the

inherent dependency of sequences on one another [28] (http://

www.scharp.org/users/adecamp/diverstest/runtests.php).

VESPA analysis and V3 frequency chart
Aligned protein sequences of lung and blood tissue variants were

analyzed using Viral Epidemiology Signature Pattern Analysis

(VESPA) [29] (http://www.hiv.lanl.gov/content/sequence/

VESPA/vespa.html) for each possible pair of tissues. Graphical

representations of the pooled lung and pooled blood V3 loops were

constructed in WebLogo 3 [30,31] (http://weblogo.berkeley.

edu/).

Co-receptor Prediction
CCR5 or CXCR4 coreceptor usage was predicted from the

amino acid sequence of the V3 loop region using the subtype-B-

specific Web PSSM genotypic interpretation algorithm [32]

(http://ubik.microbiol.washington.edu/computing/pssm/index.

html). Comparative statistics were done using the Fisher’s Exact

Test.

Statistical Tests for Compartmentalization
Five methods were used to determine virologic compartmental-

ization between every tissue pair within each subject [33,34,35,36].

Four of the tests were based on the topology of the phylogenetic

trees, while one test relied on genetic distances between sequences.

We analyzed each tissue pair separately. The four phylogenetically-

derived methods for detecting compartmentalization were: 1)

Slatkin-Maddison (SM), which determines the minimum number

of migration events between two populations based on the tree

topology; 2) Simmonds Association Index (AI), which assesses the

degree of population structure, weighting the contribution of each

internal node based on how deep it is in the tree, and; Correlation

Coefficients, either by 3) length of branches ‘‘r’’ or by 4) number of

branches ‘‘rb.’’ The correlation coefficients tests look at any two

sequences in a tree to determine whether or not they originate from

the same compartment by examining tree structure and distances,

i.e., the cumulative genetic distances between sequences (the length

of branches) (r), or the number of tree branches separating the

sequences (rb). The distance-based method used was the Nearest

Neighbor statistic (Snn), a measure of how often the ‘‘nearest

neighbor’’ (in sequence space) sequences are from the same locality

in geographic space. Statistics and compartmentalization tests were

implemented in HyPhy as described [37].

Since these methods use different algorithms to measure whether

or not there is evidence of genetic compartmentalization between

two tissues, they each have various strengths and weaknesses. The

SM method is entirely dependent on the structure of the tree,

including the number of internal and external branchings as

‘‘migration step’’ counts; however, branch lengths are not taken into

account. The AI method also does not take branch lengths into

account, and like the SM, is dependent on the structure of the tree,

but adds a degree of complexity by weighting the contributions of

the nodes between any given two sequences based on where they are

located in the tree (i.e. how deep in the tree they are). The

correlation coefficients use yet a different equation to assess

sequence relatedness; the r test actually takes into account branch

lengths and the evolutionary paths between sequences, while the rb

examines the number of branches between sequences, and so takes

into account population structure in a different manner than the SM

and AI tests. While the tree-based methods, as a whole, are

dependent on the structure of the tree to varying degrees and are

appealing since we are often able to confirm the results when we

examine the tree subjectively, the distance-based test is a good

indicator of genetic similarity between sequences within a tissue,

independent of evolutionary path, and is important to include in the

case of a phylogenetic tree being difficult to resolve or having very

short branch lengths. While some previous studies have simply

examined clustering of specific tissue sequences in phylogenetic trees

by eye to classify compartmentalization, sometimes the degree of

clustering is not always obvious in trees in which there are multiple
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small clusters, or in which some tissue sequences cluster together

and others are scattered throughout the tree. It is important to have

a mathematical method to classify such trees.

We also screened each tissue pair alignment for recombination,

which could potentially obscure detection of compartmentaliza-

tion. We used a genetic algorithm approach [38] implemented in

DataMonkey (http://www.datamonkey.org/GARD/) to detect

recombination breakpoints. Each non-recombinant fragment

defined by these breakpoints was then analyzed separately for

compartmentalization using the previous methods.

Associations between compartmentalization and various clinical

parameters including diversity, divergence, viral load, and CD4+
T cell count were assessed using Wilcoxon Rank Sums tests, in

which subjects exhibiting evidence of compartmentalization

between lung and blood were compared to those who did not

exhibit evidence of compartmentalization.

We note that none of the statistical tests reported here adjusted for

multiple comparisons. While it is customary to adjust p-values for

multiple comparisons when making positive claims, our use of

uncorrected p-values is conservative with respect to the negative con-

clusions in this study (i.e., that compartmentalization was minimal).

Potential N-Linked glycosylation sites (PNGS) and amino
acid length

N-linked glycosylation sites were predicted using N-glycosite

[39] (http://www.hiv.lanl.gov/content/hiv-db/GLYCOSITE/

glycosite.html). The number of amino acids between HXB2

gp160 position 267 and 471 (C2 to V5) were tallied for each

sequence. Statistical comparisons between tissue pairs within each

subject were calculated using the Wilcoxon Rank Sums test.

Nucleotide sequence accession numbers
All sequences were submitted to GenBank and assigned accession

numbers GQ444145-GQ444329 and GQ456230-GQ456929.

Results

HIV-1 env V3 loops from lung and blood samples are
indistinguishable

Previous studies [11,14] claimed that V3 loops from lung

samples were more homogeneous in the C-terminal region of the

V3 loop but were more diverged overall than blood viruses. To

test this finding, we calculated divergence and diversity of full

length and C-terminal-region of V3, in lung and blood tissue from

all 18 subjects. While there were a few instances in which lung

diversity was significantly different from one or more blood tissues

within a subject, it was the exception rather than the rule, and

overall, lung (from either IS or BAL) was not more or less

homogeneous in the whole V3 or in the C-terminal region than

any blood tissue. The same held true for the divergence of V3

from the subject’s inferred MRCA in the lung and blood (results

not shown).

One of these previous studies [11] also claimed that lung BAL

contained a highly conserved, negatively charged amino acid motif

that may be associated with macrophage tropism [40], while V3

loops in blood were less likely to contain this motif, which was

defined as Y-X-T-X-X-X-I-G-D [11] or Y-X-T-X-E-X-I-X-D-I

[40] from residues 21 to 29 in the V3 loop. We identified these

motifs in both our lung and blood samples in very similar

frequencies, regardless of whether the samples were from IS or

from confirmed purified BAL (Figure S1). Also, no signature sites

in IS or BAL were identified throughout the V3 loop by VESPA, a

program designed to detect signature amino acid sequences (see

Methods), when compared to any blood tissue (results not shown).

X4 genotypes are as likely to be found in lung as in blood
Previous studies found that HIV-1 in the lung was more likely to

be macrophage- [11] or CCR5-tropic [13] than blood, reflecting

different potential target cell pools in each tissue. We applied the

WebPSSM algorithm [32] to V3 loops to predict virus coreceptor

usage. In all subjects in whom X4 genotypes were detected in

blood (3/9 IS subjects and 1/9 BAL samples), X4 viruses were

detected in lung samples as well (Figure 1). No single tissue

contained a significantly different frequency of X4 viruses than any

other tissue. Thus, we saw no evidence that lung-derived virus is

enriched for R5 variants relative to blood.

Statistical evidence for a modest degree of
compartmentalization between blood and lung HIV-1
env sequences

We examined HIV-1 C2-V5 sequences from multiple tissues to

assess whether or not there was a restriction of HIV-1 gene flow

Figure 1. HIV-1 co-receptor usage predictions. X4 viruses were predicted in (A) four IS subjects and (B) on IU subject (IU-BAL4) in multiple
timepoints via the WebPSSM. There were no significant differences in frequency of X4 detection between tissues within any subject (Fisher’s Exact
Test).
doi:10.1371/journal.pone.0006949.g001
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between the lung and blood. We used five different methods to

determine whether or not there was compartmentalization

between any two tissues; four of the methods were phylogenetic

tree-based (SM, AI, r, and rb) (Figures 2 and 3) while one method

(Snn) used a genetic distance-based approach, in which distances

were derived from nucleotide alignments. Since each method has

specific strengths and weaknesses and no gold standard has as yet

been accepted, and given the frequency with which these methods

frequently disagree [37], for each tissue pair we simply took a

majority consensus approach and classified the pair as exhibiting

compartmentalization if at least three of the five tests indicated

significant evidence for compartmentalization, as determined by

the permutation tests employed for each method. We also

screened every tissue-pair alignment for recombination with

GARD, and re-analyzed the non-recombinatory fragments

defined by GARD for compartmentalization in the same manner

as before.

Under this design, we found evidence of compartmentalization

between lung and at least one blood tissue in six of the nine IS

subjects, and in three of the five UW BAL subjects (Table 2). We

analyzed each time-point of the IU BAL subjects separately, and

did not find evidence of compartmentalization until we examined

the non-recombinatory fragments defined by GARD, at which

point we found evidence for compartmentalization in the first

time-point only of one subject. Recombination breakpoints were

found in almost every tissue-pair alignment; however, except in the

aforementioned IU BAL case, compartmentalization results were

not different from those calculated from the whole alignment

(results not shown). We were not able to obtain both IS and BAL

samples from the same subject to determine the extent of sampling

differences between these two types of tissues, nor were we able to

obtain two separate samples within a small window of time (hours

or days) from any one subject to examine potential geographic

sampling bias effects. We acknowledge that a potentially broader

sample was obtained from the BAL, as the IS samples are from the

airway and generally had little virus, while the BAL samples

encompass an entire lobe of the lung and are likely to come in

contact with the epithelial lining fluid as well. However, according

to a Fisher’s Exact Test, there was not a significant difference in

the amount of compartmentalization we saw in the IS subjects (six

of nine compartmentalized) vs. the BAL subjects (four of nine

compartmentalized).

Whether or not a subject was determined to have genetic

compartmentalization between lung and at least one blood tissue

was not related to viral load, CD4 count, or viral diversity or

divergence in blood (p.0.05 for all comparisons). Nor was

evidence for compartmentalization related to the percent lympho-

cytes in BAL samples; of the two subjects in which 99% or more of

the cells were alveolar macrophages, we found evidence of

compartmentalization between lung and blood in one of them

but not in the other.

We noted that many of the examples of compartmentalization

in Table 2 involved comparisons between DNA (PBM, PBL,

PBMC, IS, and BALC) and RNA (PL) sequences. Of the 13

subjects from whom we obtained plasma sequences, we found

evidence for compartmentalization between plasma (PL) and lung

in 6 subjects. In contrast, we found compartmentalization between

PBL and lung in 3 out of 13 subjects for whom we obtained PBL

Figure 2. Phylogenetic trees of IS subjects. All trees are maximum likelihood trees calculated under the best-estimated model as determined by
ModelTest.
doi:10.1371/journal.pone.0006949.g002
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samples; between PBM and lung in 2 out of 10 subjects for whom

we obtained PBM samples; and between PBMC and lung in 1 out

of 6 subjects for whom we obtained PBMC samples. When we

examined compartmentalization outside of the lung (between any

two blood tissue pairs, i.e., PBMC, PBL, PBM, PL), we found

evidence for compartmentalization between any blood tissue pair

in seven comparisons from five subjects, and in all seven cases, PL

was one of the blood tissues involved. In no case did we find

compartmentalization between just the blood tissues PBL and

PBM.

Table 2 also summarizes tests involving RNA from BALF, but

these tests are clouded by the fact that there was a trace amount of

blood in the two BAL samples from which we detected viral RNA

in BALF. Given the plasma viral loads in these subjects, it should

be possible to detect viral RNA in BALF even assuming a 100-fold

dilution of plasma into BALF. Indeed, the fact that plasma and

BALC, but not plasma and BALF, were compartmentalized in

UW-BAL8, is consistent with the hypothesis that the RNA in this

BALF sample came from plasma.

Presence of Nearly Identical Sequences in BAL Samples
In two subjects, UW-BAL6 and IU-BAL1 (week 52 timepoint

only; there was no matching PBMC, so no compartmentalization

tests were done), we noted a large number of nearly identical

sequences in BAL, which is something rarely, if ever, seen in blood

samples in patients in chronic infection who are not on

antiretroviral therapy. We observed this phenomenon in the IU-

BAL subject well after the initiation of therapy; we do not know for

certain how long this subject had been infected, though it was for

at least one year. The UW subject had been on antiretroviral

therapy only briefly, was not currently on therapy at the time of

sampling, and had been infected for at least five years. Twenty out

of 22 lung sequences were identical or nearly identical to one

another in this subject, while the blood sequences were not

homogeneous (Figure 3B).

The Diversity And Divergence of HIV-1 env Sequences
from Lung and Blood Do not Differ Significantly

To assess whether viruses in lung evolve differentially from those

in blood, we used the nucleotide alignments to calculate two

statistics: (1) divergence, which is the genetic distance between

nucleotide sequences from blood and lung to the inferred MRCA

(Figure 4); and (2) the mean pairwise nucleotide diversity of viruses

in blood and lung samples (Figure S2). In samples from subjects

not undergoing anti-retroviral therapy, we observed no consistent

trends wherein samples from lung were either more or less

divergent or diverse compared to viruses from blood samples. This

lack of consistent trend persisted whether lung virus came from IS

or BAL cells, whether BAL cells contained .99% AM, whether

blood virus came from PBL, PBM, or plasma, or whether the

patient had started antiretroviral therapy. Virus from lung was

seldom more or less divergent than blood within subjects; lung was

significantly more diverged than one blood tissue in two subjects,

and significantly less diverged in four subjects, while there was no

difference between lung divergence and any blood tissue

divergence when divergence values from all subjects were pooled.

Likewise, lung was significantly less diverse than virus from a blood

compartment in two subjects, and as mentioned above, in one of

Figure 3. Phylogenetic trees of BAL subjects. All trees are maximum likelihood trees calculated under the best-estimated model as determined
by ModelTest. (A) IU-BAL (Indiana University bronchoalveolar lavage) subjects; (B) UW-BAL (University of Washington bronchoalveolar lavage)
subjects. ** and ***: alternative methods of AM enrichment in subject UW-BAL10, see methods.
doi:10.1371/journal.pone.0006949.g003
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these subjects many of the lung sequences were identical or nearly

identical. Lung was more diverse than at least one blood tissue in

five subjects. Overall, when distances from all subjects were

pooled, there was no significant difference in diversity between any

two tissues.

One subject, IU-BAL3, had one lung sequence that was much

more diverged from the MRCA than any other sequence from

that subject and was also very diverse compared to the other lung

sequences. The distance from this unusual sequence to the MRCA

was .0.1 substitutions/site, while the distances to the MRCA of

the other sequences were between 0.005 and 0.048 substitutions/

site. The alignment was double-checked and a neighbor-joining

tree was made containing .200 subtype B reference sequences

plus all of the subject sequences, and still the highly diverged

sequence grouped closely with the subject’s own sequences, and

thus there was no evidence that it derived from superinfection

from a second source of infection. The sequence was not deemed

to be hypermutated, nor did it contain any stop codons. Thus,

despite the large distance between it and other sequences, it was

not removed or considered to be a contaminant.

HIV-1 C2-V5 Sequences from Lung and Blood have
Similar Numbers of Potential N-Linked Glycosylation Sites
and Are the Same Length

The number of Potential N-Linked Glycosylation Sites (PNGS)

and sequence length have been examined in the context of HIV-1

tissue compartmentalization [14,41,42,43], with the rationale that

the neutralizing antibody response, which influences PNG patterns

Table 2. Results of compartmentalization tests.

Subject
Tissues from which we
obtained sequences

Lung vs. blood tissue pairs
in which compartmenta-
lization1 was detected

Blood vs. blood tissue pairs
in which compartmenta-
lization was detected SM Snn rb r AI

IS-8247 IS, PBL, PBM, PL Lung vs PL – * *** *

IS-8835 IS, PBL, PBM, PL – – NS

IS-8837 IS, PBL, PBM, PL Lung vs PBL ** * ** **

Lung vs PL * *** *

PBL vs PL * * * *

IS-8838 IS, PBL, PL Lung vs PBL – * * *

IS-8840 IS, PBL, PBM, PL Lung vs PL *** *** ** **

PBL vs PL * ** *

PBM vs PL * * ** **

IS-8886 IS, PBL, PBM, PL – – NS

IS-8948 IS, PBMC, PL – – NS

IS-8992 IS, PBMC, PL Lung vs PL *** *** ** **

PBMC vs PL ** ** ** **

IS-9000 IS, PBM, PL Lung vs PBM – * ** *

IU-BAL1 BALC3, PBMC – – NS

IU-BAL2 BALC3, PBMC – – NS

IU-BAL3 BALC3, PBMC – – NS

IU-BAL4 BALC3, PBMC Lung vs PBMC – * ** *

UW-BAL5 BALC4, BALF2, PBL, PBM, PL – – NS

UW-BAL6 BALC4, PBL, PL Lung vs PBL – *** *** ** ** *

Lung vs PL *** *** ** ** **

UW-BAL8 BALC4, BALF, PBL, PBM, PL Lung (BALC4) vs PL ** ** * **

PBM vs PL *** * *

UW-BAL9 BALC4, PBL, PBM, PL Lung vs PBL * ** ** **

PBL vs PL * ** ** **

PBM vs PL * ** **

UW-BAL10 BALC5, BALC6, PBL, PBM – – NS

Only tissue pairs that were designated as compartmentalized with respect to one another (defined as having significant results in 3/5 tests) are listed.
1Compartmentalization was designated when significance was detected in at least 3 of the 5 statistical tests.
2BALF: HIV-RNA from bronchoalveolar lavage fluid.
3BAL cells not enriched from AM (BALC in Table 1).
4BAL cells enriched by LSM and CD3-depleted (BALC* in Table 1).
5BAL cells fractionated on 46% Percoll gradients prior to CD3-depletion (BALC** in Table 1).
6BAL cells treated as in 5 above, but further enriched for AM by adherence (BALC*** in Table 1).
*p-value = 0.01–0.05.
**p-value = 0.001–0.009.
***p-value ,0.001 (blank = p-value .0.05).
NS Data not shown, no tissue pair met the criteria for compartmentalization.
doi:10.1371/journal.pone.0006949.t002
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and accumulations [44,45], may differ between tissue microenvi-

ronments. A PNG, defined as any amino acid sequon N-X-T or

N-X-S (unless X = Proline), was calculated for each sequence from

HXB2 position 267 to 471 (part of C2 through end of V5). In only

a few cases were there differences in the numbers of PNGS

between compartments (Figure S3); in the IS cohort, subject 8835

and 8837 sequences from lung had significantly more PNGS than

were found in PBL; in subject 8992, sequences from lung had

fewer PNGS than did sequences from PL. In the UW BAL cohort,

subject BAL5 sequences from the lung had significantly fewer

PNGS than sequences from PL, PBL, and PBM. In the IU-BAL

cohort, subject BAL4 sequences from lung had significantly more

PNGS than PBMC in both the week 0 timepoint and the week 4

timepoint. When subjects were pooled, there was no significant

difference in PNGS between any two tissues. The lengths of

sequences from each compartment were also very similar, with

very little intra-patient variation and no inter-patient variation

between compartments (data not shown).

No Evidence for Directional Viral Gene Flow between
Blood and Lung

Given that HIV is not always detected in lung samples and that

patients are generally infected via genital fluids and contaminated

blood (i.e., by non-aerosol routes), blood should be colonized before

lung. To address whether this presumed order of infection affects

viral evolution, we examined the phylogenetic trees (Figures 2 and 3)

for evidence that blood sequences rooted closer to the MRCA than

lung sequences. Visual inspection of the phylogenetic trees and the

calculated divergence values (Figure 4) suggested that PBM/PBMC

viruses could have been ancestral to IS viruses in donors 8835 and

8992, which was supported by 100% bootstrap values at the

ancestral node when sampling with replacement. However, for the

remaining IS and BAL samples, there was no evidence for any

particular compartment being ancestral to any other, with the

minimum genetic divergence in blood and lung tissues being

roughly the same and with the basal genotype being roughly equally

spread out between the various blood and lung tissues.

Discussion

Restrictions on the ability of virus to migrate freely between

different cells, tissues, and organs can have a profound effect on

viral diversity and divergence, the ability of virus to replicate (or

persist in a dormant form) during antiretroviral therapy, and the

ability of virus to acquire new cell tropisms. Previous studies

[11,14] have suggested that the lung is a privileged site in which

HIV-1 evolves quickly towards a homogeneous phenotype. In this

study, we have sought to test these predictions by sequencing virus

from a large number of paired samples from blood and lung.

While we did find evidence for compartmentalization between

lung and at least one blood tissue in ten of 18 subjects,

Figure 4. Divergence from MRCA. Distances were calculated under maximum likelihood parameters established under ModelTest. Pair
comparisons were made using the Wilcoxon Rank Sums test. (A) IS subjects; (B) IU-BAL subjects; (C) UW-BAL subjects. For pair comparisons: *p-value
= 0.01–0.05; **p-value = 0.001–0.009; ***p-value,0.001.
doi:10.1371/journal.pone.0006949.g004
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compartmentalization was actually quite limited in this data set. In

general, HIV-1 variants from the blood and lung were more often

intermixed than segregated; in most of the subjects evidence of

compartmentalization was not apparent from visual inspection of

the phylogenetic trees. Furthermore, we saw no evidence that lung

samples contained signature sites in the V3 region or an excess of

CCR5-tropic viruses or archival genotypes. The limited evidence

of compartmentalization was observed in HIV-1 patients with

(Indiana cohort) or without (Seattle cohort) evidence of elevated

lung lymphocyte counts, and was not notably influenced by

whether virus came from induced sputum, BAL fluid, BAL cells,

or BAL cell samples enriched for AM.

The limited amount of compartmentalization that we did

observe seemed to be related to two factors. The first was the

unexpected presence of identical or nearly identical sequences in

some of the BAL samples. Although identical sequences have been

observed in samples from patients on HAART [46,47], it is rare to

find identical env sequences from blood samples from patients not

on therapy. In the case of UW-BAL-06, 20 of the 22 BAL

sequences were identical or nearly identical, despite avoiding

resampling and contamination. Many other subjects had from two

to six identical or nearly identical lung sequences. The presence of

nearly identical sequences contributed substantially to statistical

evidence of compartmentalization in these subjects, and suggests

that compartmentalization could be due, in part, to small,

localized clonal expansions as opposed to restrictions in migration

[46,47].

The second factor underlying compartmentalization in our

study was a correlation between compartmentalization and plasma

RNA. Detecting differences between any proviral tissue and

plasma is not surprising, as virus found in plasma was sequenced

from HIV-1 RNA, while the virus found in lung tissue, PBL, PBM,

and PBMC were sequenced from viral DNA. It has been shown

that virus in plasma may reflect a more contemporary quasis-

pecies, in which the cellular origins of the plasma virus are most

likely from an actively replicating cell population which turns over

very quickly (perhaps from a small subset of the PBMC pool),

while cell-associated DNA may harbor archival species derived

from latently infected, long-lived cells within the PBMC pool

[48,49]. These differences in turnover rate could be substantial

enough to look like compartmentalization, and could therefore be

contributing to the amount of blood/lung compartmentalization

detected.

By contrast, we did not find evidence that compartmentalization

was related to selection for specific viral variants. If antibody

escape mutants were driving compartmentalization between lung

and blood we might expect to see differing PNGS and length

profiles, as HIV-1 variants in the lung would have access to

differing cellular compositions and antibody profiles, and would

adapt accordingly. Our finding of both X4 and R5 viruses in lung

are consistent with previous studies [15], which found both SI and

NSI genotypes in a variety of tissues, including lung (though they

also reported tissue-specific viral variants in brain, lung, and testis).

Lung tissue is distinguished from other tissues in having a very

high proportion of macrophages, and it has been proposed that

selection for infection of macrophages might create distinguishing

genetic features of lung virus compared to blood virus [14]. Studies

have shown that AM, which are the frontline of defense against

pathogens in the lung, can be productively infected by HIV-1

[9,14], though potentially at low levels [50]. The presence of AM

as local targets for HIV-1 infection, along with an environment

containing a variety of antimicrobial proteins and peptides that

comprise the pulmonary innate immune response [51], could

theoretically drive selection for specialized HIV-1 quasispecies

within the lung. The fact that HIV-infected AM can survive and

produce virus for several weeks in vitro further suggests that the

lung could contain an excess of archival genotypes (viruses that

genetically resemble viruses found in lymphocytes during earlier

phases of infection).

However, the above theoretical reasons for expecting that the

lung could be a reservoir for distinct viral populations need to be

balanced against findings that the frequency of detecting HIV-1 in

alveolar lymphocytes is much higher than the frequency of

detecting HIV-1 in AM in individuals not undergoing ART [8,9],

which could indicate trafficking of lymphocytes from the

peripheral blood to the lung [52]. Furthermore, CD4+ T cells in

BAL are infected at similar frequencies to CD4+ T cells found in

blood in subjects with chronic infection, and are not massively

depleted, as has been found in the GI tract [8]. Also, it is known

that both cell-free virions and HIV-infected lymphocytes are

capable of trafficking between blood and lung [53,54], and

detection of HIV-1 in AM is more likely in patients with more

advanced disease and lower peripheral blood CD4+ T cell counts

[9].

HIV-1 variants in lung have previously been found to be similar

to virus found in lymphoid tissue in some subjects [13,36]. The

lymphatic and circulatory systems continually circulate cells

throughout the body, and could be vehicles for free virus and/or

HIV-infected T-cells trafficked between lymph nodes and the

lung. These processes may be accelerated as T lymphocytes are

trafficked into the lung in response to inflammatory reactions, and

indeed, HIV-1 infection induces T-cell alveolitis in the lung during

early infection [55,56]. While the relatively small subset of CD4+
T cells found in the lung are infected in high frequencies, it has

been reported that CD8+ T cells, present in high quantities during

HIV-induced alveolitis, can also be infected [57]. High densities of

CD4+ T-cells or CD8+ T-cells may create microenvironments for

rapid spread of viruses between lymphocytes and alveolar

macrophages. Whatever the mechanism, our results support a

picture of continuous communication between circulating blood

and lung tissue, with a limited degree of localized evolution or

clonal replication.

We cannot exclude the possibility that the lung could serve as a

reservoir for HIV-1 in some cases. For instance, suppression of

viral load (such as in subjects on effective therapy) may allow for

minority cell populations within the lung to sustain populations of

viruses that are distinct from those found in blood. Indeed, it has

been shown in pediatric subjects under mostly effective ART

(,50 copies/mL with blips ,400 copies/mL) that virus in

induced sputum evolves more drug resistance mutations than

virus obtained from blood, and also that viral env gene sequences in

induced sputum is more diverged than virus in blood [58]. This

suggests that viral suppression may enable detection of low-level

replication in the lung in the absence of widespread dissemination

of virus from blood, and that effective suppression of virus could

allow for restriction of migration and be a complicating factor in

treatment. However, we did not see the same pattern in our study;

two IS subjects had viral load ,50 (IS-8247 and IS-8886) and one

IS subject had viral load of 52 copies/mL (IS-9000) due to

effective ART (Table 1), and divergence did not differ significantly

between lung and blood in any of these subjects (Figure 4). This

suggests the increased divergence in lung described here could be a

phenomenon associated with early successful treatment and

perhaps limited to pediatric subjects, though we acknowledge we

did not sample enough subjects on effective ART to investigate

this issue thoroughly.

In summary, the extensive intermingling of virus from multiple

blood tissues with virus from the lung, the lack of a macrophage-
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tropic motif or signature site in the V3 region (even in purified

lung macrophages), and evidence for X4 viruses in both blood and

lung, are consistent with a model in which virus in the blood and

lung are frequently exchanged. This is an optimistic result for

patient treatment, since the presence of genotypically distinct

viruses in different tissues complicates efforts to understand disease

progression and optimize initial antiretroviral drug regimens.

Supporting Information

Figure S1 Inter-subject frequencies of amino acid variants at

each site in V3 in lung and blood. Sequences were pooled from all

subjects. Plots generated from data within each cohort separately

(IS and BAL) or by specific blood tissue (PL, PBM, or PBL) also

did not show significant differences between lung and blood. Sites

21, 23, 25, and 27–28 have been associated with macrophage

tropism in previous studies [5,33].

Found at: doi:10.1371/journal.pone.0006949.s001 (1.92 MB TIF)

Figure S2 Pairwise diversity. Distances were calculated under

maximum likelihood parameters established under ModelTest.

Pair comparisons were made using a pooled median diversity test

[21]. (A) IS subjects; (B) IU-BAL subjects; (C) UW-BAL subjects.

For pair comparisons: *p-value = 0.01–0.05; **p-value = 0.001–

0.009; ***p-value ,0.001.

Found at: doi:10.1371/journal.pone.0006949.s002 (4.00 MB TIF)

Figure S3 Potential N-Linked Glycosylation sites. The number

of N-X-T and N-X-S (with X not equal to P) sequons was counted

in each C2 to V5 amino acid sequence. Pair comparisons were

made using the Wilcoxon Rank Sums test. (A) IS subjects; (B) IU-

BAL subjects; (C) UW-BAL subjects. For pair comparisons: *p-

value = 0.01–0.05; **p-value = 0.001–0.009; ***p-value ,0.001.

Found at: doi:10.1371/journal.pone.0006949.s003 (3.77 MB TIF)
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