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In Brief
Cellular development and
disease progression are gradual
transitions between phenotypic
stages. Time-course
measurements that explicitly
measure this transition are
important to discover proteome
dynamics. Single-cell
measurements are a powerful
tool for understanding
heterogeneity, especially during
phenotypic transitions. Single-
cell proteomics measurements
are emerging as an available tool
to characterize the cellular state.
We created a statistical method
that predicts the success of an
experimental design for temporal
dynamics.
Highlights
• Detecting temporal change in proteins depends on fold change and variability.

• Replicate time courses improve reliability of detecting temporal dynamics.

• Temporal experiments require a dense sampling of cells to track gradual transitions.

• Time-course trajectory experiments require more samples than two-state comparisons.
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RESEARCH
Calculating Sample Size Requirements for
Temporal Dynamics in Single-Cell Proteomics
Hannah Boekweg1, Amanda J. Guise2 , Edward D. Plowey2, Ryan T. Kelly3, and
Samuel H. Payne1,*
Single-cell measurements are uniquely capable of char-
acterizing cell-to-cell heterogeneity and have been used to
explore the large diversity of cell types and physiological
functions present in tissues and other complex cell as-
semblies. An intriguing application of single-cell prote-
omics is the characterization of proteome dynamics during
biological transitions, like cellular differentiation or disease
progression. Time-course experiments, which regularly
take measurements during state transitions, rely on the
ability to detect dynamic trajectories in a data series.
However, in a single-cell proteomics experiment, cell-to-
cell heterogeneity complicates the confident identification
of proteome dynamics as measurement variability may be
higher than expected. Therefore, a critical question for
these experiments is how many data points need to be
acquired during the time course to enable robust statistical
analysis. We present here an analysis of the most important
variables that affect statistical confidence in the detection
of proteome dynamics: fold change, measurement vari-
ability, and the number of cells measured during the time
course. Importantly, we show that datasets with less than
16 measurements across the time domain suffer from low
accuracy and also have a high false-positive rate. We also
demonstrate how to balance competing demands in
experimental design to achieve a desired result.

Individual cells express a unique proteome; this is true for cells
in a complex environment as well as cells in a laboratory-
controlled cell culture experiment. These differences arise from
both intrinsic and extrinsic factors, such as access to nutrients,
spatial relationships to other cells, or cell cycle status (1). Tissues
in multicellular organisms often contain a variety of discrete cell
types, each of which expresses a unique proteome, and the
combination of these functional cell states gives rise to the
overall tissue function. Single-cell measurements facilitate the
study of such differences by quantitatively measuring transcript
or protein abundances for individual cells (2, 3).
Much of the early work in single-cell phenotypic charac-

terization was done by mRNA sequencing (4, 5), and this still
remains a widely used data source. However, intracellular and
extracellular functions are most often carried out by proteins,
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e.g., cytoskeletal structures, metabolic enzymes, signal
transducers, and others. Previous work over the past decade
has revealed that mRNA abundance measurements are a poor
proxy for protein abundance measurements (for review, see
(6–8)). Indeed, many important temporal trends in the dynamic
proteome are not detected in mRNA data (9). This is true both
for bulk measurements and also for single cells (10–12). A
recent investigation of proteome dynamics during the cell
cycle found that only 15% of mitotic cycling proteins had
coordinated cycling mRNA transcripts (1). Thus, to identify
dynamic proteome responses at the single-cell level, proteo-
mic measurements are necessary.
Single-cell proteomics poses an enormous technical chal-

lenge and, until recently, global proteome profiling had not
been demonstrated (for review, see (13)). As single-cell pro-
teomics gains momentum, it is important to note the practical
limitations that are encountered for its practitioners, particu-
larly as they relate to the number of cells that can be analyzed
within an experiment. Single-cell mRNA-sequencing experi-
ments, which benefit from ligation-based barcoding (14), are
able to multiplex tens of thousands of samples into a single
data acquisition run (15). However, proteomics multiplexing
remains limited to ~20 samples (16). Therefore, the primary
limitation in the proteomic profiling of a very large number of
individual cells (>1000) is still instrument acquisition time. For
this reason, many researchers face practical limitations in the
type of experiment that can be designed to investigate pro-
teomic phenotypes at the single-cell level.
Characterizing proteome dynamics over time is critical for

understanding cellular differentiation, disease progression,
and treatment response. In contrast to a two-state compari-
son, a time-course experiment collects measurements several
times during a biological process. One fundamental question
for this experimental design is how many time points need to
be sampled in order to detect protein dynamics. Because of
the practical limitations of single-cell proteomics, it is possible
that the number of time points analyzed may not be sufficient
to achieve statistical confidence in the dynamic trends.
Whereas the t test commonly used in a two-state comparison
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Temporal Dynamics in Single-Cell Proteomics
is well behaved with a small number of samples in each state
(e.g., 5–10), it is unknown how such a small sampling will
impact the ability to detect trends in time-course data. A va-
riety of tools have been created to help map expression dy-
namics or trajectories (17–19). However, these are often
created within the assumptions of an experiment where the
number of sampled cells across the time domain is potentially
thousands. Herein, we present a method to facilitate esti-
mating the number of cells needed in a temporal dynamics
experiment by systematically exploring the impact of prote-
ome variability and effect size through a large simulation
similar to a power analysis.
EXPERIMENTAL PROCEDURES

All calculations and data used in this article can be found in our
publicly available GitHub repository, https://github.com/PayneLab/
SingleCellSampleSize. Below are listed specific scripts used to
create figures and metrics cited in the article.

Calculating Accuracy and False Discovery

For the data presented in Figures 1 and 2, we simulated a large
population of “cells” with a single protein abundance and time mea-
surement using the standard formula y = mx + b as protein_abun-
dance = slope * time + 1 + ε. The error term, ε, is a random error that
mimics the biological and/or technical variability in a measurement.
This error is drawn from a zero-centered normal distribution with a
specified standard deviation. For a single simulation, slope and
standard deviation are chosen from slope s ∈ [0.5, 1, 2, 4] and stan-
dard deviation v ∈ [0, 0.25, 0.5, 0.75, 1]. We then created a population
of 10,000 with random seeds for the time variable between 0 and 1.
The full software for making simulated populations can be found in the
GitHub repository in a file called simulate_data.R.

To determine the true-positive (TP) and false-positive (FP) rates, we
sampled a specific number of cells from the population, n_sample ∈
[7, 16, 20, 30, 100]. With the protein abundance and time values for
these subsampled cells, we used cellAlign (17) to interpolate a tra-
jectory (supplemental Fig. S1). Next, we calculated the area between
the interpolated trajectory and the population's true temporal trajec-
tory, ABC_true. The null hypothesis (no change) was tested by
calculating the area between the interpolated trajectory and a hori-
zontal line at the mean protein abundance of the subsampled cells;
this metric is called ABC_null. If the ABC_true < ABC_null, then we
assert that the data from the subsampling represent a changing pro-
tein; if ABC_true > ABC_null, then we assert that the subsampling
represents a nonchanging protein. The accuracy reported in Figure 1
is the result of 1000 subsamples per population. We also repeated the
entire simulation 10 times, which is shown in Figure 1 as the error bars.
The full software for calculating accuracy and making the panels in
Figure 1 can be found in our GitHub repository in the file called
makeFigure1.R.

The process for calculating the false discovery was very similar to
calculating accuracy, except that the correct answer was that there
was no change, and the incorrect answer was that interpolated tra-
jectories matched a sloped line. We simulated a large population of
cells, using the same formula as previously used one, with the caveat
that this population always had a true slope of zero. To calculate false
discovery, we again subsampled cells from the population and inter-
polated a trajectory using cellAlign. We then calculated an area be-
tween the curve metric ABC_true, which reflected the distance
between the interpolated trajectory and the population's true trajec-
tory (i.e., no change). We also calculated an ABC_falsepositive metric,
2 Mol Cell Proteomics (2021) 20 100085
which reflected the area between the interpolated trajectory and a
sloped line. For the plots in Figure 2, the slope was either 0.5, 1, 2, or
4. The FP rate reported in Figure 2 is the result of 1000 subsamples
per population. We repeated the entire simulation 10 times, which is
shown in Figure 2 as the error bars. The full software for simulation,
calculations, and plotting the panels in Figure 2 can be found in our
GitHub repository in the file makeFigure2.R.

Generalizing Slope and Variation

To generalize the TP and FP rates, we ran a separate simulation to
recalculate these metrics using the slope/variation (S/V) ratio and
number of subsampled cells. The data in Figure 3 were generated
using the same types of simulations as described previously for
Figures 1 and 2 except that different slopes and variations were used
to calculate S/V values of 0.5, 1, 1.5, 2, 3, 4, and 6. The plotted data
come from different simulations of a single S/V ratio with different
values for S and V, respectively. For example, data for S/V of 0.5 were
generated using S/V = (0.5/1.0; 0.75/1.5; 1.0/2.0; 1.5/3.0; 2.0/4.0; and
3.0/6.0). As illustrated in supplemental Figure S3, different S/V com-
binations for the same ratio have equivalent accuracy. This demon-
strates that the S/V metric is robust to scale and will still be useful for
methods that influence the ratio, such as tandem mass tag experi-
ments, which result in signal compression. The other S/V values were
calculated in the same manner. The full code used to simulate,
calculate, and plot data in Figure 3 can be found in our GitHub re-
pository in the files makeFigure3A.R and makeFigure3B.R.

Supplemental Figure S2 reanalyzes published single-cell proteomics
data (20) and uses two cell types, the murine epithelial cell line C10 and
the murine endothelial cell line SVEC, to plot fold change between cell
type and the within-group variation. The fold change for each protein is
found by taking the absolute difference between the mean abundance
for C10 cells and SVEC cells. The plotted variation is the standard
deviation of C10 cells. The full code used to analyze, calculate, and plot
data for Supplemental Figure S2 can be found in our GitHub repository
in the file makeFigure2.R.

Estimating S/V

To characterize how well a subsample of measurements can
approximate the true slope and variation of a larger population, we ran
a simulation as described previously with true S/V = 1. From the large
population of 10,000 cells, we subsampled a given number of cells
n_sample ∈ [7, 16, 20, 30, 100] and calculated S/Vest. The S/Vest is
calculated by using linear regression to fit a line to the subsampled
data. The slope of the fitted line is then used as our estimated slope.
The estimated variation is found by calculating the standard deviation
of the residuals off the fitted line. We calculated S/Vest for 1000 in-
dependent subsamples of the population and computed the distri-
bution of the difference S/Vtrue − S/Vest. This is plotted in Figure 4A.
Figure 4B shows the number of proteins that would remain after using
S/Vest = 1 as a cutoff. We simulated five populations with 1000 cells, at
S/Vtrue ∈ [0, 0.5, 1, 1.5, 2]. We subsampled 30 cells from a population,
calculated S/Vest, and discarded the subsampling event if S/Vest < 1.
The figure shows the percent of sampling events that remained after
filtering. The full code used to analyze, calculate, and plot data for
Figure 4, A and B can be found in our GitHub repository in the file
makeFigure4.R and simulate_data_figure4.R.

RESULTS

One of the challenges associated with mass spectrometry
measurements is that they are inherently destructive. In order
to measure the proteins in a cell, the cell itself is destroyed
(e.g., lysed). Thus, for an experiment that measures change
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Temporal Dynamics in Single-Cell Proteomics
over time, the cells measured at time0 will be different from the
cells measured at time1. This means that the change in protein
abundance observed between time0 and time1 has at least
two potential sources. Some of the change can be attributed
to temporal dynamics. The second source of change between
cells measured at time0 and time1 is attributed to cell-to-cell
variability. We specifically emphasize that even for synchro-
nized cells, or experimental designs where great effort has
been taken to homogenize cellular state, there will be a real
and observable variability in the proteome between individual
single cells. Furthermore, this variability is often much greater
than one might initially expect.
A second important element of a time-course experiment is

how time is measured. There are numerous relevant applica-
tions of time in biology, including cellular differentiation, the
transition from health to disease, or response to an external
stimulus. In these various experimental systems, time can be
absolute (2 PM) or relative (5 min after stimulus). Time can be
an observable fact (date) or a value inferred from the data
(relative time during the cell cycle as measured by the abun-
dance of various markers). In studying disease progression,
the time metric is more accurately a “pseudotime” that mea-
sures the approximate progression from a healthy to a
diseased state, perhaps measured by visible morphological
features. Depending on the specific scientific question, an
experimental sampling of the time domain might be rigorously
defined at very specific intervals or a random sampling. In this
article and the statistical simulations described later, time is
abstract. The variable representing time varies within the
bounds from zero to one; zero represents the temporal
beginning of an experiment and one represents the end.

Experimental Constraints

While many experiments are able to collect samples at
multiple, discrete, and specific time points, there are also
many experiments where this is not possible. For example,
consider cells sampled from the bone marrow with an
experimental goal of understanding blood cell development.
These collected cells exist in a wide variety of states, including
hematopoietic stem cells, lymphoblasts, T cells, and all stages
in between (along with all other developmental end points). An
important goal of single-cell characterization is to understand
the transitions between these states as cells mature. A similar
experiment could be designed around disease progression,
with a goal of understanding the transition between a healthy
cell and a dysfunctional cell.
The experiments described previously view time as a con-

tinuum and are interested in the gradual transition of cells over
time. This experimental design is fundamentally different from
one that has control over time, such as a pharmacological
dose/response test. If one has control over time, a t test is
appropriate. The focus of this article addresses experiments
that do not have the option of collecting samples at discrete
and prespecified time points. In this situation, grouping
samples into early and late time points creates a structure
appropriate for a t test. However, this is inappropriate when
one wants to understand the gradual transition between
continuous time points. For these experiments, we explore
alternative statistical metrics.
Simulations

To understand how measurement variability, effect size, and
the sample size affect our ability to detect temporal changes in
proteome dynamics, we performed a large simulation across
the relevant parameter space. Each simulated cell has one
protein measurement and an associated time variable,
calculated from two input parameters. First, the simulation
uses a simple linear change as the shape of temporal dy-
namics, and in our model, this rate of change is called the
slope. Second, we specify a measurement variability modeled
as a normally distributed error term. Using slope, variability,
and a time value between 0 and 1, we can calculate protein
abundance (see Experimental procedures section). The
simulation starts by creating a large number of cells that cover
the entire time range; each cell is represented as an (abun-
dance, time) data point. From the simulated population, we
subsampled a small number of cells with the primary goal of
determining whether this small sample accurately represents
the larger population. The subsampled measurements are
used to interpolate a temporal expression trajectory using
cellAlign (17); this interpolated trajectory was then compared
with the true population trajectory and a null model
(supplemental Fig. S1). If the subsampled trajectory was
closer to the true population trajectory, then we classified this
subsampling event as correct; if the subsampled trajectory
was a better fit to the null model, then this subsampling event
was classified as incorrect.
We ran multiple simulations with different parameter values

for slope and variability. In each simulation, we calculated the
average accuracy (see Experimental Procedures section).
Figure 1 shows the accuracy of detecting protein dynamics for
various combinations of slope, measurement variation, and
the number of sampled cells. Several expected trends emerge
from the simulation. First, the accuracy improves if more cells
are sampled across the time domain. Regardless of the slope
or measurement variability, increasing the number of cells
improves the temporal expression trajectory interpolated from
the subsampling. The smallest number that we sampled,
seven cells, has poor accuracy in almost any (slope, variation)
parameter set. A significant improvement is seen in increasing
from 7 to 16 cells, followed by steady improvement as the
number of cells increases to 20, 30, or beyond. Second, ac-
curacy decreases with greater measurement variability. For
example, in the simulations where slope = 1, a 16 cell sample
has an average accuracy of 95% if the measurement vari-
ability is 0.25 but has an average accuracy of 68% if the
variability = 1.0.
Mol Cell Proteomics (2021) 20 100085 3



FIG. 1. Accuracy in the identification of temporal dynamics. For various parameter sets of slope, variability, and number of cells, the
accuracy of correctly identifying temporal dynamics is shown. For comparison, each of the four subpanels is organized by slope and shows a
parameter sweep over equivalent measurement variabilities and cell numbers. Error bars are derived from ten independent simulations.

Temporal Dynamics in Single-Cell Proteomics
To characterize the potential for incorrectly labeling a pro-
tein as changing, when it actually was unchanged in the time
course, we simulated data where the slope parameter was
zero. From this large population, we again subsampled,
interpolated an expression trajectory using cellAlign, and
compared the trajectory to the population's true trajectory (i.e.,
no change) or a simple sloped line. If the interpolated trajec-
tory more closely matched a sloped line, despite being
composed of data points in a population whose slope was
zero, we counted this as an FP. As we discovered in simula-
tions previously, the number of sampled cells and the mea-
surement variability have a significant impact on the FP rate
(Fig. 2). In several simulations with a small subsampling (e.g.,
seven cells), the FP rate approached 40%.

General Principles

To help generalize the results of our simulation, and make
them more immediately applicable to proteomics datasets, we
grouped parameter sets by their S/V ratio. The simulations in
4 Mol Cell Proteomics (2021) 20 100085
Figures 1 and 2 report results that used a convenient numeric
scale. However, proteomic datasets reported in the literature
have a wide range of possible values, with some datasets
reporting raw quantitative values in the millions and others us-
ing log-transformed and zero-centered data. By transforming
our results into an S/V ratio, we directly test whether the
observed TP and FP trends are scale free. Thus, regardless of
how quantitative protein data are obtained or processed, the S/
V ratio can provide applicable guidance. In addition, it does not
matter whether the source of variability is technical or biolog-
ical; we account for both in this combined metric.
For a wide range of S/V ratios, we ran simulations to

generate the TP and FP rates (see Experimental procedures
section). This explicit exploration of the relationship between
expression change and variability revealed distinct trends in
the ability to correctly identify protein dynamics. For example,
in an experiment with 16 cells, an S/V = 2 would have an 80%
TP rate (Fig. 3A), meaning that if 100 proteins had this tra-
jectory slope and measurement variability, we expect to



FIG. 2. False-positive rate in the identification of temporal dynamics. The rate of false-positive identification was calculated for the same
set of parameters seen in Figure 1. False-positive is defined as the misclassification of a non-changing protein, falsely reporting it as changing.
As seen in Figure 1, panels are organized by slope, and show the parameter sweep across variation and number of cells.

Temporal Dynamics in Single-Cell Proteomics
detect 80 of them (the other 20 go undetected). Under the
same conditions, we also see a 15% FP rate. This means that
of all the nonchanging proteins, 15% of them would be
incorrectly identified as changing. As with the results pre-
sented in Figures 1 and 2, the TP and FP rates improve when a
larger number of cells are sampled across the time course. If
an experiment sampled 30 cells instead of 16 cells, the TP rate
would improve from 80% to 90% for S/V =2; coordinately, the
FP rate would fall from 15% to 5%. These charts are essential
in understanding how the accuracy of temporal trajectory
detection depends both on the number of cells analyzed
across the time domain and also the trajectory's slope and the
protein's inherent measurement variability.
To help frame these results, we sought to understand S/V

values for proteins in real data. We examined a single-cell
proteomics experiment that compared two different cell
types (20), with a sufficient number of replicates to obtain a
reliable estimate of within-group variability (n > 20). We note
that this dataset does not demonstrate temporal dynamics but
rather the magnitude of differences in protein abundance
between biological states. This can still be used to approxi-
mate slope if time is scaled to a unit value. Fold change and
within-group variability were calculated for each protein in this
dataset (supplemental Fig. S2). Most proteins have a small
fold change, and often the magnitude of fold change is similar
to the magnitude of variability. Thus, relatively few proteins
have an S/V ratio above one. As shown in Figure 3, proteins
with an S/V below one will have a low TP and high FP rate
unless a very large number of cells are used. Proteins with a
more attractive TP and FP rate, such as S/V = 2, are only ~3%
of proteins in the dataset. Proteins with S/V > 4 are exceed-
ingly rare (<0.2%).

Without an Oracle

The analysis of real data does not benefit from knowing the
true protein expression dynamics, as one knows in a simu-
lated dataset. Thus, when trying to apply the lessons learned
in a simulation (e.g., Fig. 3) to a real-world time-course
Mol Cell Proteomics (2021) 20 100085 5



FIG. 3. Scale invariant trends. Accuracy and false-positive rates are shown for a scale-free ratio of S/V. As described for Figures 1 and 2,
simulations are used to determine the true-positive and false-positive rates of various parameter combinations of slope, variation, and number of
cells. A specific S/V data point is derived from multiple different combinations of slope and variation. For example, values plotted for S/V = 0.5
were derived from six simulations using S/V = (0.5/1.0; 0.75/1.5; 1.0/2.0; 1.5/3.0; 2.0/4.0; and 3.0/6.0). Note the y-axis scale is zoomed to allow
better visualization of the data. S/V, slope/variation.

Temporal Dynamics in Single-Cell Proteomics
dataset, researchers must estimate slope and variation of a
protein in their data. We investigated how well we can esti-
mate the slope and variation (S/Vest), using the same simula-
tion methodology as aforementioned. We calculated the
precision of S/Vest for sample sizes of 7, 16, 20, 30, and 100
cells (Fig. 4A). As expected, the precision of this estimate
improves when more cells are samples. When we sample 100
cells, the S/Vest is typically very close to the real value; the
standard deviation of the error is 0.35. If we sample 30 cells,
the standard deviation of the error is 0.70. To demonstrate the
effect of using this estimate, we simulated how many proteins
FIG. 4. Estimating accuracy of S/V approximation of data. A, we es
S/V = 1. The density plot shows the difference between the approximated
B, the effect of using an estimated S/V as a cutoff. Data were simulated
data with S/Vest <1, the graph shows the percentage of proteins kept ac
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of various S/V values would be removed from a dataset if S/
Vest was used as the filtering criteria (Fig. 4B). If an experiment
sampled 30 cells across a time course and used an S/Vest = 1
for a cutoff, approximately 93% of high-quality proteins (S/V =
2) would be retained.

How Many Cells?

A proposed set of dynamic proteins discovered in a time-
course experiment represents a mix of TP and FP identifica-
tions. Although the aforementioned statistical simulations may
help estimate the relative rates of FPs, it is not possible to
timated the S/V from a subsampling of cells, where the true population
S/V and the true S/V, using subsample sizes of 7, 16, 20, 30, and 100.
to contain proteins with an S/V of 0, 0.5, 1, 1.5, and 2. After removing
cording to their true S/V. S/V, slope/variation.



Temporal Dynamics in Single-Cell Proteomics
point out which specific identifications are potentially suspect.
The best way to clarify this list and winnow out FPs is via
replicate analyses. If the same experiment is independently
replicated, the expected TP rate can be expressed as px,
where p represents the probability and x represents the
number of independent replicates. For example, in a 30 cell
time-course experiment with two replicates, we would expect
the TP identification rate for proteins with S/V = 2 to be 0.92 or
0.81; the expected FP rate would be 0.052 or 0.0025. Pre-
dicting the TP or FP rates for a more complex experimental
design, such as requiring n observations among k replicates,
can be determined using standard statistical sampling
methods. Using these expected rates and the relative number
of proteins for various S/V values suggested from
supplemental Figure 2, scientists can appropriately plan for
various experimental design scenarios.
A challenging part of experimental design is balancing

competing priorities and appropriately budgeting a limited
resource. As previously discussed, the primary limiting factor
in a single-cell proteomics study is the total number of cells
that can be analyzed. This number is currently much less than
desired, which forces researchers to choose whether more
cells should be devoted to a single time course or to additional
replicate time courses. In this discussion, we use the term
“replicate” to mean a repeated analysis of the time-course
sampling.
FIG. 5. Scenarios for allocating a limited number of cells. With a t
positive and false-positive rates for each individual time course and th
ment with two replicates and 25 cells characterized during each time co
characterized during each time course. When considering replicates, op
As a simple illustrative example, imagine allocating a budget
of 50 cells in a time-course experiment (Fig. 5). Option A in-
volves two replicates with 25 cells each; option B allocates 16
cells into each of three replicates. With option A, researchers
achieve amore dense sampling of the time course and therefore
have better TP and FP rates per replicate. Option B has an
additional replicate. Although the TP and FP rates are not as
good in each individual time course in optionB, leveraging three
replicates drives the overall FP rate lower than in option A. We
intentionally refrain from advocating option A or option B,
because both financial and practical constraints will partially
determinewhatwill even be possible. Rather the purpose of this
section is to demonstrate how to apply the FP and accuracy
rates presented in Figure 3 to design an experiment. We
note that the software used to calculate these metrics
is completely open source (https://github.com/PayneLab/
SingleCellSampleSize) and can be adapted to ascertain accu-
racy and FP rates for any experimental design.
DISCUSSION

Single-cell proteomics is an emerging technology that
promises to help clarify the diversity of cellular phenotypes as
well as reveal essential trends in proteome dynamics. The
current throughput of single-cell proteomics is significantly
lower than single-cell sequencing technologies. Therefore,
otal budget of 50 cells, two different options are demonstrated. True-
e overall rate with replicates are shown. Option A depicts an experi-
urse. Option B shows an experiment with three replicates and 16 cells
tion A has a higher TP rate but option B has fewer false positives.

Mol Cell Proteomics (2021) 20 100085 7
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Temporal Dynamics in Single-Cell Proteomics
until there is a dramatic change in proteomics instrumentation
and associated technologies, the proteomics community will
struggle with the necessity of analyzing fewer cells than they
would like. Within this context, it is essential to properly plan
experiments on a limited number of cells to maximize the
likelihood of success. Statistical power calculations exist for
two-state comparison experiments that rely on the t test.
However, temporal trajectory experiments lack an experi-
mental planning tool to help estimate the accuracy of different
designs. Here, we have simulated the accuracy of detecting a
temporal change in protein abundance against the null hy-
pothesis of no change. Simulations explored a variety of
metrics, such as the magnitude of temporal change (slope),
cell-to-cell heterogeneity (variability), and the number of cells
analyzed across the time domain. The simulations highlight
the need to analyze a sufficient number of cells across a time
course; a higher number of cells across a time course always
leads to more favorable TP and FP rates.
All projects work within the bounds of a budget, and herein,

we discuss a budget as the number of cells that can be
analyzed. Choosing a specific experimental design is a
balancing act and may require compromises between the
desire to have enough cells to accurately approximate the
temporal expression trajectory and practical limitations of the
budget. In the broad array of experiments conducted in
biomedical and environmental sciences, investigators will have
to make this difficult choice. In a clinical experiment monitoring
drug response, patient demographics may be particularly
compelling, and demand more patients from diverse back-
grounds. With a fixed budget of cells, the choice to analyze
more patients reduces the number of cells analyzed for each
patient. Alternatively, the biological sample itself may be a
limiting factor. For rare cell types or highly degraded/diseased
samples, there may be a finite number of cells that are available
to be analyzed—regardless of budget. The ultimate purpose of
this article is to guide readers on how best to set up experi-
ments. Because of the aforementioned experimental con-
straints, we refrain from advocating a specific design and
instead strongly recommend that researchers utilize the data
presented herein as a guide or simulate expected TP/FP rates
for their own proposed experimental designs.
Our statistical simulations were motivated by their utility in

the emerging field of single-cell proteomics. However, the
results are applicable to any analysis attempting to identify
dynamic trajectories, such as longitudinal studies of an indi-
vidual person over time (21, 22). For these and similar studies,
it is important to understand the variability of a measurement.
We show that most proteins have a within-group variability
equivalent to or greater than the observed fold change be-
tween conditions. If variability to this degree is present in the
data, it will be very challenging to confidently detect temporal
dynamics with a limited number of measurements across time.
Even for studies that utilize rigorous clinical assays with
8 Mol Cell Proteomics (2021) 20 100085
defined technical variability, biological variability must be
anticipated and characterized.
Finally, we note that the simulations herein model only

simple linear increases and not more complex expression
patterns. A common biological experiment measures the
response to an external stimulus, often reporting a temporary
change followed by a return to the original state (23). A classic
example of this is transient phosphorylation signaling. Yet
other biological investigations monitor cyclical expression
changes related to light/dark patterns and circadian rhythms
(9, 24). Based on our results, we expect that detecting these
complex nonlinear patterns will require a dense sampling of
the time domain.
DATA AVAILABILITY

The data accompanying this article consists of statistical
simulations. All calculations and data used in this article can
be found in our publicly available GitHub repository, https://
github.com/PayneLab/SingleCellSampleSize.

Supplemental data—This article contains supplemental
data.

Acknowledgments—This work was funded through a
sponsored research agreement from Biogen, Inc.

Author contributions—H. B. methodology, software, vali-
dation, formal analysis, writing - original draft, writing - review
and editing, and visualization; A. J. G. conceptualization,
validation, and writing - review and editing; E. D. P. writing—
review and editing, supervision, and funding acquisition;
R. T. K. writing - review and editing, supervision, funding
acquisition; and S. H. P. conceptualization, methodology,
validation, formal analysis, writing - original draft, writing -
review and editing, visualization, and project administration.

Conflict of interest—The authors declare no competing
interests.

Abbreviations—The abbreviations used are: FP, false posi-
tive; S/V, slope/variation; TP, true positive.

Received December 11, 2020, and in revised from, March 22, 2021
Published, MCPRO Papers in Press, April 27, 2021, https://doi.org/
10.1016/j.mcpro.2021.100085
REFERENCES

1. Mahdessian, D., Cesnik, A. J., Gnann, C., Danielsson, F., Stenström, L.,
Arif, M., Zhang, C., Le, T., Johansson, F., Shutten, R., Bäckström, A.,
Axelsson, U., Thul, P., Cho, N. H., Carja, O., et al. (2021) Spatiotemporal
dissection of the cell cycle with single-cell proteogenomics. Nature 590,
649–654

2. Specht, H., and Slavov, N. (2018) Transformative opportunities for single-
cell proteomics. J. Proteome Res. 17, 2565–2571

3. Doerr, A. (2019) Single-cell proteomics. Nat. Methods 16, 20

https://github.com/PayneLab/SingleCellSampleSize
https://github.com/PayneLab/SingleCellSampleSize
http://doi.org/https://doi.org/10.1016/j.mcpro.2021.100085
http://doi.org/https://doi.org/10.1016/j.mcpro.2021.100085
http://refhub.elsevier.com/S1535-9476(21)00058-X/sref1
http://refhub.elsevier.com/S1535-9476(21)00058-X/sref1
http://refhub.elsevier.com/S1535-9476(21)00058-X/sref1
http://refhub.elsevier.com/S1535-9476(21)00058-X/sref1
http://refhub.elsevier.com/S1535-9476(21)00058-X/sref1
http://refhub.elsevier.com/S1535-9476(21)00058-X/sref2
http://refhub.elsevier.com/S1535-9476(21)00058-X/sref2
http://refhub.elsevier.com/S1535-9476(21)00058-X/sref3


Temporal Dynamics in Single-Cell Proteomics
4. Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M.,
Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M., Trombetta, J. J.,
Weitz, D. A., Sanes, J. R., Shalek, A. K., Regev, A., et al. (2015) Highly
parallel genome-wide expression profiling of individual cells using
nanoliter droplets. Cell 161, 1202–1214

5. Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V.,
Peshkin, L., Weitz, D. A., and Kirschner, M. W. (2015) Droplet barcoding
for single-cell transcriptomics applied to embryonic stem cells. Cell 161,
1187–1201

6. Fortelny, N., Overall, C. M., Pavlidis, P., and Freue, G. V. C. (2017) Can we
predict protein from MRNA levels? Nature 547, E19–E20

7. Liu, Y., Beyer, A., and Aebersold, R. (2016) On the dependency of cellular
protein levels on MRNA abundance. Cell 165, 535–550

8. Payne, S. H. (2015) The utility of protein and MRNA correlation. Trends
Biochem. Sci. 40, 1–3

9. Waldbauer, J. R., Rodrigue, S., Coleman, M. L., and Chisholm, S. W. (2012)
Transcriptome and proteome dynamics of a light-dark synchronized
bacterial cell cycle. PLoS One 7, e43432

10. Taniguchi, Y., Choi, P. J., Li, G.-W., Chen, H., Babu, M., Hearn, J., Emili, A.,
Xie, X. S., and Quantifying, E. (2010) Coli proteome and transcriptome
with single-molecule sensitivity in single cells. Science 329, 533–538

11. Ståhlberg, A., Thomsen, C., Ruff, D., and Åman, P. (2012) Quantitative PCR
analysis of DNA, RNAs, and proteins in the same single cell. Clin. Chem.
58, 1682–1691

12. Darmanis, S., Gallant, C. J., Marinescu, V. D., Niklasson, M., Segerman, A.,
Flamourakis, G., Fredriksson, S., Assarsson, E., Lundberg, M., Nelander,
S., Westermark, B., and Landegren, U. (2016) Simultaneous multiplexed
measurement of RNA and proteins in single cells. Cell Rep. 14, 380–389

13. Kelly, R. T. (2020) Single-cell proteomics: Progress and prospects.Mol. Cell
Proteomics 19, 1739–1748

14. Smith, A. M., Heisler, L. E., St Onge, R. P., Farias-Hesson, E., Wallace, I. M.,
Bodeau, J., Harris, A. N., Perry, K. M., Giaever, G., Pourmand, N., and
Nislow, C. (2010) Highly-multiplexed barcode sequencing: An efficient
method for parallel analysis of pooled samples.Nucleic Acids Res. 38, e142

15. Lan, F., Demaree, B., Ahmed, N., and Abate, A. R. (2017) Single-cell
genome sequencing at ultra-high-throughput with microfluidic droplet
barcoding. Nat. Biotechnol. 35, 640–646
16. Li, J., Van Vranken, J. G., Pontano Vaites, L., Schweppe, D. K., Huttlin, E. L.,
Etienne, C., Nandhikonda, P., Viner, R., Robitaille, A. M., Thompson, A.
H., Kuhn, K., Pike, I., Bomgarden, R. D., Rogers, J. C., Gygi, S. P., et al.
(2020) TMTpro reagents: A set of isobaric labeling mass tags enables
simultaneous proteome-wide measurements across 16 samples. Nat.
Methods 17, 399–404

17. Alpert, A., Moore, L. S., Dubovik, T., and Shen-Orr, S. S. (2018) Alignment of
single-cell trajectories to compare cellular expression dynamics. Nat.
Methods 15, 267–270

18. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse,
M., Lennon, N. J., Livak, K. J., Mikkelsen, T. S., and Rinn, J. L.
(2014) The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells. Nat. Bio-
technol. 32, 381–386

19. Bendall, S. C., Davis, K. L., Amir, E.-A. D., Tadmor, M. D., Simonds, E. F.,
Chen, T. J., Shenfeld, D. K., Nolan, G. P., and Pe’er, D. (2014) Single-cell
trajectory detection uncovers progression and regulatory coordination in
human B cell development. Cell 157, 714–725

20. Dou, M., Clair, G., Tsai, C.-F., Xu, K., Chrisler, W. B., Sontag, R. L., Zhao, R.,
Moore, R. J., Liu, T., Pasa-Tolic, L., Smith, R. D., Shi, T., Adkins, J. N.,
Qian, W.-J., Kelly, R. T., et al. (2019) High-throughput single cell prote-
omics enabled by multiplex isobaric labeling in a nanodroplet sample
preparation platform. Anal. Chem. 91, 13119–13127

21. Chen, R., Mias, G. I., Li-Pook-Than, J., Jiang, L., Lam, H. Y. K., Chen, R.,
Miriami, E., Karczewski, K. J., Hariharan, M., Dewey, F. E., Cheng, Y.,
Clark, M. J., Im, H., Habegger, L., Balasubramanian, S., et al. (2012)
Personal omics profiling reveals dynamic molecular and medical phe-
notypes. Cell 148, 1293–1307

22. Sailani, M. R., Metwally, A. A., Zhou, W., Rose, S. M. S.-F., Ahadi, S.,
Contrepois, K., Mishra, T., Zhang, M. J., Kidziński, Ł., Chu, T. J., and
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