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ABSTRACT

The structural variability data of drug transporter
(DT) are key for research on precision medicine and
rational drug use. However, these valuable data are
not sufficiently covered by the available databases.
In this study, a major update of VARIDT (a database
previously constructed to provide DTs’ variability
data) was thus described. First, the experimentally
resolved structures of all DTs reported in the origi-
nal VARIDT were discovered from PubMed and Pro-
tein Data Bank. Second, the structural variability data
of each DT were collected by literature review, which
included: (a) mutation-induced spatial variations in
folded state, (b) difference among DT structures of
human and model organisms, (c) outward/inward-
facing DT conformations and (d) xenobiotics-driven
alterations in the 3D complexes. Third, for those DTs
without experimentally resolved structural variabili-
ties, homology modeling was further applied as well-
established protocol to enrich such valuable data.
As a result, 145 mutation-induced spatial variations
of 42 DTs, 1622 inter-species structures originat-
ing from 292 DTs, 118 outward/inward-facing confor-
mations belonging to 59 DTs, and 822 xenobiotics-
regulated structures in complex with 57 DTs were
updated to VARIDT (https://idrblab.org/varidt/ and
http://varidt.idrblab.net/). All in all, the newly col-
lected structural variabilities will be indispensable
for explaining drug sensitivity/selectivity, bridging
preclinical research with clinical trial, revealing the

mechanism underlying drug-drug interaction, and
so on.

GRAPHICAL ABSTRACT

INTRODUCTION

Drug transporter (DT) is known as the key determinant
of drug absorption, distribution, clearance and elimination
(1,2), and its variability is reported to be critical for balanc-
ing drug efficacy with safety (3), reversing drug resistance
(4) and predicting drug-drug interaction (5–8). Although
the variability data of DT are essential for preclinical and
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clinical studies (9–11), they are extensively dispersed in lit-
eratures (12). The VARIDT 1.0 database (12) was there-
fore developed to explicitly describe three aspects of DT
variability: (i) genetic polymorphism, and epigenetic regu-
lation of DT; (ii) species/tissue/disease-specific DT abun-
dance and (iii) exogenous factors modulating DT activity
or altering the disposition of transported drug. Meanwhile,
VARIDT 1.0 also enabled the interplay analysis among
multiple aspects of DT variability (12). Due to its unique
data coverage, VARIDT has emerged to be the indispens-
able complements to other transporter-related databases
(13–31) in assessing drug safety (32–35), reversing drug re-
sistance (36) and so on (37–40).

Recently, there are increasing demands on the 3D struc-
tural variability data of DT, which are expected to provide
key information for the studies on precision medicine and
rational drug use (41). Such data include: (a) the mutation-
induced spatial variations in folded state that are critical for
the understanding of drug sensitivity and selectivity (42),
(b) the difference among the DT structures of human and
model organisms that are key for bridging preclinical study
with clinical trials (43), (c) the outward-facing and inward-
facing conformations that are essential for elucidating the
dynamics and underlying steps of transporting cycle (44)
and (d) the xenobiotics-driven alterations in 3D complexes
of DT that are crucial for revealing the mechanism underly-
ing drug-drug interaction (45–49). Furthermore, due to the
lack of DTs’ structures and their structural variability data,
homology modeling is adopted as well-established protocol
to construct protein structure (50), and the resulting struc-
ture together with its variability have been successfully and
widely adopted to study protein-protein interaction (51),
discover novel drug and epitope (52,53), promote protein
engineering and design (54), and so on (55–57).

Till now, several online resources have been constructed
and are still active to provide DT-related structure data
(13–16,58–63). Some contain transporter structures as part
of the broader collection of biological or pharmacologi-
cal data (e.g. UniProt (13), TTD (58) and IUPHAR/BPS
Guide to Pharmacology (16)); some others (e.g. Mem-
ProtMD (59), EncoMPASS (60), and ABCMdb (61)) pro-
vide 3D conformation collected from PDB database (14);
the remaining (e.g. TCDB (15), and iMusta4SLC (62)) of-
fer the hyperlinks redirecting to PDB entries (14). A prelimi-
nary assessment of PDB’s data (14) reveals that only a small
fraction (∼14%) of all DTs in VARIDT 1.0 (12) have ex-
perimentally resolved structures available. To cope with the
lack of DT structures, the SWISS-MODEL (63) can thus
be adopted to predict DT structure by homology model-
ing, and AlphaFold (64,65) can facilitate the determination
of transporter’s structure. However, all the existing online
resources do not systematically describe the 3D structural
variability data of DTs, which asks for a major update of
VARIDT 1.0 to provide the comprehensive information on
describing all four aspects (i–iv) of DT structural variabili-
ties (42–45).

In this study, a major update of VARIDT (structural vari-
ability of drug transporter) was therefore conducted, which
systematically described all four aspects of DT structural
variability. As shown in Figure 1, these availability data in-

cluded: (a) the mutation-induced spatial variations in folded
state, (b) the difference among the DT structures of human
and model organisms, (c) the outward-facing and inward-
facing conformations of the transporting cycle and (d) the
xenobiotics-driven alterations in 3D complex. With the sig-
nificant advances in the field of precision medicine, these
data updated to the VARIDT 2.0 version (https://idrblab.
org/varidt/ and http://varidt.idrblab.net/) will be indispens-
able for understanding drug sensitivity/selectivity, bridg-
ing preclinical research with clinical trial, elucidating the
dynamics of drug transporting cycle, revealing the mecha-
nisms underlying a variety of drug–drug interactions, and
so on so forth.

FACTUAL CONTENT AND DATA RETRIEVAL

Collection of structure data for drug transporters

The entire structures (covering the whole protein sequence)
of wild-type DTs were first collected by searching the names
or synonyms of all DTs in PubMed (66) and PDB (14) using
the keyword combination of ‘[DT name] + structure’, ‘[DT
name] + conformation’, ‘[DT name] + [substrate name] +
structure’, ‘[DT name] + [substrate name] + complex’, ‘[DT
name] + complexed with’, ‘[DT name] + in complex with’,
and so on. Additionally, such entire structures of wild-type
DTs could also be identified by blasting the full-length se-
quence of DT against all those sequences in PDB (14).
Only the PubMed literature or PDB entry that explicitly de-
scribed the entire structures of the wild-type DTs were col-
lected and recorded in VARIDT 2.0. Second, for those DTs
without their entire structures, the structures of their trans-
membrane domain or region were identified by searching or
blasting against PubMed (66) and PDB (14), and the trans-
membrane structures were collected to represent the struc-
tures of the corresponding DTs. As a result, a total of 73
DTs were identified with experimentally resolved structure
available. These structures were determined by diverse tech-
niques (such as NMR spectroscopy, X-ray crystallography,
and electron microscopy) based on various systems (such
as Escherichia coli BL21, HEK293 cells, and SF9 cells), and
the resolutions of most DT structures were within the range
of 1.0 Å to 4.0 Å.

Apart from the structures of wild-type DT, many struc-
ture variants of DT were also described in PubMed (66) and
PDB (14). Most of the variants (∼160 structures) were in
complex with various endogenous ionic or small molecu-
lar substrates, and the remaining variants (∼50 structures)
bond with different exogenous ligands (such as drugs, envi-
ronmental chemicals, etc.).

Moreover, due to the lack of DTs’ structures and the
structural variability data, a well-established protocol of ho-
mology modeling (50) was adopted to provide the explicit
data on illustrating DTs’ structural variability (detailed in-
formation on homology modeling was provided in the fol-
lowing section entitled ‘Structural variability data gener-
ated by homology modeling’). Meanwhile, a variety of DT
structures predicted by AlphaFold (64,65), a popular struc-
ture prediction tool based on Artificial Intelligence (AI),
were collected for referencing DTs’ structural variability.

https://idrblab.org/varidt/
http://varidt.idrblab.net/
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Figure 1. The structural variability data of drug transporter (DT) updated to the VARIDT 2.0. (a) the mutation-induced spatial variations in folded state;
(b) the difference among the DT structures of human and model organisms; (c) the outward/inward-facing conformations of the transporting cycle; (d)
the xenobiotics-driven alterations in 3D complex.

Structural variability data provided in VARIDT 2.0

Mutation-induced spatial variations in folded state.
Mutation-induced spatial variations in the folded state
of DT are essential for understanding drug sensitivity
& selectivity (42,67), because of the resulting variations
of interaction pattern, charge environment, hydrophobic
property, and volume of each residue in drug binding
pocket (68–74). Figure 2 showed the spatial variations in
the folded state of human monocarboxylate transporter 1
(hMCT1) induced by a point mutation (D309N), which
were explicitly recorded and described in VARIDT 2.0.
hMCT1 was reported to drive the transmembrane trans-
portation of several drugs that treated metabolic diseases,

such as atorvastatin (75), and was known to be a promising
target for immunosuppression (76). As described in the
online VARIDT 2.0 and Figure 2A, the carboxyl group of
D309 in wild-type hMCT1 electron microscopy structure
interacted with the guanidine group of R313 through
hydrogen bonds (68). In contrast, the hydrogen bonds
between the above residues vanished, as shown in Figure
2B, due to the introduction of N309′s amino group in the
mutated (D309N) structure of hMCT1. In other words,
the point mutation of D309N released the key R313
residue, which broke its hydrogen bond interaction with
the carbonyl oxygen of M151 in transmembrane domain 5
(TM5) and formed a new critical interaction with Y34 in
TM1.
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Figure 2. Spatial variations in the folded state of human monocarboxylate transporter 1 (hMCT1) induced by a point mutation (D309N), which were
described in VARIDT. (A) the carboxyl group of D309 in wild-type hMCT1 electron microscopy structure interacted with the guanidine group of R313
through hydrogen bonds (key residues were shown as sticks, and hydrogen bonds were highlighted as red dashed lines); (B) the point mutation of D309N
released the key R313 residue, which broke its hydrogen bond interaction with the carbonyl oxygen of M151 in transmembrane domain 5 (TM5) and
formed new critical interaction with Y34 in TM1 (key residues were provided as stick, and hydrogen bonds were highlighted as red dashed line); (C) the
structure of wild-type hMCT1 folded to inward-facing state (D309 was shown in stick, and the distances between key TMs were labeled); (D) the structure
of hMCT1 mutant folded to outward-facing state (N309 was shown in stick, and the distances between key TMs were labeled).
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Moreover, as described in Figure 2C (68), the structure of
wild-type hMCT1 folded to an inward-facing state. Because
of the variations between interaction patterns in Figure 2A
and B, the restrictions between TM8 and TM5 were loos-
ened, while a new constraint between TM8 and TM1 was
established, making the mutated structure of hMCT1 an
outward-facing conformation (Figure 2D). Particularly, the
distance between G19 in TM1 and M379 in TM10 was sig-
nificantly enlarged from 18.4 Å in wild-type hMCT1 (Fig-
ure 2C) to 25.6 Å in the mutated structure (Figure 2D), and
the distance between P144 in TM5 and N321 in TM8 was
also expanded from 5.8 Å in wild-type hMCT1 to 11.3 Å
in the mutated one (Figure 2C and D). All in all, the spa-
tial variations between the folded states of wild-type and
mutated DTs that were provided in VARIDT 2.0 could al-
ter the affinity between drug and DT, and thus affect drug
sensitivity/selectivity (68,77,78).

Difference among the DT structures of human and model or-
ganisms

Various model organisms were adopted in biomedical re-
search with their distinct advantages and limitations, and
the information obtained from these model organisms may
not be able to reflect human physiology (79–81). The differ-
ences among DT structures of human and model organisms
were therefore essential for bridging preclinical study with
clinical trial (43,82). Figure 3 showed the difference between
the crystal structures of human urea transporter 1 (hUT1)
and bovine urea transporter 1 (UT1b), which were system-
atically recorded and described in VARIDT. As reported,
the sequence identity between hUT1 and UT1b equaled to
80.99%, which guaranteed a similarly rapid urea diffusion
following concentration gradient in both species (83). As
shown in VARIDT 2.0 website and Figure 3A and B, al-
though over 40 residues were non-conserved between hUT1
and UT1b (highlighted in red on the ribbon plot), their con-
formations looked highly similar, and it was reasonable to
deduce that their functions in drug transportation might be
similar.

However, an in-depth investigation of those non-
conserved residues in UT1′s transporting tunnel may tell
you otherwise (Figure 3C and D). As shown, compared with
the non-conserved residues (C87, A278, I292, T295 and
G333) in UT1b’s drug transporting tunnel, the correspond-
ing amino acids (W92, F283, M297, M300 and C338) in
hUT1 presented larger side chains, which resulted in strong
steric hindrance and hindered drug transports. Moreover,
three non-polar residues (W92, F136 and M300) in hUT1
were replaced by the polar ones (C87, Y131 and T295)
in UT1b, which completely re-defined the physicochemi-
cal profiles of the drug transporting tunnel (shifting from
a non-polar tunnel primarily colored in green to a polar
one mainly colored in orange). All in all, those above struc-
tural difference shown in VARIDT were essential for bridg-
ing preclinical study with clinical trial and understanding
the difference among species in drug transportation.

Outward-facing and inward-facing conformations. The
transportation of a drug through DTs was a multi-step
process, and the DT structure of high-resolution was

the basis for understanding the structure dynamics of
this complex process (68,84). Among these structures,
the outward- and inward-facing conformations of DTs
were reported as essential for elucidating the underlying
steps of a transporting cycle (44,84–86). Figure 4 showed
the outward-facing and inward-facing conformations
of two typical DTs recoded in VARIDT 2.0: human
monocarboxylate transporter 1 (hMCT1) and human P-
glycoprotein (hMDR1). Both DTs were represented using
ribbon plots and cylindrical helices on the left and right
side, respectively. As described in Figure 4A, the outward-
facing and inward-facing conformations of hMCT1 were
viewed from three different perspectives: (i) parallel to
the membrane, (ii) from the intra-cellular space and (iii)
from the extra-cellular space. Clearly, there were distinct
conformation variations between these two critical snaps
of a drug transporting process, which could provide the
valuable information to reconstruct the dynamic process of
drug absorption, distribution or exclusion, and to design
novel ligands that interfered with the hMCT1-affiliated
signaling pathways.

Similarly, those outward-facing and inward-facing con-
formations of hMDR1 were illustrated in Figure 4B (viewed
parallel to cell membrane). hMDR1 was one of the most
famous DTs in drug exclusion and resistance, which was
able to exclude both drug and toxic molecule from the
cells, thereby protecting tissues from toxic substances (87).
Compared with hMDR1′s outward-facing conformation,
some transmembrane domains (TMs), in the inward-facing
conformation, moved as a rigid body, while the remaining
TMs underwent major rearrangement (85,88). All in all, the
outward/inward-facing conformations of all DTs shown in
VARIDT laid the solid foundation for depicting the mech-
anisms and dynamic processes underlying drug transporta-
tion.

Xenobiotics-driven alterations in 3D complexes. The affini-
ties of DTs in transporting drugs could be extensively mod-
ulated by xenobiotics, which, in turn, affected the pharma-
cokinetics, efficacy and safety of the transported drugs (89).
In other words, the xenobiotics-driven alterations in DT-
included complexes were essential for revealing mechanism
underlying drug-drug interactions (45,90–93). Figure 5 pro-
vided xenobiotics-driven alterations in the 3D complexes
of two representative DTs recoded in VARIDT 2.0: human
breast cancer resistance protein (hABCG2) and human
serotonin transporter (hSERT). hABCG2 could exclude a
variety of chemotherapeutic drugs from cancer cells, which
resulted in a resistance to these anti-cancer drugs (84,94,95).
As shown in Figure 5A, two typical conformational states
of hABCG2 were explicitly described in VARIDT 2.0: (i)
apo-closed conformation on the left side and (ii) inhibitor
trapped inward-facing conformation on the right side (84).
Particularly, in apo-closed state, TM2 and TM5 helixes
form a tightly packed helical bundle near the cytosolic re-
gion, sealing off the crevice at the dimer interface. Mean-
while, the xenobiotics mitoxantrone (DHAQ) drove the
conformation alterations in TM2 and TM5, which resulted
in the shifts of hABCG2 to its inward facing conformation.
In other words, DHAQ stabilized hABCG2 in its inward-
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Figure 3. The differences between the crystal structures of human urea transporter 1 (hUT1) and bovine urea transporter 1 (UT1b), which were provided
in VARIDT. Crystal structures (described in ribbon diagrams) of and non-conserved residues (highlighted in red) between hUT1 and UT1b were shown
in (A) and (B), respectively. Drug transporting tunnel (grey ribbon diagram) and key residues (colored in green and orange for the non-polar and polar
residues, respectively) of hUT1 and UT1b were illustrated in (C) and (D), respectively. Key residues were represented in sticks.

facing conformation, and could thus affect not only the
transporting cycle but also the drug efficacy.

Moreover, the structural information of DT complexes
collected in VARIDT 2.0 varied according to their com-
plexed ligands (xenobiotics). Particularly, hSERT was pop-
ular target of the marketed antidepressants, and Figure 5B
showed its experimentally resolved structures in complex

with two drugs (paroxetine & fluvoxamine, both were the se-
lective serotonin reuptake inhibitors). The binding of differ-
ent drugs could induce alteration in the S1 binding pocket
(shown in violet). In VARIDT, the alteration data driven by
different xenobiotics in the 3D complexes of DTs could thus
give key information for revealing the mechanism underly-
ing drug–drug interaction.
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Figure 4. Outward-facing and inward-facing conformations of two DTs recoded in VARIDT 2.0, human monocarboxylate transporter 1 (hMCT1) & hu-
man P-glycoprotein (hMDR1). (A) hMCT1 conformations were viewed from different perspectives: parallel to the membrane (top), from the intra-cellular
space (middle), and from extra-cellular space (bottom); (B) hMDR1 conformations were viewed parallel to the membrane. These structural conformations
were shown using ribbon (on the left side) and cylindrical helices (on the right side).



D1424 Nucleic Acids Research, 2022, Vol. 50, Database issue

Figure 5. Xenobiotics-driven alterations in the 3D complexes of two representative DTs recoded in VARIDT: human breast cancer resistance protein
(hABCG2) and human serotonin transporter (hSERT). (A) two typical conformational states of hABCG2 were described in VARIDT 2.0: the apo-closed
conformation on the left side & the inhibitor trapped inward-facing conformation by mitoxantrone (DHAQ, colored in violet) on the right side (two key
domains TM2 and TM5 were colored in green and orange, respectively); (B) the experimental hSERT structures in complexed with two antidepressants
(paroxetine & fluvoxamine) were illustrated, and the S1 site was shown by violet surface and both drugs were represented by yellow spheres.
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Structural variability data generated by homology modeling

A preliminary assessment of PDB (14) revealed that only
a small fraction of the DTs in VARIDT 1.0 (12) have ex-
perimentally resolved structure available. These results were
consistent with the previous reports (50,96), which high-
lighted the challenges in the expression or crystallization
of membrane proteins (97). Therefore, homology modeling
had emerged as a valuable approach for generating trans-
porter structures (98). So far, it had been applied as well-
established protocol to build protein structure (50), and
the resulting structures and their variability data had been
widely and successfully adopted to study protein-protein in-
teractions (51), discover new drug or epitope (52,53), pro-
mote protein engineering or design (54,99), identify ther-
mostabilizing mutations (55), and predict the molecular
mechanisms underlying drug transportation (100).

In this study, the well-established protocol RosettaCM
was adopted to generate structural models and variabilities
for each DT (50). As shown in Figure 6, the adopted pro-
tocol consisted of four key steps. (S1) identifying suitable
structure templates through sequence alignment against
PDB (14) & threading DT sequence over single/multiple
top-ranked templates; (S2) parsing sequence to 3mer and
9mer fragments to generate fragment file by Rosetta server
(101); (S3) forming five model candidates for comparatively
modeling each DT using RosettaCM Hybridize module;
(S4) optimizing the generated structures by energy mini-
mization, and evaluating the structure quality by assessing
from two different perspectives. To describe the reliability of
the generated structure, the resulting energy scores of each
computationally modelled structure and its quality evalua-
tion outcomes were fully provided in VARIDT, which were
further described in the following section entitled ‘Evalua-
tion of the modelled structural variability data’.

For modeling the mutation-induced spatial variations,
the nucleotide polymorphism data within the coding re-
gion of DTs affecting drugs’ transportation were first iden-
tified from VARIDT (12). Then, these polymorphisms were
mapped to DT sequence for template discovery. For model-
ing, the species-specific structure differences, DT sequences
of various model organisms (such as rat, mouse, zebrafish,
bovine and rabbit) and human were first collected. These
sequences were then used to identify their structural tem-
plates. For modeling outward & inward-facing conforma-
tions, the special attentions were paid to the conformation
orientation of the modelled DTs during their identifications
of structural template. For modeling xenobiotics-driven al-
teration, the xenobiotics capable of altering DT activity
were first identified from VARIDT (12). Then, the widely
applied flexible docking strategy, induced fit docking (102),
was employed to generate the complex.

Evaluation of the modelled structural variability data

Two popular criteria were used to evaluate the structure
generated by homology modeling, which included the (a)
percentage of the modelled residues within the favored re-
gion of Ramachandran plot (103) and (b) QMEANBrane
score specifically designed to measure modeling qualities
for membrane protein (104). Particularly, the Ramachan-
dran plot described the GLOBAL geometric attributes of

the modelled structure by visualizing the dihedral angles
of all residues in a structure, and the QMEANBrane score
illustrated the LOCAL qualities of an alpha-helical trans-
membrane protein model by combining statistical poten-
tial with a per-residue weighting scheme (103,104). Due to
the innate independence between these two criteria, they
were collectively considered in VARIDT 2.0 to evaluate
those modelled structural variabilities. For criterion (a),
the percentage of modelled residues within the favored Ra-
machandran region (≥98%, 95–98% and <95%) were ac-
cepted in VARIDT 2.0 database as: Excellent, Medium
and Poor, respectively (Figure 7A). For criterion (b), the
QMEANBrane score of ≥0.8, 0.6–0.8 and <0.6 was con-
sidered in VARIDT 2.0 as High, Medium and Poor, re-
spectively (Figure 7A). When the evaluation result of any
criterion was classified to ‘Poor’, the corresponding mod-
elled structure would be considered as unreliable. As a re-
sult, the evaluation outcome based on both criteria for
each computationally modelled DT structure were fully
described in VARIDT 2.0 to indicate the level of preci-
sion and reliability of the generated structural variability
data.

Taking serotonin transporter as an example, three ex-
perimentally resolved structures determined by X-ray crys-
tallography or electron microscopy were collected in the
first place, which included human serotonin transporter
(hSERT; PDB ID: 6VRH), Drosophila dopamine trans-
porter (dDAT; PDB ID: 4XPT), Aquifex aeolicus leucine
transporter (LeuT; PDB ID: 3F3A). Second, the crystal
structures of dDAT and LeuT were adopted to model
two hSERT structures, and the experimental structure of
hSERT (6VRH) was utilized to assess the quality of the two
modelled outcomes. As provided in Figure 7B, the struc-
ture in grey represented the experimentally resolved struc-
ture of hSERT (6VRH), and the structures in blue and red
indicated those structures modelled using the templates of
dDAT (4XPT) and LeuT (3F3A), respectively. Compared
with the red structure, the blue one presented the much
better consistency with the experimental structure in grey,
since its RMSD of the backbone atoms of all helix residues
(1.19 Å, blue structure) was much lower than that (3.51 Å)
of the red one, and its RMSD of the backbone atoms of all
S1 pocket residues (0.84 Å, blue structure) was much lower
than that (1.81 Å) of the red. Particularly, only two residues
(F341 & V501) in the S1 pocket of blue structure showed a
substantial shift from their original positions in the exper-
imentally resolved structure, while six resides (I172, F341,
Y95, S336, I168 & F334) in red structure presented ma-
jor shift from their original positions in the experimentally
resolved structure. These variations above in the qualities
of modelled structures were consistent with the evaluation
outcomes, as the percentage of the residues of modelled
blue structure within favored Ramachandran regions was
much higher than that of the red one (96.3% and 90.8% for
blue and red structures in Figure 7B, respectively), and the
QMEANBrane score of the blue structure was also much
higher than that of the red one (0.82 and 0.75 for blue and
red structures in Figure 7B, respectively). All in all, this
example provided clear illustration on the effectiveness of
those two independent criteria in evaluating the computa-
tionally modelled structural variability data.



D1426 Nucleic Acids Research, 2022, Vol. 50, Database issue

Figure 6. The protocol of comparative modeling used in this study to generate structural models of DTs together with their structural variability data.
(S1) identifying suitable structure templates through sequence alignment against PDB and threading DT sequence over top-ranked templates; (S2) parsing
sequence into 3mer and 9mer fragments to generate fragment file; (S3) forming five model candidates for comparatively modeling each DT; (S4) optimizing
the generated structures by energy minimization, and evaluating the quality of the generated structures.
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Figure 7. Multiple criteria for model assessment. (A) criteria used for assessing generated models: Ramachandran plot (Ca, left) and QMEANBrane score
(Cb, right). The percentages of modelled residues in the favored regions of Ramachandran plot (≥98%, 95–98% and <95%) were adopted in VARIDT as
Excellent (green), Medium (yellow), and Poor (red), respectively. QMEANBrane scores of ≥0.8, 0.6–0.8 and <0.6 were considered in VARIDT as High
(green), Medium (yellow) and Poor (red), respectively. (B) superposition between hSERT structure (grey) and the structures modelled based on Drosophila
dopamine transporter (dDAT; blue), and Aquifex aeolicus leucine transporter (LeuT; red). The percentage of the residues of modelled blue structure within
favored Ramachandran regions was much higher than that of the red one (96.3% and 90.8% for blue and red structures, respectively), and QMEANBrane
score of the blue structure was also much higher than that of the red one (0.82 and 0.75 for blue and red structures, respectively). S1 residues were shown
in lines.
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Table 1. The statistics of all data updated to VARIDT 2.0. DT: drug transporter; TCDB: Transporter Classification Database; ICD11: the latest WHO
International Classification of Diseases. TCDB-defined DT families were directly adopted from the third-level of TCDB families

No. of DTs (no.
of structures)

No. of
TCDB-defined

DT families

No. of drugs
transported

by DTs
(approved/in
clinical trial)

No. of
ICD11-defined
disease classes

Detailed description on DT structural
variability provided in VARIDT 2.0

All DTs and their various structure
data available in VARIDT 2.0

416 (2498) 54 885 (585/132) 414 Four types of DT structural variability
data were updated as illustrated in Figure 1

Structural
variabilities in
VARIDT 2.0

(a) Mutation-
induced spatial
variations in
folded state of
DT

42 (145) 16 655 (456/92) 233 A total of 266 pharmacokinetic variations
measured by drug clearance, response, etc.

(b) Difference
among the DT
structures of
multiple species

292 (1622) 44 841 (569/119) 267 A total of 17 DT’s species origins such as
human, rat, mouse, dog, zebrafish, etc.

(c)
Outward-facing
and
inward-facing
DT
conformations

59 (118) 6 653 (450/98) 235 A total of 118 paired outward- and
inward-facing conformations of 59 human
DTs

(d) Xenobiotics-
driven
alterations in 3D
complex of DT

57 (822) 15 709 (495/104) 239 A total of 409 regulating activity data from
214 xenobiotics against 18 human DTs

Statistics, data standardization, access and retrieval

As described in Table 1, four types of DTs’ structural
variabilities were collected, which included both the ex-
perimentally resolved and the computationally modelled
structures. (a) for mutation-induced spatial variations in
the folded state of DT, a total of 145 structures originat-
ing from 42 DTs were collected, (b) for differences among
the DT structures of human and model organisms, a to-
tal of 1622 inter-species structures covering 292 DTs of 17
species (human, rat, mouse, dog, zebrafish, rabbit, bovine,
pig, chicken, sheep, fruit fly, frog, orangutan, monkey, ham-
ster, guinea pig and horse) were described, (c) for outward-
and inward-facing conformations, a total of 118 confor-
mations belonging to 59 DTs were provided and (d) for
xenobiotics-driven alterations in 3D DT complexes, a total
of 822 xenobiotics-regulated structures of 506 xenobiotics
in complex with 57 DTs were collected and described. As a
result, 292 DTs with at least one type of structure variabil-
ity data were shown in VARIDT, which were closely related
to the transportation of 844 drugs (including 570 approved
& 274 clinical/preclinical drugs) for the treatment of 271
disease classes (such as coronavirus infections, lung cancer,
diabetes mellitus, depression, parkinsonism, hypertension
and asthma) as defined by the latest WHO International
Classification of Diseases (105). Moreover, as one popular
structure prediction software tool using AI technique, Al-
phaFold (64,65) has been used to predict the structure of
protein, and a hyperlink to the structure predicted by Al-
phaFold was also provided in the corresponding DT page
of VARIDT 2.0, which could be used as a valuable reference
when describing DTs’ structural variability.

To make the access and analysis of VARIDT data con-
venient for all users, the collected raw data were carefully
cleaned up and then systematically standardized. These

standardizations included: (i) all DTs were standardized by
and crosslinked to several available databases, and the ex-
tended data of each DT could be identified by the diverse
hyperlinks to UniProt (13), ClinicalTrials.gov (106), TTD
(58), PDB (14), INTEDE (107), PubChem (108), TCDB
(15), ICD-11 (105), ChEBI (109), NCBI Gene (66), dbSNP
(110), Drugs@FDA (111) and CAS Registry Number (112).
(ii) The web page of each DT was re-organized by categoriz-
ing all drugs and endogenous metabolites into single super-
class entitled ‘Molecular Transporting Profiles of This DT’,
and all transported molecules were grouped according to
their clinical statuses (such as: approved, clinical trial and
preclinical). (iii) The web page that described the epige-
netic regulations data for each DT was also re-organized
by categorizing the epigenetic regulations according to their
corresponding diseases. All structure variability data can
be viewed, assessed, and downloaded from VARIDT 2.0,
which is freely assessable without login requirement by all
users at: https://idrblab.org/varidt/.
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