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radiomics superior to dual-energy material decomposition? 

Scherwin Mahmoudi a,*, Vitali Koch a, Daniel Pinto Dos Santos a,b, Jörg Ackermann c, Leon 
D. Grünewald a, Inga Weitkamp a, Ibrahim Yel a, Simon S. Martin a, Moritz H. Albrecht a, Jan- 
Erik Scholtz a, Thomas J. Vogl a, Simon Bernatz a,d 

a University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany 
b University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Str. 62, 50937 Cologne, Germany 
c Department of Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, Robert-Mayer-Str. 11-15, 60325 Frankfurt am Main, 
Germany 
d Dr. Senckenberg Institute for Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany   

H I G H L I G H T S  

• Radiomics and DECT can be used for prediction of abdominal lymph node metastases. 
• Radiomics seems to be superior to DECT material decomposition analysis. 
• Quantitative image biomarkers may not be restricted to centers with DECT equipment.. 
• Radiomics may be used to automate stratification of unequivocal lymph nodes.  
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A B S T R A C T   

Purpose: To assess the potential of radiomic features in comparison to dual-energy CT (DECT) material decom-
position to objectively stratify abdominal lymph node metastases. 
Materials and methods: In this retrospective study, we included 81 patients (m, 57; median age, 65 (interquartile 
range, 58.7–73.3) years) with either lymph node metastases (n = 36) or benign lymph nodes (n = 45) who 
underwent contrast-enhanced abdominal DECT between 06/2015–07/2019. All malignant lymph nodes were 
classified as unequivocal according to RECIST criteria and confirmed by histopathology, PET-CT or follow-up 
imaging. Three investigators segmented lymph nodes to extract DECT and radiomics features. Intra-class cor-
relation analysis was applied to stratify a robust feature subset with further feature reduction by Pearson cor-
relation analysis and LASSO. Independent training and testing datasets were applied on four different machine 
learning models. We calculated the performance metrics and permutation-based feature importance values to 
increase interpretability of the models. DeLong test was used to compare the top performing models. 
Results: Distance matrices and t-SNE plots revealed clearer clusters using a combination of DECT and radiomic 
features compared to DECT features only. Feature reduction by LASSO excluded all DECT features of the com-
bined feature cohort. The top performing radiomic features model (AUC = 1.000; F1 = 1.000; precision = 1.000; 
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Iodine density; ID%, Normalized iodine uptake; LR, Logistic Regression; mGy, Milligray; NGTDM, Neighboring Gray Tone Difference Matrix; PET, Positron emission 
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Random Forest) was significantly superior to the top performing DECT features model (AUC = 0.942; F1 =
0.762; precision = 0.800; Stochastic Gradient Boosting) (DeLong < 0.001). 
Conclusion: Imaging biomarkers have the potential to stratify unequivocal lymph node metastases. Radiomics 
models were superior to DECT material decomposition and may serve as a support tool to facilitate stratification 
of abdominal lymph node metastases.   

1. Introduction 

Lymphadenopathy has a wide range of differential diagnoses, 
including infectious disease, benign inflammatory processes or malig-
nancy [1]. In computed tomography (CT), the assessment of patholog-
ical lymph nodes is primarily based on lymph node size and the 
subjective evaluation of morphologic criteria, including shape, internal 
texture, and presence of fatty hilum [2]. Larger lymph nodes are more 
likely considered to be suspicious [2,3], but a definite diagnosis of 
lymph node involvement in suspected or confirmed malignancy remains 
difficult in cases with equivocal lymph node size and morphology [4,5]. 
To achieve acceptable levels of specificity and sensitivity (84.4 %; 73.5 
%), a threshold of 1.5 cm short-axis transverse diameter for pathological 
lymph nodes is proposed [3]. 

The early identification of patients with lymph node metastases is 
crucial and has therapeutic and prognostic relevance. At the same time, 
radiologists are confronted with an increasing workload as the demand 
for medical imaging is growing [6]. Quantitative image analysis tools 
such as dual-energy CT (DECT) post-processing and radiomics may have 
the potential to non-invasively stratify patients with lymph node me-
tastases and consequently facilitate clinical decision-making. 

DECT provides a wide range of post-processing techniques including 
material decomposition analysis. Some of these methods have been 
increasingly implemented into clinical routine [7,8]. A potential appli-
cation of DECT material decomposition is iodine-selective mapping 
which visualizes the contrast agent iodine in standard DECT series [9]. 
Iodine-selective imaging allows for further tissue characterization 
compared to visual-descriptive reporting as the blood supply can be 
quantitatively depicted in tumor entities [9]. The potential benefits of 
lymph node iodine quantification have been assessed in recent studies, 
suggesting lower iodine concentration in lymph node metastases 
compared to benign lymph nodes [10,11]. Nevertheless, these studies 
followed a rather comparative approach without applying and testing 
advanced bioinformatic prediction models. 

Radiomics is a technique based on high-dimensional quantitative 
image analysis and has emerged as a non-invasive research tool to 
characterize tissue morphology beyond visual perception [12]. The 
computational technique may provide surrogate information on patho-
physiological and biochemical processes [12]. Particularly in the field of 
oncology, radiomics seems promising as the features provide additional, 
high dimensional data that may facilitate non-invasive stratification of 
tumor subtypes, treatment response and clinical outcome [13–15]. 

DECT material decomposition and radiomics have shown promising 
results in the non-invasive characterization of abdominal lymph nodes 
beyond standard-of-care reading and reporting in patients with gastric 
cancer, colorectal carcinoma, and pancreatic carcinoma [16–18]. The 
application of imaging biomarkers may have the potential to aid clinical 
decision making [12,19]. Yet, it is unclear, whether the combined 
application of both DECT and radiomics may further improve the 
diagnostic accuracy for the prediction of lymph node metastases. 
Therefore, the aim of our study was to analyze the potential of imaging 
biomarkers to objectively identify unequivocal lymph node metastases 
in a broad spectrum of patients with different primary tumors. As ra-
diologists are increasingly confronted with a growing workload, the use 
of imaging biomarkers as a prioritization tool might enable radiologists 
to focus on equivocal cases [6]. We aimed to stratify the most reliable 
radiomic features and DECT features for abdominal lymph node me-
tastases prediction to improve the interpretability of our models. 

Further, we hypothesized that a combined application of both tech-
niques may improve the prediction of lymph node metastases in 
contrast-enhanced abdominal CT compared to DECT features only. 

2. Material and methods 

The local Ethics committee of our institution approved this retro-
spective study (project number: 20–688) and waived informed written 
consent. 

2.1. Study design 

A total of 81 patients with lymph node metastases (n = 36) and 
benign lymph nodes (n = 45) who underwent contrast-enhanced 
abdominal DECT imaging between 06/2015 and 07/2019 were 
included in the study. 

Inclusion criteria for the metastasis cohort were: (I) > 18 years of 
age, (II) confirmation of lymph node metastasis by histopathology 
(lymphadenectomy or lymph node biopsy), PET-CT or follow-up imag-
ing, (III) unequivocal lymph node metastasis according to RECIST 
criteria [3], (IV) abdominal DECT imaging with availability of 1.5 mm 
low and high kV series. If follow-up imaging was used as 
reference-standard, lymph nodes were defined as malignant when pro-
gressive disease was stated in the follow-up according to RECIST criteria 
and lymph node size was progressive or when partial/complete response 
was diagnosed according to RECIST criteria and lymph node size was 
regressive under systemic therapy [3]. 

Exclusion criteria were: (I) patients with multiple diagnosed malig-
nancies, (II) imaging artifacts. The inclusion and exclusion criteria for 
the control (benign) cohort differed in inclusion point (II) and (III) to not 
have confirmed lymph node metastases. Further, only patients without 
diagnosis of abdominal malignancy were included into the control 
cohort. In cases of patients with multiple CT studies, the baseline DECT 
scan was taken for analysis. 

All clinical data were obtained in clinical routine. Detailed patient 
characteristics are depicted in Table 1. Fig. 1 shows the flowchart of 
patient inclusion following Standards for Reporting Diagnostic Accuracy 
Studies (STARD). 

2.2. CT acquisition protocol 

All examinations were performed using a third-generation, dual- 
source, dual-energy CT system (Somatom Force, Siemens Healthineers). 
The acquisition protocol operated the x-ray tubes at different kilovoltage 
and tube current settings (tube A: 100 kV, 190 mAs; tube B: Sn150 kV, 
95 mAs). An additional tin filter (Selective Photon Shield II, Siemens 
Healthineers) was used in tube B to reduce radiation exposure. The dual- 
energy protocol (craniocaudal direction; rotation time, 0.5 s; pitch, 0.6; 
collimation, 2 ×192 x 0.6) included automatic attenuation-based tube 
current modulation (CARE Dose 4D, Siemens Healthineers). Contrast 
media injection was performed through a peripheral vein of the forearm 
at a flow of 2–3 ml/s. A non-ionic contrast agent (Imeron® 400 mg 
iodine/ml; Bracco, Milan, Italy) with a total of 1.2 ml/kg body weight 
(maximum of 120 ml) was administered. Image acquisition during 
venous phase of contrast enhancement started 70 s after contrast agent 
injection in inspiratory breath-hold. CT dose index (CTDI) and dose- 
length-product (DLP) were recorded. Iterative reconstruction algo-
rithm (ADMIRE®, Siemens Healthineers, Strength Level 3) was used for 
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image reconstruction. 

2.3. Image preprocessing 

DECT images were reconstructed in axial orientation (slice thickness, 
1.5 mm; increment, 1.2 mm) with a dedicated dual-energy medium-soft 
convolution kernel (Qr40, advanced model-based iterative reconstruc-
tion [ADMIRE] level of 3). 

DECT material decomposition image reconstruction was performed 
on a 3D multi-modality workstation (syngo.via, version VB10B, Siemens 
Healthineers). An iodine subtraction algorithm (Liver VNC, Siemens 
Healthineers) was used for material decomposition including iodine 
density (ID), normalized iodine uptake (ID%) and fat fraction (FF). ID% 
was calculated using the following formula: ID% = IDlymph node / IDaorta. 
Region of interest (ROI) measurements for IDaorta were performed 
manually in the abdominal aorta at the level of the celiac trunk. For 
radiomic analysis, the image stack was exported in Digital Imaging and 
Communications in Medicine (DICOM) format and imported into the 3D 
Slicer software platform (http://slicer.org, version 4.9.0) to visualize 
and process the DICOM image stack [20,21]. No further image manip-
ulation was done as the Imaging Biomarker Standardization does not 
cover image preprocessing [22]. 

2.4. Image segmentation 

One investigator (radiologist in training, 3 years of experience in 
oncology imaging) who had access to clinical data (histopathology, PET- 
CT or follow-up imaging) selected and marked three lymph nodes per 
patient. ROI and spheric volume of interest (VOI) circumscription for 
segmentation was manually performed by three investigators (I, espe-
cially trained investigator, 1 year of experience in oncology imaging; II, 
radiologist in training, 3.5 years of experience in oncology imaging; III, 
radiologist in training, 2 years of experience in oncology imaging) who 

were blinded to the clinical records. Each investigator segmented one of 
the three marked lymph nodes. 

Three segmentations, each of a different independent lymph node, 
were obtained per patient. In total, 243 lymph nodes (lymph node me-
tastases, n = 108; benign lymph nodes, n = 135) were segmented. ROI 
measurements for DECT analysis (Fig. 2) and VOI measurements for 
radiomic analysis (Fig. 3) were drawn as large as possible with a 
maximum diameter of 1.0 cm, carefully avoiding surrounding struc-
tures, calcifications and visual artifacts. We chose a maximum diameter 
of 1.0 cm to exclude potential shape bias between enlarged metastatic 
and small benign lymph nodes. The segmentations were independently 
reviewed by a board-certified and blinded radiologist (8 years of expe-
rience in oncology imaging) and no disagreement was stated. 

2.5. Radiomic analysis 

We used the open-source extension PyRadiomics within the 3D Slicer 
software platform to extract the radiomic features [21,23]. With default 
settings, we extracted all original standard features for each segmenta-
tion (n = 107, feature classes = 7): Shape, First Order Statistics, Gray 
Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix 
(GLRLM), Gray Level Size Zone Matrix (GLSZM), Gray Level Depen-
dence Matrix (GLDM), Neighboring Gray Tone Difference Matrix 
(NGTDM) [24]. We excluded the shape features (n = 14) for the 
following analyses as we used spheric VOIs. We calculated the radiomics 
quality score for our study and yielded a score of 12 (https://radiomics. 
world/rqs, supplementary material S4) [25]. 

2.6. Inter-observer robustness and feature redundancy 

We calculated the intra-class correlation coefficient (ICC) for each 
feature and DECT material decomposition by defining each of the three 
independently segmented and measured lymph nodes per patient as one 
measurement and then calculating the ICC for these three measurements 
to assess the measurement’s reproducibility [26]. We followed this 
approach as we aimed to analyze the texture’s robustness on a patient 
level. We used ICC3 of the Pingouin package in Python [27]. ICC was 
interpreted with thresholds commonly used in radiomics research: ICC 
0.75–1 = excellent, ICC 0.60–0.74 = good, ICC 0.40–0.59 = moderate, 
ICC≤ 0.39 = poor [26]. For further analysis, we discarded all radiomic 
features with ICC< 0.6 to include only radiomic features with at least 
good reproducibility (n = 31) and we excluded DECT features with ICC 
≤ 0.39 (poor; Iodine Density) as not a single DECT feature had an 
ICC≥ 0.6 (Supplementary Data S1). The robust features were 
inter-correlated by Pearson method and we excluded all highly corre-
lated (Pearson > 0.95) redundant features (n = 13) except one (Sup-
plementary Data S2). 

2.7. Imaging biomarkers to predict lymph node malignancy 

We performed all analysis in Python 3.7.6, within Jupyter Notebook 
[28] and respective open-source packages to ensure transparency and 
sustainability. We aimed to predict our target variable (lymph node 
metastasis) either using DECT material decomposition, combined DECT 
and radiomic features or radiomic features only. Therefore, we stratified 
our independent variables into three feature groups: I, DECT feature 
group; II, combined feature group and III, radiomic feature group. First, 
we performed explorative data analysis on our datasets using euclidean 
distance matrices to explore the pairwise dataset relations and low 
dimensional embedding with t-SNE plots to explore cluster distributions 
(scikit-learn [29]). Next, we used Least absolute shrinkage and selection 
operator (LASSO) [29] to reduce the amount of features and the risk of 
overfitting. LASSO excluded all DECT features in the combined feature 
group, therefore the radiomic feature group and combined feature group 
yielded identical non-zero LASSO features and we respectively dis-
missed one redundant feature group (combined feature group) for 

Table 1 
Patient characteristics.  

Parameters Lymph node 
metastasis 

Benign lymph 
nodes 

Number of patients (n) 36 45 
Male / Female (n) 25 / 11 32 / 13 
Age (median years) 63 (34 – 81) 67 (47 – 87) 
Mean attenuation (HU) and SD of the 

respective lymph nodes 
70.54 ± 29.95 62.91 ± 31.75 

Mean CTDI (mGy) 8.5 ± 5.0 
(2.3 – 30.3) 

8.7 ± 4.0 
(2.7 – 26.7) 

Mean DLP (mGy*cm) 439.8 ± 330.9 
(88.6 – 1823.9) 

592.1 ± 304.2 
(96.5 – 
1970.4) 

Lymph node entity 
RCC 
Urothelial carcinoma 
Prostate cancer 
Pancreatic cancer 
CRC 
Malignant melanoma 
CCC 
Gastric cancer 
HCC 
NSCLC 
Vaginal squamous cell carcinoma 
Testicular cancer 
Mammary carcinoma 
Ovarian cancer 
AEG 

6 
6 
4 
4 
3 
3 
2 
1 
1 
1 
1 
1 
1 
1 
1 

– 

If not depicted otherwise, the numbers without parenthesis depict absolute 
numbers. Data in round parenthesis are the min/max values. AEG, adenocarci-
noma of esophagogastric junction; CCC, cholangiocellular carcinoma; CTDI, 
computed tomography dose index; CRC, colorectal cancer; DLP, dose-length 
product; HCC, hepatocellular carcinoma; mGy, milligray; NSCLC, non-small- 
cell lung carcinoma; RCC, renal cell carcinoma; SD, standard deviation. 
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further analysis. The DECT-cohort had only two features and we did not 
perform LASSO for further feature reduction. 

We drew 70 % random data samples as training set and used the 
remaining 30 % to test our model. We used StandardScaler [29] to scale 
the data to uniform variance. Next, we trained and tested four individual 
and independent machine learning models [29]: I, logistic regression 
classifier, II, AdaBoost classifier, III, Gradient Boosting classifier and IV, 
random forest classifier (see Supplementary Data S3 for detailed infor-
mation on feature selection and machine learning models). For each 
classifier, we calculated the mean feature importance by repeating a 
shuffled permutation-based analysis of feature importance 15 times 
using the test dataset. We calculated the receiver operating character-
istics (ROC) area under the curve (AUC), F-score and precision-score for 
each model using the test dataset and depict the respective ROC curves. 

We used the implementation of the WORC.statistics package [30] for the 
DeLong’s test [31]. 

3. Results 

3.1. Study population 

The study population comprised 81 patients (57 male; median age 65 
(interquartile range (IQR), 58.7–73.3) years) who underwent contrast- 
enhanced abdominal CT on the same DECT scanner. 36 patients (25 
male; median age 63 (IQR, 55.2 – 72.0) years) were diagnosed with 
visually unequivocal lymph node metastases. The diagnosis was 
confirmed with histopathological analysis (lymph node biopsy, n = 7; 
lymphadenectomy, n = 2), PET/CT (n = 2) or follow-up CT scans 

Fig. 1. STARD flowchart of study inclusion.  

S. Mahmoudi et al.                                                                                                                                                                                                                             



European Journal of Radiology Open 10 (2023) 100459

5

(n = 25). The control group consisted of 45 patients who did not have 
malignant abdominal lymph nodes (32 male; median age 67 (IQR, 59.9 – 
74.5) years). Detailed patient characteristics are depicted in Table 1. 

Radiation metrics in venous phase acquisition were 8.6 ± 4.5 mGy 
(range, 2.3–30.3 mGy) for mean volume CTDI and 523.6 
± 323.6 mGy*cm (range, 88.6 mGy*cm – 1970.4 mGy*cm) for mean 
DLP. 

3.2. Unsupervised cluster analysis 

The pairwise euclidean distance for each sample is depicted in the 

distance matrices (Fig. 4A/B). With DECT features only, a stratification 
into two clusters might be presumed (Fig. 4A). The combined image 
post-processing techniques (DECT and radiomic features) revealed two 
definite distinct clusters (Fig. 4B). We could corroborate the finding in 
the respective t-SNE plots which depict lymph node metastases in orange 
(label = 1) and benign lymph nodes in blue (label = 0). The DECT 
features revealed no definite two clusters with a broad border of un-
certainty (Fig. 4C). Two distinct clusters were seen in the combined 
cohort with only two outliers (Fig. 4D). 

Fig. 2. Illustration of DECT iodine quantification segmentation. Axial DECT based iodine map images with region of interest (ROI) measurements of the respective 
lymph nodes. Left: 62-year-old female patient without abdominal malignancy. Right: 66-year-old male patient with prostate cancer with lymphogenic metastasis. 

Fig. 3. Illustration of radiomics segmentation. Axial, coronal, sagittal and scaled up axial DE-CT images with standard volume of interest (VOI) measurements of the 
respective lymph nodes. Left: 62-year-old female patient without abdominal malignancy. Right: 66-year-old male patient with prostate cancer with lympho-
genic metastasis. 
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3.3. Feature importance characteristics 

LASSO was used to reduce the amount of radiomic features from 18 
robust and non-redundant features (ICC > 0.6 and Pearson ≤ 0.95, see 
supplementary data S1 and S2) to our final radiomic features set of 5 
features. 

The final features were part of the feature classes firstorder (n = 1), 

GLDM (n = 2) and GLSZM (n = 2). We calculated the permutated 
feature importance for each model. Within the DECT features, fat frac-
tion was superior to ID% in all models. In the radiomics feature group, 
two features (LargeDependenceEmphasis, LargeAreaEmphasis) yielded 
non-zero importance values in all four independent models. Details of 
permutation-based feature importance analysis for each model are 
depicted in Table 2. 

Fig. 4. Unsupervised explorative data analysis. Euclidean distance matrices with samples sorted by label (metastasis vs. benign) for the DECT (A) and combined 
feature cohort (B). White coloring represents smaller euclidean distances. Squarish patterns along the white diagonal reveal cluster with similar pairwise distance. In 
C) and D) t-SNE plots of the DECT and combined cohort depict the two-dimensional embedding of the joint probabilities (label: 1 (orange), metastasis; 0 (blue), 
benign). DECT, dual-energy computed tomography; t-SNE, t-distributed stochastic neighbor embedding. 

Table 2 
Permutation-based feature importance analysis for each model.   

Class LR  ADB  SGB  RF  

Radiomics  Imp Std Imp Std Imp Std Imp Std 

Energy firstorder -0.005  0.014  0.000  0.000  0.000  0.000  0.027  0.019 
Dependence 

NonUniformity 
GLDM 0.000  0.021  0.000  0.000  0.032  0.026  0.027  0.019 

LargeDependence 
Emphasis 

GLDM 0.059  0.048  0.035  0.025  0.003  0.010  0.003  0.010 

LargeArea 
Emphasis 

GLSZM -0.019  0.020  0.373  0.075  0.029  0.023  0.029  0.023 

LargeAreaHigh 
GrayLevelEmphasis 

GLSZM -0.024  0.020  -0.021  0.025  0.024  0.020  0.000  0.000 

DECT                 
Iodine_Density_% – -0.021  0.035  -0.003  0.042  -0.008  0.016  -0.013  0.019 
Fat_Fraction – 0.253  0.107  0.205  0.092  0.248  0.093  0.243  0.098 

Final feature set after LASSO feature reduction of the 18 robust and non-redundant features and DECT feature set. ADB, AdaBoost; GLDM, Gray Level Dependence 
Matrix; GLSZM, Gray Level Size Zone Matrix. LR, logistic regression; RF, Random Forest; SGB, Stochastic Gradient Boosting. The LR feature importance of 
DependenceNonUniformity was 1.480e-17 and therefore 0.000 is shown in the table with a non-zero Std. 
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3.4. Model performance differences and best performing model 
comparison 

In the DECT feature group, performances from AUC = 0.756 (F1 =

0.727; ADB) up to AUC = 0.942 (F1 = 0.762; SGB) were achieved 
(Fig. 5A). 

The radiomics feature group revealed performances from AUC 
= 0.919 (F1 = 0.909) (ADB) up to AUC = 1.000 (F1 = 1.000; SGB and 
RF) (Fig. 5B). 

In Table 3 we depict detailed performance characteristics. Fig. 6 
shows the best performing models of each cohort (SGB, DECT; RF, 
radiomics) with superior performance of the radiomics feature group RF 
model (DeLong p < 0.001). 

4. Discussion 

The aim of this retrospective study was to compare the potential of 
radiomic features versus DECT-based material decomposition analysis 
to identify abdominal lymph node metastases and to stratify the best 
working model and most important features. The results of our study 
showed that radiomics-based machine learning models of CT images 
were superior to DECT-based material decomposition analysis tech-
niques for the identification of abdominal lymph node metastases in 
contrast-enhanced CT. Therefore, quantitative image biomarkers may 

not be restricted to centers with DECT equipment as high performing 
artificial intelligence methodologies are applicable in standard-of-care 
CT images. 

Our findings indicate that the automatic stratification of unequivocal 
lymph node metastases based on radiomic features can serve as a pri-
oritization support tool to help radiologists focus on unequivocal and 
critical cases. 

The identification of patients with lymph node metastases is decisive 
and has therapeutic and prognostic relevance [32,33]. RECIST criteria 
give guidance, but follow-up scans may be necessary for diagnosis, 
potentially causing delayed detection of nodular spread or recurrence of 
disease. Positron emission tomography (PET) CT may confirm a sus-
pected nodal involvement but high radiation exposure and costs require 
restrictive application [34]. Over recent years, the application of DECT 
post-processing techniques and radiomics has become an evolving 
research field, leading to improved non-invasive lesion characterization. 
Particularly in cancer research, radiomics is a rapidly evolving research 
field [12]. In contrast to basic material decomposition analysis tech-
niques, radiomics can provide additional, higher dimensional data by 
extracting a variety of mineable image features. Several studies have 
investigated the impact of DECT based material decomposition analysis 
and radiomic features for tissue and tumor characterization [35–37]. In 
a recent study, the authors investigated the potential of both DECT based 
iodine quantification and radiomics to differentiate normal liver tissue, 
hepatic steatosis and liver cirrhosis [38]. In accordance with our results, 
radiomics showed slightly better performance compared to DECT ma-
terial decomposition. Similar findings were presented in oncology im-
aging: In two recently published studies, the authors verified statistical 
differences of DECT based iodine quantification parameters and radio-
mic features in benign and malignant liver lesions and pancreatic lesions 
[36,37]. The findings of these studies are in line with our results, sug-
gesting a slightly better performance of radiomic features compared to 
DECT based material decomposition analysis techniques. Furthermore, 
several studies have specifically investigated the impact of DECT fea-
tures on the characterization of lymph nodes [39,40]. In accordance 
with the findings of Rizzo et al. and Li et al., our data confirms lower 
DECT derived iodine concentration in lymph node metastases compared 
to benign lymph nodes [39,40]. An efficient predictability for lymph 
node metastases has also been confirmed for radiomic features. For 
example, in the field of abdominal imaging, the potential of deep 
learning radiomics has been validated for the prediction of lymph node 
metastases in pancreatic cancer and gastric cancer [41,42]. In our study, 
we revealed superior predictive performance of machine learning 
models trained with radiomic features compared to training with DECT 
material decomposition values. Radiomic features showed higher 
robustness than DECT material decomposition and they seem to have 
more comprehensive and complementary value in comparison with 
DECT features. 

One major advantage of radiomics compared to DECT based algo-
rithms is that it can be applied in standard-of-care CT scans without the 
need for DECT equipment. As DECT is not yet as widely used as single- 
energy CT, DECT material decomposition analysis techniques are 
restricted to a minor group of well-equipped healthcare centers. How-
ever, radiomics offers a superior data characterization tool that is 
accessible to a very wide hospital spectrum. 

Our study has several limitations, which have to be taken into ac-
count. As a retrospective single center study, the sample size is modest 
and may lead to case selection bias. Our study includes 81 patients, and a 
larger cohort might have been favorable. This might reduce generaliz-
ability of the result. 

Even if DECT equipment is accessible, retrospective application of 
DECT post-processing is limited to cases where particular image series 
such as DECT raw data (1.5 mm low and high kV series) are available for 
material decomposition analysis. However, availability of these data is 
not always given due to storage capacity reasons. This limitation re-
stricts the use of DECT material decomposition analysis to selected 

Fig. 5. Performance visualization by receiver operating characteristics curves. 
Receiver operating characteristics (ROC) curves are depicted for the DECT (A) 
and radiomics (B) feature group. Each model is color coded. Some models 
revealed identical performances and respectively identical ROC curves (see 
Table 3). LR, Logistic regression; RF, Random Forest; ADB, AdaBoost; SGB, 
Stochastic Gradient Boosting. 
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cases. To be more precise, in the screening process of the current study, a 
major part of potentially eligible cases had to be excluded due to missing 
DECT raw data. 

In all patients with lymph node metastases the diagnosis was histo-
logically confirmed and the segmented lymph nodes showed unequiv-
ocal metastatic involvement as defined by RECIST criteria. Yet, 
histologic confirmation was performed in a location that was clinically 
feasible to reach and may not be identical to the selected lymph nodes in 
our study. 

Last, we restricted the patient inclusion to one dual-energy CT 
scanner to exclude inter-scanner variability and to include only re-
constructions with a slice thickness of 1.5 mm and increment of 1.2 mm, 
nevertheless, intra-scanner variability may have occurred. 

5. Conclusions 

In conclusion, we could demonstrate that radiomics models were 
superior to DECT material decomposition in the objective identification 
of visually unequivocal abdominal lymph node metastases. Our study 
gives evidence that an automatic stratification of unequivocal lymph 
node metastases might be feasible using radiomics-based machine 
learning models. As the demand for medical imaging is steadily 
increasing, radiomics may serve as a prioritization support tool to help 
radiologists focus on equivocal and critical cases. In contrast to DECT 
material decomposition, high-performing artificial intelligence meth-
odologies are applicable in standard-of-care CT images. Thus, quanti-
tative imaging biomarkers are not restricted to medical institutions with 
DECT equipment. 
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