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Nuclear factor-𝜅B is associated with the pathogenesis of numerous malignancies, and the functional polymorphism −94ins/del
ATTG (rs28362491) in the human NFKB1 gene is associated with cancer risk. Previous studies on the association between the
−94ins/del ATTG polymorphism and cancer risk reported conflicting results. To clarify this relationship, we performed a meta-
analysis of 21 case-control studies involving 6127 cases and 9238 controls. We used pooled odds ratios (ORs) with their 95%
confidence intervals (95% CIs) to assess the association. We found that the NFKB1 promoter −94ins/del ATTG polymorphism
was significantly associated with cancer risk in four genetic models (ins/ins versus del/del, OR = 1.47, 95% CI = 1.11–1.93; dominant
model, OR = 1.26, 95% CI = 1.03–1.53; recessive model, OR = 1.26, 95% CI = 1.05–1.51; ins allele versus del allele, OR = 1.19, 95% CI =
1.05–1.35). Stratified analyses revealed a significant association between the polymorphism and ovarian, oral, and prostate cancers.
Similar results were determined in an Asian population and not in a Caucasian population. Thus, our results suggested that the
polymorphism can contribute to cancer risk. Moreover, the polymorphism can exert race- and cancer-specific effects on cancer
risk. Further large-scale and functional studies are necessary to elucidate this possible effect.

1. Introduction

Cancer is a major public health problem worldwide; it is
the primary and secondary causes of death in economi-
cally developed and developing countries, respectively [1].
The global concern on cancer continues to intensify as a
result of the aging and expanding world population and the
increasing adoption of cancer-causing habits. The mecha-
nism of carcinogenesis remains largely unknown although
genetic susceptibility is a known possible explanation for the
interindividual variation in cancer risk [2].

Nuclear factor-𝜅B (NF-𝜅B) was initially identified in 1986
as a transcription factor which binds to a 10 bp DNA element
in kappa immunoglobulin light-chain enhancer in B cells [3].
The NF-𝜅B family consists of p50 (NF-𝜅B1), p52 (NF-𝜅B2),
p65 (RelA), c-Rel (Rel), and RelB. The major form of NF-𝜅B
is a heterodimer of the p50 and p65/RelA subunits which are

encoded by the NFKB1 and NFKB2 genes, respectively [4].
The humanNFKB1 gene is mapped to chromosome 4q24 and
encodes a 50 kDa DNA-binding protein (p50) that can act as
a master regulator of inflammation and cancer development
[5–7].

A common insertion/deletion polymorphism (−94ins/del
ATTG, rs28362491) in the promoter region of the NFKB1
gene elicits a regulatory effect on the NFKB1 gene [8]. A
previous meta-analysis concluded that the deletion allele
serves as a risk or protective allele for cancer susceptibility
in Caucasian or Asian populations, respectively; however,
it revealed no association between the polymorphism and
cancer risk [9]. An increasing number of studies have assessed
the association between the NFKB1 promoter −94ins/del
ATTG polymorphism and cancer risk [10–12]. However,
these studies obtained conflicting results. Therefore, we col-
lected all available data to perform an updated meta-analysis
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Figure 1: Study selection process.

that generates a precise estimation to comprehensively and
objectively investigate the association between the NFKB1
promoter −94ins/del ATTG polymorphism and cancer risk.

2. Materials and Methods

2.1. Search Strategy and Identification of Relevant Stud-
ies. A comprehensive literature search for relevant articles
published (last search updated in September 15, 2013) in
PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) was per-
formed with the following key words: (“genetic polymor-
phism,” “polymorphism,” “SNP,” “single nucleotide polymor-
phism,” “gene mutation,” or “genetic variant”), (“neoplasm,”
“cancer,” “tumor,” “carcinoma,” or “carcinogenesis”), and
(“NFKB1,” “NF-𝜅B1,” “nuclear factor kappa B1,” “NF kappa
B1,” or “nuclear factor 𝜅B1”). The search was limited to

human studies in English. All eligible studies were retrieved.
The reviews and references of eligible studies were hand-
searched for additional relevant publications.Themost recent
or complete study was selected when more than one publica-
tions contain overlapping data. A flow diagram of the study
selection process is presented in Figure 1.

2.2. Inclusion Criteria. Case-control studies that evaluated
the association of the NFKB1 promoter −94ins/del ATTG
polymorphism with cancer risk and described in detail the
genotype distributions of the polymorphism in cases and
controls were included in this meta-analysis.

2.3. Exclusion Criteria. Studies that were not for cancer
research, were only case population, and were duplication of
previous publication were excluded in this meta-analysis.
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Table 1: Main characteristics of these studies included in this meta-analysis.

First Author Year Ethnicity Genotyping method SC Genotyping cases Controls Cancer type HWE
ins/ins ins/del del/del ins/ins ins/del del/del

Lin [16] 2006 Asian PCR-RFLP HB 59 103 50 43 100 58 OSCC 0.993
Riemann [17] 2007 Caucasian Pyrosequencing HB 88 124 30 118 141 48 Bladder cancer 0.586
Bu [18] 2007 Caucasian PCR-RFLP HB 67 84 34 116 255 67 Melanoma <0.001

Lewander [11] 2007
Caucasian PCR-RFLP HB 63 323 81 116 256 67 Colorectal cancer <0.001
Asian PCR-RFLP HB 50 101 42 113 266 79 Colorectal cancer <0.001

Lo [19] 2008 Asian PCR-RFLP HB 62 89 31 20 62 34 Gastric cancer 0.361
Zhang [20] 2009 Asian PCR-RFLP HB 46 57 14 44 68 31 Prostate cancer 0.624
Burnik [21] 2009 Caucasian PCR-RFLP HB 18 30 2 30 58 12 GNT 0.047
Zhou [22] 2009 Asian PCR-RFLP HB 74 67 22 71 90 42 NC 0.177
Tang [23] 2009 Asian PCR-RFLP HB 89 92 26 74 108 46 Bladder cancer 0.565
Andersen [24] 2010 Caucasian Taqman PB 121 195 62 307 347 102 Colorectal cancer 0.801
Zhou [25] 2010 Asian PCR-RFLP HB 108 105 20 135 166 64 CSCC 0.297
Fan [26] 2011 Asian PCR-RFLP HB 78 84 17 76 103 44 Ovarian cancer 0.396
Lin [27] 2012 Asian Taqman HB 116 246 100 81 271 168 OSCC 0.099
Vangsted [28] 2012 Caucasian Taqman PB 110 163 55 665 778 253 Multiple myeloma 0.303
Cai [10] 2012 Asian Taqman HB 401 473 153 379 562 153 Renal cell Carcinoma 0.015
Huo [29] 2013 Asian MassARRAY HB 83 82 22 71 103 47 Ovarian cancer 0.399
Cheng [30] 2013 Asian Taqman HB 42 64 29 81 271 168 HC 0.099
Mohd Suzairi [31] 2013 Asian PCR-RFLP HB 35 127 75 16 138 83 Colorectal cancer <0.001
Kopp [32] 2013 Caucasian Taqman PB 128 152 54 109 161 64 Prostate cancer 0.741
Li [12] 2013 Asian Taqman HB 189 269 151 223 324 93 Bladder cancer 0.156
GNT: Gastroenteropancreatic neuroendocrine tumors; OSCC: oral squamous cell carcinoma; CSCC: cervical squamous cell carcinoma; NC: nasopharyngeal
carcinoma; HC: hepatocellular carcinoma; HB: hospital-based study; PB: population-based study; SC: source of controls; HWE: HardyWeinberg equilibrium.

2.4. Data Extraction. Information was carefully extracted
from eligible studies independently by two investigators
(Xiao Yang and Pengchao Li) according to the inclusion
criteria listed above, and the result was reviewed by a third
investigator (Jun Tao). The following data were collected
from each study: surname of first author, year of publication,
ethnicity, genotypingmethod, source of controls, frequencies
of the genotypes in cases and controls, cancer type, and
Hardy-Weinberg equilibrium (HWE) of genotype distribu-
tion among controls. Ethnicity was categorised as “Asian” or
“Caucasian.” Studies that investigated more than one type of
cancer were regarded as individual datasets only in subgroup
analyses according to cancer type. No minimum number
of patients was required for this meta-analysis. Articles that
reported different ethnic groups and countries or locations
were considered different study samples for each category
cited above.

2.5. Statistical Analysis. The strength of association between
the NFKB1 promoter −94ins/del ATTG polymorphism and
cancer risk was estimated through pooled odds ratio (OR)
with its corresponding 95% CI. Pooled ORs were calculated
for insertion allele versus deletion allele, ins/ins versus
del/del, ins/del versus del/del, ins/ins + ins/del versus del/del,
and ins/ins versus ins/del + del/del. Subgroup stratification
analyses by ethnicity and cancer typewere conducted to iden-
tify the association of the −94ins/del ATTG polymorphism
with cancer susceptibility.

The between-study heterogeneity of the studies included
in thismeta-analysis was evaluated using the𝑄 and 𝐼2 statistic
tests, where 𝐼2 > 50% indicated heterogeneity [13]. The
random-effects model was selected when 𝐼2 was significant
(>50%); otherwise, the fixed-effects model was selected. The
allele frequencies of the NFKB1 promoter −94ins/del ATTG
polymorphism from the respective study were determined
by allele counting. In addition, a chi-square test was used
to determine whether or not the observed frequencies of
genotypes conform to HWE. Pooled OR in the current
meta-analysis was performed by weighting individual ORs
by the inverse of their variance. The significance of the
pooled OR was determined by the Z-test. In addition to the
comparison among all subjects, we performed stratification
analyses by cancer type (if one cancer type contained only one
studies, it was combined into the “other cancers” group) and
ethnicity. Begg’s funnel plot and Egger’s test were adopted to
evaluate the publication bias in our meta-analysis [14, 15]. All
statistical analyses were performed by STATA 10.0 software
(StataCorp, College Station, TX, USA).

3. Results

3.1. Eligible Studies and Meta-Analysis Databases. A total of
21 case-control studies involving 6127 cases and 9239 controls
were analysed. The characteristics of all studies are presented
in Table 1. The allele and genotype frequencies of the NFKB1
promoter −94ins/del ATTG polymorphism were extracted



4 International Journal of Genomics

from all eligible studies. In total, thismeta-analysis included 3
bladder cancer studies, 4 colorectal cancer studies, 2 ovarian
cancer studies, 2 oral cancer studies, 2 prostate cancer studies,
and 8 studies with the “other cancers.” Of the 21 studies,
14 were conducted among Asians and 7 were conducted
among Caucasians. All cases were clinically pathologically
confirmed.

The results of HWE test for the genotype distribution in
the control population are shown in Table 1. Six of the eligible
studies were not in HWE [10, 11, 18, 21, 31].

3.2. Quantitative Synthesis. The pooled ORs of the included
case-control studies revealed a statistically significant asso-
ciation between the NFKB1 promoter −94ins/del ATTG
polymorphism and cancer risk across the four genetic
models ins/ins versus del/del, OR=1.47, 95%, CI=1.11—1.93;
dominant model, OR=1.26, 95% CI=1.03—1.53; recessive
model, OR=1.26,95% CI=1.05—1.51; and ins allele versus
del allele, OR=1.19,95%, CI=1.05–1.35 (Table 2, Figure 2).
Stratified analyses also revealed a significant association
between the polymorphism and ovarian, oral, and prostate
cancers in the various models. Ethnic subgroup analyses
revealed significant increases in cancer risk in the fourmodels
among Asians but not among Caucasians.The results became
prominent when the six studies that deviated from HWE
were excluded (see Supplementary Table 1 and Supplemen-
tary Figure 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2014/612972).

3.3. Evaluation of Publication Bias. Publication bias was
evaluated by Begg’s funnel plot and Egger’s test, and the
visual asymmetry was determined in the funnel plot analysis
(Figure 3). We further evaluated the publication bias in the
subgroups. The results of Egger’s tests for all genetic models
are shown in Supplementary Table 2 (ins allele versus del
allele, 𝑃 = 0.004).

4. Discussion

NF-𝜅B serves important functions in pathogenetic regulation
and influences cancer development and aggressiveness by
enhancing tumour angiogenesis, antiapoptosis, and prolif-
eration and by repressing immune response [7, 33, 34].
Several investigators reported the constitutive activation of
NF-𝜅B in various malignancies [35, 36], including nonsmall
cell lung carcinoma and colon, prostate, breast, bone, and
brain cancers. p50 overexpression is frequently observed in
various tumour tissues; hence, p50 is potentially involved in
tumourigenesis. A polymorphism in the promoter region of
NFKB1 encoding the p50 subunit of NF-𝜅B modulates gene
activity. This polymorphism has been recently reported to
influence cancer risk.

A meta-analysis of all eligible studies in 2010 suggested
that the deletion allele serves as a protective or risk allele
for cancer susceptibility amongAsians or Caucasians, respec-
tively [9]. However, no significant association was detected
for the overall population [9]. After the reported study,
numerous studies further assessed the relationship between

the NFKB1 promoter −94ins/del ATTG polymorphism and
cancer among Asians and Caucasians [10, 12, 32]. However,
the association remains inconclusive because of the incon-
sistent results from the published studies. Li et al. [12] found
an association between del/del genotype and bladder cancer
risk but none between the polymorphism and hepatocellular
carcinoma susceptibility [30].

In this study, we analysed 21 eligible case-control studies
with 6127 cases and 9239 controls. The results of this meta-
analysis revealed a significant association between insertion
allele careers and enhanced cancer risk. The probable mech-
anism behind the observed association may be linked to
the enhanced expression and activity of p50 (NF-𝜅B1). The
insertion allele is reportedly associated with the increased
promoter activity and enhancedNFKB1mRNAexpression [8,
12, 17]. This association might influence cancer development.

The major effect of p50 (NF-𝜅B1) is mediated by its
function as a component of the transcription factor NF-
𝜅B, which is among the major signalling pathways involved
in the cellular response to environmental stress [7]. p50
serves an important function in inhibiting cell apoptosis by
modulating the expression levels of several survival genes,
such as bcl-2 homologue A1 [37], PAI-2 [38], and IAP
gene family [39]. Certain antiapoptosis proteins, such as
Bcl-xL and Fas-associated death domain-like IL-1-converting
enzyme inhibitor protein, are upregulated through the NF-
𝜅B signalling pathway [40–42]. In addition, accumulated evi-
dence illustrated that the p50 (NF-𝜅B1) signalling pathways
participate in cellular proliferation by increasing IL-5 [43],
promoting MAPK phosphorylation [7, 44], and modulating
cyclinD1 expression [45].Therefore, the observed association
between the−94ins/del ATTGpolymorphism and cancer risk
can be accounted for by the insertion allele that can inhibit
apoptosis and promote cellular proliferation by upregulating
the expression of p50 (NFKB1) [8, 12, 17], which was impli-
cated in the abovementioned mechanism.

In the stratified analyses, the increased cancer risk
remained in subgroups of Asians but not in those of Cau-
casians. The ethnic differences in the allele frequencies may
be caused by natural selection or balance to other related
genetic variants. Possible differences in genetic backgrounds
and gene environment may also interact with the etiology.
The increased cancer risk also remained in the subgroups
of ovarian, oral, and prostate cancers. This result suggested
that the NFKB1 gene might function as a prominent factor in
these cancers.Therefore, further investigations are warranted
to validate ethnic difference and cancer specificity in the effect
of this functional polymorphism on cancer susceptibility.

This study has several limitations. First, significant
between-study heterogeneity was detected in some compar-
isons and may be distorting the meta-analysis. Second, the
genotype distribution among controls did not completely
agreewithHWE.However, the association between the inser-
tion allele and cancer risk in the overall population and in the
Asian population became pronounced when the six studies
that deviated from HWE were excluded. Third, the studies
included in the analysis used different genotyping methods
with different quality control issues that may have also
influenced the results. Fourth, publication bias was observed
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Note: weights are from random effects analysis
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Figure 2: Forest plot of cancer risk associated with NFKB1 promoter −94ins/del ATTG polymorphism (for insertion allele versus deletion
allele) among all studies.
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Figure 3: Begg’s funnel plot of the association between NFKB1
promoter −94ins/del ATTG polymorphism and cancer risk (ins
allele versus del allele).

in our study, which may affect the validity of conclusion.
In the stratified analysis, we found that the publication bias
was significant among the Asian groups and other cancer
groups but not significant among the Caucasian, bladder, and
colorectal cancer groups. The sample sizes of the included
studies were diverse, and most of them were insufficiently
large.These conditions might partly interpret the publication
bias. Finally, only three controls were population based; thus,
theymay not represent the general population.Therefore, the
results of this study should be interpreted with caution.

In conclusion, the NFKB1 promoter −94ins/del ATTG
polymorphism is associated with cancer risk. Well-designed
studies with representative sample sizes are necessary to
validate these findings.
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