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abstract

PURPOSE Screening and prevention decisions for women at increased risk of developing breast cancer depend
on genetic and clinical factors to estimate risk and select appropriate interventions. Integration of polygenic risk
into clinical breast cancer risk estimators can improve discrimination. However, correlated genetic effects must
be incorporated carefully to avoid overestimation of risk.

MATERIALS AND METHODS A novel Fixed-Stratified method was developed that accounts for confounding when
adding a new factor to an established risk model. A combined risk score (CRS) of an 86–single-nucleotide
polymorphism polygenic risk score and the Tyrer-Cuzick v7.02 clinical risk estimator was generated with at-
tenuation for confounding by family history. Calibration and discriminatory accuracy of the CRS were evaluated
in two independent validation cohorts of women of European ancestry (N = 1,615 and N = 518). Discrimination
for remaining lifetime risk was examined by age-adjusted logistic regression. Risk stratification with a 20% risk
threshold was compared between CRS and Tyrer-Cuzick in an independent clinical cohort (N = 32,576).

RESULTS Simulation studies confirmed that the Fixed-Stratified method produced accurate risk estimation
across patients with different family history. In both validation studies, CRS and Tyrer-Cuzick were significantly
associated with breast cancer. In an analysis with both CRS and Tyrer-Cuzick as predictors of breast cancer,
CRS added significant discrimination independent of that captured by Tyrer-Cuzick (P , 10−11 in validation 1;
P , 10−7 in validation 2). In an independent cohort, 18% of women shifted breast cancer risk categories from
their Tyrer-Cuzick–based risk compared with risk estimates by CRS.

CONCLUSION Integrating clinical and polygenic factors into a risk model offers more effective risk stratification
and supports a personalized genomic approach to breast cancer screening and prevention.
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INTRODUCTION

Mammography and adjuvant treatment of early-stage
disease are widely used for the mitigation of morbidity
and mortality in invasive breast cancer.1 Effective
prevention requires the identification of higher-risk in-
dividuals, which has typically involved family history
evaluation, assessment of clinical and lifestyle factors,
and testing for the presence of pathogenic variants
(PVs) in a limited number of high- or moderate-risk
breast cancer genes.2 Although guidelines for PV car-
riers have long recommended enhanced screening and
discussion of surgical prevention measures, they do not
adequately address the increased risk for unaffected
PV-negative womenwith a strong family history of breast
cancer. This clinical need has prompted recent pro-
posals for more risk-adapted screening.3,4

Higher-risk women rely on risk prediction tools using
clinical and demographic factors, such as the Tyrer-
Cuzick model and others, for management guidance.5-10

The overall discriminatory accuracy of such prediction
models, however, leaves room for improvement.11,12

Addition of single-nucleotide polymorphism (SNP)–
based risk, aggregated into polygenic risk scores (PRSs),
has been shown to enhance the discriminatory power of
the Gail,13-16 BOADICEA,17-20 BRCAPRO,21 iCARE,22-24

and Tyrer-Cuzick models.21,25-28 In many of these stud-
ies, PRS-based risk is assumed to be independent of
clinical risk, despite evidence for a genetic component in
many of the conventional clinical risk factors.29,30 Family
history in particular shows evidence for a partial overlap
with polygenic risk, as addition of a 77-SNP score at-
tenuated the odds ratio (OR) for family history by 12%-
13% and attenuation increased to 21% for a 313-SNP
score.31,32 In a separate report, a 75-SNP PRS was
significantly associated with family history.20 Accurate
risk prediction from a combined clinical and genetic risk
model thus requires adjustment for shared risk contri-
bution from genetic and clinical factors.
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Here, we describe the development and validation of a
strategy for integrating a SNP score with a validated clinical
risk model, with attenuation for correlated effects. We used
a previously validated 86-SNP PRS33 and the Tyrer-Cuzick
clinical risk estimator to create a combined risk model
adjusted for the shared genetic component related to family
history.

MATERIALS AND METHODS

Study Populations

These studies are based on two sample cohorts: a con-
secutive clinical testing cohort of patients submitted for
hereditary cancer predisposition between June 1, 2017
and June 11, 2019 divided into sets for development and
validation and one prospectively collected case-control
validation study (validation 2). Clinical testing cohort data
were subdivided according to successive time intervals to
ensure the independence of development and validation
activities (Fig 1); this included two development sets (de-
velopment 1 and 2), one validation set (validation 1), and
one clinical performance population. Genetic testing for all
patients was performed at a Clinical Laboratory Improve-
ment Amendments-approved and College of American
Pathology-approved laboratory (Myriad Genetics, Inc., Salt
Lake City, UT) by next-generation sequencing.34 Hybrid-
ization probes for the 86 SNPs in the PRS were included in
the sequencing panel.33

Women were eligible if they were of age 18-84 years, of
European ancestry (Ashkenazi and non-Ashkenazi; self-
reported), and negative for likely PVs or PVs in 11 breast
cancer–related genes (BRCA1, BRCA2, TP53, PTEN,
STK11, CDH1, PALB2, CHEK2, ATM, NBN, and BARD1).
Patients were excluded as unaffected controls if they re-
ported a history of ductal carcinoma in situ, lobular car-
cinoma in situ, hyperplasia, or unspecified breast disease.
Women were excluded from the clinical testing cohort if

they were submitted from states that disallow the research
use of samples after completion of genetic testing. All studies
were conducted with institutional review board (IRB) over-
sight (Quorum Review IRB #31713, 32556, 32608).

Development 1 included women from the clinical testing
cohort unaffected by cancer of any type accrued between
June 1, 2017 and August 11, 2017 (N = 5,489). Devel-
opment 2 (N = 141,160) included 112,232 women un-
affected by breast cancer and 28,928 breast cancer cases
from the clinical testing cohort accrued between August 11,
2017 and January 11, 2019. Clinical characteristics of this
set were previously reported.33

Validation 1 consisted of women in the clinical testing
cohort accrued between June 1, 2017 and August 10,
2017 (N = 1,615). Cases included women with invasive
breast cancer submitted for genetic testing within 1 year of
diagnosis because of potential hereditary breast and
ovarian cancer syndrome. Controls included unaffected
women submitted for genetic testing because of possible
hereditary nonpolyposis colorectal cancer syndrome as
these patients have a breast cancer family history con-
sistent with that of general population controls.

For validation 2, a consecutive series of women who pre-
sented to four breast cancer screening centers (Elizabeth
Wende Breast Care, The Breast Center of NWA, Bethesda
Health, and Cuda Women's Health Center/Cape Cod
Healthcare) were prospectively recruited between February
6, 2017 and November 11, 2017 (N = 518). Cases in-
cluded women with a pathologically confirmed first diag-
nosis of invasive breast cancer ≤ 12 months preenrollment
or an incident breast cancer ≤ 6 months postenrollment.
Unaffected controls had no history of breast disease
through the end of study enrollment.

An independent set of clinical testing patients unaffected
by breast cancer accrued between January 12, 2019 and
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June 11, 2019 (clinical performance population; N =
32,576) was used to assess risk stratification of the com-
bined score.

86-SNP PRS

The PRS was calculated as a linear combination of centered
genotype calls for 86 confirmed breast cancer–associated
SNPs (Data Supplement). Score composition information
has been previously published.33

Clinical Data and Tyrer-Cuzick Risk Calculation

Family history of breast and ovarian cancer and personal risk
factor data (Data Supplement) were retrieved from test re-
quest forms for clinical testing samples or from completed
questionnaires collected as part of the prospective study.
Absolute 5-year and remaining lifetime risk (RLR) estimates
by Tyrer-Cuzick were calculated according to version 7.02.

Statistical Methods

Associations between the 86-SNP PRS and Tyrer-Cuzick
variables. We examined association between PRS and
each clinical factor in the Tyrer-Cuzick model in develop-
ment 1 (N = 5,489). For each factor, we conducted a
simple linear regression with PRS as the dependent vari-
able and the clinical factor as the independent variable.
From these models, we examined regression coefficients, P
values based on F-statistics, and Pearson correlation
coefficients.

Design of the combined risk score. To calculate absolute
risk incorporating Tyrer-Cuzick and PRS, we developed a
Fixed-Stratified method (Data Supplement) to attenuate
PRS after fixing the effects of confounded factors from the
Tyrer-Cuzick model and to constrain risk separately within
strata of the confounders. Briefly, women were stratified on
the basis of breast cancer family history. Absolute risk for a
woman in strata k was calculated as follows:

1 −
�
1 − TC

�exp{β×PRS + Ck}, (1)

where β represents the per-unit log(OR) of the PRS from a
multivariable logistic regression model with the effect of
breast cancer family history fixed. The calibration constant
Ck was calculated such that the average relative risk due to
PRS was 1 within unaffected women from strata k. β and Ck

were determined using development 2 (N = 141,160).

Simulation studies. Simulation studies compared risks
calculated by the Fixed-Stratified method with those from
multivariable co-estimation and from univariable estimation
of the effects of family history and PRS (Data Supplement).32

Clinical validations. The combined risk score (CRS) was
validated in two independent studies (Table 1): a clinical
testing set (validation 1; N = 1,615) and the prospective
case-control cohort (validation 2; N = 518). Validations
were conducted according to prespecified statistical
analysis plans using R version 3.5.3.35 P values were

Cohort Description
Accrual Findings

noisulcxEnoisulcnI

Validation 1

N = 1,615

Clinical testing cohort: same basic inclusion or exclusion criteria as development set 2

Cases: breast cancer diagnosis, submitted for testing due to suspicion of HBOC within
1 year of diagnosis

Controls: unaffected women submitted for testing due to suspicion of HNPCC

6/17/2017
to

8/10/2017

Validation 2

N = 518

Prospectively acquired case-control study enrolled from imaging centers

Cases: pathologically confirmed first diagnosis of invasive breast cancer ≤12 mos.
preenrollment or incident breast cancer ≤ 6 mos. postenrollment

Controls: unaffected, no history of breast disease through the end of study enrollment

2/6/2017
to

11/11/2017

Development

1

Clinical testing cohort: 18-84 years old,
European ancestry, PV-negative, from states
that allow research use of data or samples
post-testing

History of breast cancer, DCIS, LCIS,
hyperplasia, or unspecified breast
disease; eligible for validation set 1

N = 5,489

The PRS was significantly
associated with family history
but no other Tyrer-Cuzick
clinical factor

Risk estimates from the CRS
and Tyrer-Cuzick models were
significantly associated with
breast cancer.

The CRS added significant
discrimination independent of
that captured by the Tyrer-
Cuzick risk model.
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Development
2*

Clinical testing cohort: same inclusion
criteria as development set 1

Controls could not have a history of
DCIS, LCIS, hyperplasia, or
unspecified breast disease

N = 141,160

8/11/2017
to

1/11/2019

 and Ck were established

Clinical
Performance
Population

N = 32,576

Clinical testing cohort: same inclusion
criteria as development set 1

History of breast cancer, DCIS, LCIS,
hyperplasia, or unspecified breast
disease

Addition of the 86-SNP PRS to
Tyrer-Cuzick shifted risk
categorization for 18% of
women, including upgrades
(8%) and downgrades (10.5%)

1/12/2019
to

6/11/2019

FIG 1. Summary of independent study cohorts. *Development 2 was previously published by Hughes et al.33 CRS, combined risk score; DCIS, ductal
carcinoma in situ; HBOC, hereditary breast and ovarian cancer; HNPCC, hereditary nonpolyposis colon cancer; LCIS, lobular carcinoma in situ; PRS,
polygenic risk score; SNP, single-nucleotide polymorphism.
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calculated from likelihood ratio chi-squared test statistics
and reported as two-sided.

Primary analyses tested the CRS and Tyrer-Cuzick indi-
vidually for association with breast cancer in age-adjusted
logistic regression models (Data Supplement). Secondary
analyses tested the incremental improvement of the CRS
over Tyrer-Cuzick by including both risk estimators in the
same age-adjusted model. Exploratory analyses tested
calibration of the CRS by comparing average absolute risk
estimates with those from the Tyrer-Cuzick model; with
proper calibration, we expected to observe the same av-
erage risk for Tyrer-Cuzick as for the CRS among unaf-
fected controls. These analyses were conducted separately
for RLR and 5-year risk of developing breast cancer.
Weighted logistic regression was used with weights for
unaffected controls calculated such that average Tyrer-
Cuzick RLR matched general population rates (Data
Supplement).

Performance of the 86-SNP PRS. Effect sizes of the 86-SNP
PRS in validations 1 and 2 were calculated as ORs per
standard deviation from multivariable logistic regression
models adjusted for age, personal and family cancer his-
tory, and Ashkenazi ancestry and compared with those
published previously.33 We tested for interaction between
PRS and each clinical factor in Tyrer-Cuzick by con-
structing models with age, clinical factor, PRS, and an
interaction term as predictor variables.

Clinical performance of the CRS. The clinical performance
population (N = 32,576) was used to assess risk stratifi-
cation using the CRS. RLR of breast cancer was calculated
according to both the Tyrer-Cuzick model and the CRS, and
classifications (increased [. 20%] or low [≤ 20%] risk)
from both were compared.

RESULTS

Associations Between PRS and Tyrer-Cuzick Variables

We examined associations between the 86-SNP PRS and
Tyrer-Cuzick model clinical factors in development 1
using linear regression models (Data Supplement). The
86-SNP PRS was significantly associated with family
history, measured as either an affected first-degree rel-
ative (P = 2.0 × 10−9) or as a weighted count of affected
relatives (P = 6.9 × 10−16). A marginal association with
hormonal replacement therapy use was not significant
after adjustment for multiple testing. The 86-SNP PRS was
not correlated with any other Tyrer-Cuzick model clinical
factor.

Simulation Studies

We evaluated the performance of the Fixed-Stratified
method in a simulation study on the basis of previously
published parameters for a 77-SNP PRS and family
history.32 In the simulation, we matched published uni-
variable and bivariable ORs for the 77-SNP PRS and family
history and visually matched the published figure of cu-
mulative absolute risk (Data Supplement). For women
without family history, risk estimates based on the com-
bined effects of the 77-SNP PRS and family history were
accurate regardless of adjustment for confounding (Data
Supplement). In contrast, for women with family history, the
Fixed-Stratified method matched risks from multivariable
co-estimation, whereas the unadjusted model over-
estimated risk (Data Supplement).

Clinical Validations

Validation 1 included 988 (61%) breast cancer cases and
627 (39%) unaffected controls (Table 1). Median age of
hereditary cancer testing was 48 years [IQR 40 to 57].

TABLE 1. Clinical Characteristics of Study Patients in the Validations

Characteristic Variable

Validation 1 Validation 2

All Patients Breast Cancer Cases Controls All Patients Breast Cancer Cases Controls

Patients N (%) 1,615 (100) 988 (61) 627 (39) 518 (100) 256 (49) 262 (51)

Age (years)a Range 18-84 18-84 18-73 19-84 37-84 19-84

Median 48 50 44 61 65 56

%≤ 50 58 52 67 25 12 38

Ancestry; N (%) Ashkenazi Jewish 14 (1) 4 (,1) 10 (2) 36 (7) 16 (6) 20 (8)

White/non-Hispanic 1,581 (98) 975 (99) 606 (97) 458 (88) 233 (91) 225 (86)

Ashkenazi Jewish and
White/non-Hispanic

20 (1) 9 (1) 11 (2) 24 (5) 7 (3) 17 (6)

≥ 1 First-degree relative with
invasive breast cancer

N (%) 362 (22) 303 (31) 59 (9) 152 (29) 62 (24) 90 (34)

≥ 1 Second-degree relative with
invasive breast cancer

N (%) 620 (38) 465 (47) 155 (25) 204 (39) 85 (33) 119 (45)

≥ 1 First-degree relative and/or
≥ 1 second-degree relative with
invasive breast cancer

N (%) 816 (51) 618 (63) 198 (32) 295 (57) 126 (49) 169 (64)

aAge at diagnosis for women with breast cancer and age at testing for unaffected women.
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Women with breast cancer tended to be older than unaf-
fected controls. Overall, 362 (22%) patients reported breast
cancer in ≥ 1 first-degree relative and 620 (38%) in ≥ 1
second-degree relative.

The prospectively collected case-control validation 2 in-
cluded 256 (49%) breast cancer cases and 262 (51%)
unaffected controls (Table 1). Median age at enrollment
was 61 years (IQR 50-70). Nearly one third (29%) of pa-
tients reported breast cancer in a first-degree relative and
204 (39%) patients in ≥ 1 second-degree relative.

In both validations, RLR and 5-year risk estimates of the
CRS and Tyrer-Cuzick were significantly associated with
breast cancer (Table 2 and Fig 2). In a model with both risk
predictors, the CRS added significant discrimination in-
dependent of that captured by Tyrer-Cuzick for both RLR
(P , 10−11 in validation 1; P , 10−7 in validation 2) and 5-
year risk (P, 10−11 in validation 1; P, 10−7 in validation 2;
Data Supplement).

Although all patients in validation 2 provided complete
Tyrer-Cuzick risk factor questionnaires, data on Tyrer-
Cuzick variables were incomplete for some patients in
validation 1. Analyses were repeated in the subset of pa-
tients with complete information for all Tyrer-Cuzick risk
factors with results similar to those from the full data set
(Data Supplement).

Calibration of the CRS was examined by comparing average
risk estimates with those from Tyrer-Cuzick in the control
samples from either validation. The average RLR and 5-
year risk estimates matched exactly in both validations
(RLR 12.6%; 5-year 0.96%). Estimates were also consistent
for patients grouped according to 5-year age bins (Fig 3).
Concordance of mean CRS and Tyrer-Cuzick risk estimates
indicates that the CRS was properly calibrated.

Effect sizes of the 86-SNP PRS calculated as ORs per
standard deviation from multivariable logistic regression
models were similar to previously published33 results in

TABLE 2. Results From the Prespecified Validation Analyses

Analysis Breast Cancer Risk Model

Validation 1 (N = 1,615) Validation 2 (N = 518)

Odds Ratio (95% CI) P Odds Ratio (95% CI) P

Primary analysis CRS RLR 2.08 (1.83 to 2.37) 8.1 × 10−34 2.44 (1.89 to 3.19) 9.3 × 10−13

Tyrer-Cuzick RLR 1.84 (1.63 to 2.09) 8.5 × 10−24 1.91 (1.45 to 2.54) 3.3 × 10−06

CRS 5-year risk 4.58 (3.57 to 5.90) 7.5 × 10−38 2.46 (1.90 to 3.21) 3.8 × 10−13

Tyrer-Cuzick 5-year risk 5.14 (3.79 to 7.02) 3.7 × 10−28 1.96 (1.48 to 2.63) 1.4 × 10−06

Secondary multivariable analysis CRS RLR 1.88 (1.57 to 2.26) 4.1 × 10−12 3.21 (2.12 to 4.95) 1.5 × 10−08

Tyrer-Cuzick RLR 1.15 (0.96 to 1.38) .13 0.68 (0.43 to 1.07) .096

CRS 5-year risk 3.49 (2.44 to 5.03) 3.5 × 10−12 3.26 (2.14 to 5.05) 1.3 × 10−08

Tyrer-Cuzick 5-year risk 1.59 (1.01 to 2.49) .044 0.67 (0.42 to 1.07) .095

Abbreviations: CRS, combined risk score; RLR, remaining lifetime risk.
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FIG 2. Discriminatory accuracy of CRS
over Tyrer-Cuzick or PRS alone in vali-
dation 1 (A) and validation 2 (B). CRS,
Tyrer-Cuzick, and PRS were evaluated
separately in terms of likelihood ratio chi-
squared test statistics from age-adjusted
logistic regression models. In both vali-
dation studies, the CRS performed sig-
nificantly better than either Tyrer-Cuzick
or PRS at discriminating between women
with and without invasive breast cancer.
CRS, combined risk score; PRS, poly-
genic risk score.
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validation 1 (OR 1.57, 95% CI, 1.33 to 1.86) and validation
2 (OR 1.65, 95% CI, 1.37 to 2.00; Data Supplement). No
evidence of interaction between the 86-SNP PRS and
clinical factors in the Tyrer-Cuzick model in either of the two
validations was observed (Data Supplement).

Clinical Performance of the CRS

To illustrate how application of the CRS changes RLR
estimates compared with Tyrer-Cuzick alone, we calcu-
lated RLR using Tyrer-Cuzick or CRS for an independent
set of 32,576 unaffected women (clinical performance
population). RLR estimates in this cohort using the CRS
ranged from 0.01% to 74.0% (Fig 4A). This was a greater
range than for RLR estimates from the Tyrer-Cuzick model
for the same population (Fig 4B). Although Tyrer-Cuzick
and CRS identified 35.5% and 33.0% of women as hav-
ing . 20% RLR, respectively (Fig 4C), inclusion of SNP-
based risk shifted risk categories for 18% of women. Of
those with RLR . 20% by Tyrer-Cuzick alone, 29% were
downgraded to≤ 20%RLR by the CRS. Conversely, 12% of
women with RLR ≤ 20% by Tyrer-Cuzick were upgraded to
RLR . 20% by the CRS.

DISCUSSION

Clinical and epidemiologic risk factors have primarily been
used to assess breast cancer risk in PV-negative women.
Integration of these factors with SNP-based risk necessi-
tates examination of both confounding effects and inter-
actions between SNP-based and clinical risk. Here, we
propose a novel Fixed-Stratified method that accounts for
the confounding effect of family history. We applied this
method to combine an 86-SNP PRS with the Tyrer-Cuzick
risk model and tested the resulting CRS in two independent
cohorts. Addition of the 86-SNP score significantly im-
proved discrimination relative to the Tyrer-Cuzick model for
predicting risk of breast cancer, and the CRS model
showed excellent calibration across age groups. American
Cancer Society guidelines recommend magnetic reso-
nance imaging screening for women with . 20%-25%
lifetime risk of breast cancer to improve early-stage cancer
detection.36 In a clinical testing population, we showed that
for 33% of PV-negative women, the CRS-estimated risk
was . 20% and these women would qualify for consid-
eration of enhanced surveillance. This includes 2,619
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women (8%) who would have been categorized as , 20%
using Tyrer-Cuzick–estimated risk alone.

Combinations of PRSs with the Tyrer-Cuzick model have
been presented previously, generally without attenuation
for confounding. An 88-SNP score was added to Tyrer-
Cuzick under the assumption of independence in a nested
case-control study.25 Although the SNP score added dis-
crimination to the Tyrer-Cuzick prediction, it had poor
calibration. In a larger data set, an 18-SNP PRS showed a
small but significant correlation with the Tyrer-Cuzick
model; however, its effect size for predicting risk was
only marginally affected by adjustment with the Tyrer-
Cuzick model.26 More recently, a 143-SNP PRS added
to the Tyrer-Cuzick model attenuated the PRS effect, in-
dicating an overlap between Tyrer-Cuzick and PRS.27

Combined risk associations of a 313-SNP PRS and clas-
sical breast cancer risk factors have also recently been
evaluated, although these combined risks have yet to be
validated.37 These examples highlight two issues. First,
previous examinations of confounding often evaluated the
correlations between a PRS and a model rather than in-
dividual clinical factors.21,25,26 This approach might have
obscured associations between PRS and clinical factors

with a stronger genetic component. Second, genetic
overlap is more likely with a larger PRS since casting a wider
net for cancer-associated SNPs is more likely to also
capture a larger fraction of the genetic component of
clinical risk. Here, we focused on correlations between the
PRS and individual Tyrer-Cuzick variables rather than the
Tyrer-Cuzick model as a whole. We identified confounding
between PRS and family history and adjusted for the ge-
netic overlap with family history. Others have examined the
question of interaction between PRS and clinical factors
and confirmed the appropriateness of a multiplicative
model.37

Attenuation of shared PRS and family history risk has been
described for the addition of a 313-SNP PRS to BOADICEA
and the iCARE model.17,24,37 Segregation analysis was used
to incorporate the PRS into BOADICEA. One limitation of
that approach is approximating the distribution of the
polygenic component with a binomial distribution; it is not
clear how important this limitation is. The iCARE model is
based on reducing the family history contribution by
subtracting half of the PRS variance from the log(OR) for
family history. However, the family history within this ap-
proach was binary (presence or absence of a first-degree
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FIG 4. Distribution of CRS risk esti-
mates in unaffected women. (A)
Remaining lifetime risk (RLR) in a
population of unaffected women
(clinical performance population, N =
32,576; excluded women with ductal
carcinoma in situ, lobular carcinoma
in situ, hyperplasia, or unspecified
breast disease) according to CRS with
thresholds at 20% (increased) and
50% (high) RLR. (B) Scatterplot of
RLR based on the Tyrer-Cuzick and
CRS risk models for patients within the
clinical performance population. (C)
Distribution of patients above and
below the 20% RLR threshold in the
clinical performance population
according to both the Tyrer-Cuzick
and CRS models. Blue squares indi-
cate patients with discordance be-
tween the scores (eg, the Tyrer-Cuzick
model produced a score that indicated
a patient had low RLR, but the same
patient was determined to have in-
creased RLR by the CRSmodel). CRS,
combined risk score.
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relative with breast cancer). This limitation does not allow
for optimal utilization of family history for patients with . 1
first-degree relative or those with second-degree relatives.

Limitations of the present study include a potential as-
certainment bias in the clinical testing population cohorts.
Qualification for genetic testing is often based on family
history. It has been previously shown that this potential bias
can be avoided by accounting for family history in a mul-
tivariable model.38,39 Consequently, all analyses presented
here were conducted by multivariable co-estimation. In
support of this approach, results from validation 1 (clinical
testing samples) were similar to results obtained in vali-
dation 2, for which participants were prospectively col-
lected and were unaffected by potential bias due to
selection for hereditary cancer testing. Evaluation of the
CRS in a prospectively collected, unselected population-
based sample is being pursued.40 Future work to expand
assessment tools such as Tyrer-Cuzick and the PRS for
non-European ancestries will be required to apply these
tools to other ancestry populations. Finally, information for
Tyrer-Cuzick for the clinical testing populations was ob-
tained from provider-completed test request forms. As
such, the accuracy and/or completeness of this information
cannot be verified and missing information could not be

obtained retrospectively. However, subanalysis of vali-
dation 1 in women with complete Tyrer-Cuzick information
showed similar results as the whole data set, indicating
that missing information did not substantially affect the
analysis.

This CRS model is suitable for reporting age-specific risk of
developing breast cancer for unaffected women of Euro-
pean descent with or without significant family history. It is
currently the only Tyrer-Cuzick–based model fully adjusted
for the shared risk between SNPs and family history and is
therefore less likely to overestimate risk in women with a
family history of breast cancer. A CRS containing the 86-
SNP PRS is commercially available for PV-negative women
of European ancestry (Myriad Genetics, Salt Lake City, UT).
Additional studies are needed to explore informative SNPs
for non-European ancestries. Future evaluation of the CRS
model with additional variables such as breast density (ie,
Tyrer-Cuzick v8), lifestyle, and dietary factors is desirable.
Combined clinical and genetic risk models improve breast
cancer risk prediction and may result in better allocation of
cancer risk–reduction resources, such as chemoprevention
and enhanced imaging techniques, to women with the
highest combined risk.
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