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Abstract

Background: Duplication-Transfer-Loss (DTL) reconciliation is a powerful and increasingly popular technique for
studying the evolution of microbial gene families. DTL reconciliation requires the use of rooted gene trees to perform
the reconciliation with the species tree, and the standard technique for rooting gene trees is to assign a root that
results in the minimum reconciliation cost across all rootings of that gene tree. However, even though it is well
understood that many gene trees have multiple optimal roots, only a single optimal root is randomly chosen to create
the rooted gene tree and perform the reconciliation. This remains an important overlooked and unaddressed
problem in DTL reconciliation, leading to incorrect evolutionary inferences. In this work, we perform an in-depth
analysis of the impact of uncertain gene tree rooting on the computed DTL reconciliation and provide the first
computational tools to quantify and negate the impact of gene tree rooting uncertainty on DTL reconciliation.

Results: Our analysis of a large data set of over 4500 gene families from 100 species shows that a large fraction of gene
trees have multiple optimal rootings, that these multiple roots often, but not always, appear closely clustered together
in the same region of the gene tree, that many aspects of the reconciliation remain conserved across the multiple
rootings, that gene tree error has a profound impact on the prevalence and structure of multiple optimal rootings, and
that there are specific interesting patterns in the reconciliation of those gene trees that have multiple optimal roots.

Conclusions: Our results show that unrooted gene trees can be meaningfully reconciled and high-quality evolutionary
information can be obtained from them even after accounting for multiple optimal rootings. In addition, the techniques
and tools introduced in this paper make it possible to systematically avoid incorrect evolutionary inferences caused by
incorrect or uncertain gene tree rooting. These tools have been implemented in the phylogenetic reconciliation
software package RANGER-DTL 2.0, freely available from http://compbio.engr.uconn.edu/software/RANGER-DTL/.
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Background
Duplication-Transfer-Loss (DTL) reconciliation is one of
the most effective techniques for studying the evolution
of gene families and inferring evolutionary events such
as gene duplications, horizontal gene transfers, and gene
losses. Given the evolutionary tree for a gene family, i.e., a
gene tree, and the evolutionary tree for the corresponding
species, i.e., a species tree, DTL reconciliation compares
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the gene tree with the species tree and reconciles any dif-
ferences between the two by proposing gene duplication,
horizontal gene transfer, and gene loss events. Accurate
knowledge of these events and of gene family evolution
overall has many important applications throughout biol-
ogy, and the DTL reconciliation problem has therefore
been extensively studied, e.g., [1–13].

DTL reconciliations are generally computed using a
parsimony framework where each evolutionary event is
assigned a cost and the goal is to find a reconciliation with
minimum total cost. The resulting optimization prob-
lem is called the DTL-reconciliation problem. Computed
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DTL reconciliations can sometimes be time-inconsistent;
i.e, the inferred transfers may induce contradictory con-
straints on the dates for the internal nodes of the species
tree. The problem of finding an optimal time-consistent
reconciliation is known to be NP-hard [3, 14]. In prac-
tice, there are two standard formulations of the DTL-
reconciliation problem. In the first formulation, the goal is
to find an optimal (not necessarily time-consistent) DTL
reconciliation [3–5, 8, 10]; this is computable in O(mn)

time [5], where m and n denote the number of nodes in
the gene tree and species tree, respectively. The second
standard formulation is based on the observation that the
problem of finding an optimal time-consistent reconcilia-
tion becomes efficiently solvable [2, 15] in O

(
mn2) time

if the species tree is fully dated, and thus requires the use
of a fully dated species tree [2, 9]. However, accurately
dating the internal nodes of a species tree is notoriously
difficult [16]. Consequently, in this work, we focus primar-
ily on the first (undated species tree) formulation of the
problem, though we also study the effect of using dated
species trees.

Both of the standard formulations of the DTL-
reconciliation problem require the gene tree and the
species tree to be rooted. However, while species trees
can generally be confidently rooted (using outgroups,
for example), gene trees are often difficult to root. As
a result, the gene trees used for DTL reconciliation are
often unrooted. When provided with an unrooted gene
tree, existing DTL reconciliation algorithms and software
first find a root for the unrooted gene tree and then
use the resulting rooted gene tree for the reconciliation.
The approach employed for rooting unrooted gene trees
is to compute the reconciliation cost for each possible
rooting of the unrooted gene tree and then choose a root-
ing that yields the minimum reconciliation cost. There
is, however, a critical flaw in this approach: Many gene
trees have multiple optimal roots, yet only a single opti-
mal root is randomly chosen to create the rooted gene
tree and perform the reconciliation. This is one of the
most important unaddressed problems in DTL reconcili-
ation, with direct bearing on the accuracy of the inferred
reconciliation.

Previous work. The problem of multiple optimal roots
has been largely overlooked in DTL reconciliation liter-
ature. A recent paper by Urbini et al. [17] studied the
effect of rooting uncertainty on reconciliation in the con-
text of host-symbiont cophylogeny. Host-symbiont cophy-
logeny reconciliation is similar (though not identical) to
DTL reconciliation, so the results of their study are also
of relevance to DTL reconciliation. They applied host-
symbiont cophylogeny reconciliation to several small data
sets and measured the impact of alternative rootings
on the number of inferred evolutionary events (but not
on the reconciliation itself ). They also established that

host-symbiont cophylogeny reconciliations need not sat-
isfy the “plateau” property, in which all optimal roots
must appear clustered together in a particular fash-
ion on the gene tree. This plateau property is known
to hold for some simpler phylogenetic reconciliation
models that do not handle horizontal gene transfers
[18]. Thus, there is currently little insight into the
prevalence and patterns of multiple optimal rooting in
large biological data sets, almost no understanding of
how DTL reconciliations change across different opti-
mal rootings, and no techniques or tools to systematically
account for reconciliation uncertainty due to multiple
optimal roots.

Our contributions. Here, we perform the first in-depth
analysis of the impact of uncertain gene tree rooting on
DTL reconciliation and provide the first computational
tools to quantify and negate the impact of gene tree root-
ing uncertainty. We analyze a large data set of over 4500
gene families from 100 species and (i) show that a large
fraction of gene trees have multiple optimal rootings,
(ii) show that these multiple roots often, but not always,
appear clustered together in the same region of the gene
tree, (iii) define the notion of a consensus reconciliation
which captures the variability in the reconciliation due to
multiple gene tree rootings, (iv) compute consensus rec-
onciliations and use them to show that many aspects of
the reconciliation remain conserved across the multiple
rootings, and (v) demonstrate that gene tree error has a
profound impact on the prevalence and structure of mul-
tiple optimal rootings. We also show that there are specific
interesting patterns in the reconciliations of singly rooted
and multiply rooted gene trees. Our analysis also consid-
ers the influence of different event cost assignments and
of using dated species trees.

The techniques and tools introduced in this paper make
it possible to systematically avoid incorrect evolution-
ary inferences caused by incorrect or uncertain gene tree
rooting. Our tools for computing consensus reconcilia-
tions have been implemented in the phylogenetic rec-
onciliation software package RANGER-DTL 2.0, freely
available from http://compbio.engr.uconn.edu/software/
RANGER-DTL/.

Methods
Definitions and preliminaries
Basic definitions
We follow the basic definitions and notation from [5].
Given a tree T, we denote its node, edge, and leaf sets by
V (T), E(T), and Le(T), respectively.

If T is rooted, the root node of T is denoted by rt(T),
the parent of a node v ∈ V (T) by paT (v), its set of chil-
dren by ChT (v), and the (maximal) subtree of T rooted
at v by T(v). The set of internal nodes of T, denoted
I(T), is defined to be V (T) \ Le(T). For a rooted tree
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T, we define ≤T to be the partial order on V (T) where
x ≤T y if y is a node on the path between rt(T) and x.
The partial order ≥T is defined analogously, i.e., x ≥T
y if x is a node on the path between rt(T) and y. We
say that y is an ancestor of x, or that x is a descendant
of y, if x ≤T y (note that, under this definition, every
node is a descendant as well as an ancestor of itself ). For
each node v ∈ I(T), the cluster CT (v) is defined to be
the set of all leaf nodes in Tv; i.e. CT (v) = Le(Tv). We
denote the set of all clusters of a tree T by Cluster(T). A
tree is binary if all of its internal nodes have exactly two
children. Throughout this work, the term tree refers to
binary trees.

If T is unrooted, then there are exactly |E(T)| different
ways of rooting T (by adding a root node on an edge).
Let Root(T) denote the set of rooted trees that can be
obtained by rooting T.

We denote the gene tree and species tree under con-
sideration by G and S, respectively. If G is unrooted,
we refer to it as GU , and as GR if it is rooted. We
assume that each leaf of the gene tree is labeled with
the species from which that gene was sampled. This
labeling defines a leaf-mapping LG,S : Le(G) → Le(S)

that maps a leaf node g ∈ Le(G) to that unique leaf
node s ∈ Le(S) which has the same label as g. Note
that gene trees may have more than one gene sampled
from the same species. We implicitly assume that the
species tree contains all the species represented in the
gene tree.

DTL reconciliation
A rooted gene tree can be reconciled with a rooted species
tree by mapping the gene tree onto the species tree and
labeling each gene tree node as representing either a spe-
ciation, duplication, or transfer event. Any DTL reconcil-
iation for GR and S shows a possible evolutionary history
of the gene inside the species tree. To be a biologically
valid evolutionary history, the reconciliation must satisfy
certain constraints on the mapping of GR onto S. For fur-
ther details on these constraints, we refer the reader to
the definition of DTL-scenario from [3, 5]. Essentially, any
valid DTL-scenario maps each gene tree node to a unique
species tree node in a consistent way that respects the
immediate temporal constraints implied by the species
tree and designates each gene tree node as representing
either a speciation, duplication, or transfer event. More
precisely, any DTL scenario for GR and S partitions I

(
GR)

into the sets �, �, and � representing speciation, dupli-
cation, and transfer events, respectively, and specifies a
mapping M : V

(
GR) → V (S) that maps each node of GR

to a node of S.
DTL-scenarios correspond naturally to reconciliations

and it is straightforward to infer the reconciliation of GR

and S implied by any DTL-scenario.

Given a DTL-scenario α, one can directly count the
minimum number of gene losses, Lossα , in the corre-
sponding reconciliation. For brevity, we refer the reader
to [5] for further details on how to count losses in DTL-
scenarios.

Let P�, P�, and Ploss denote the non-negative costs
associated with duplication, transfer, and loss events,
respectively.

Definition 1 (Reconciliation cost of a DTL-scenario)
Given a DTL-scenario α for GR and S, the reconciliation
cost associated with α is given by Rα = P� · |�| + P� ·
|�| + Ploss · Lossα .

A most parsimonious reconciliation is one that has
minimum reconciliation cost.

Definition 2 (Most Parsimonious Reconciliation
(MPR)) Given GR and S, along with P�, P�, and Ploss, a
most parsimonious reconciliation (MPR) for GR and S is a
DTL-scenario with minimum reconciliation cost.

Given fixed event costs, we denote the reconciliation
cost of an MPR for GR and S by cost

(
GR, S

)
.

Reconciliation with Unrooted Gene Trees
Rooting unrooted gene trees
If a gene tree is unrooted, it cannot be directly rec-
onciled with the species tree. Thus, given an unrooted
gene tree GU , the first step is to find a rooting for GU .
In phylogenetic reconciliation, the standard method for
rooting unrooted gene trees is to compute the recon-
ciliation cost for each possible rooting of the unrooted
gene tree and then choose a rooting that yields the min-
imum reconciliation cost. More formally, we choose the
rooted gene tree given by arg minGR∈Root(GU )cost

(
GR, S

)
.

However, there are often multiple rootings that yield
the minimum reconciliation cost., i.e., that frequently
|arg minGR∈Root(GU )cost

(
GR, S

) | > 1. In such cases, a
rooted gene tree from arg minGR∈Root(GU)cost

(
GR, S

)
is

chosen arbitrarily for the reconciliation. For convenience,
we denote the set of all optimal rootings of GR with
respect to S by OptRoot

(
GU , S

)
, i.e., OptRoot

(
GU , S

) =
arg minGR∈Root(GU )cost

(
GR, S

)
.

Reconciliation with different rootings of the same gene
tree can result in drastically different reconciliations.
Thus, choosing one optimal root arbitrarily when multi-
ple optimal candidates exist can introduce many errors
in the reconciliation, leading to incorrect evolutionary
inferences. This source of reconciliation uncertainty is
currently largely ignored in the DTL reconciliation litera-
ture and there do not exist any methods to systematically
account for such uncertainty.
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Consensus reconciliations
To properly account for rooting uncertainty, we define a
consensus reconciliation which summarizes the different
reconciliations across all optimal rootings of an unrooted
gene tree and makes it possible to identify those aspects
of the reconciliation that are conserved across all opti-
mal rootings. To construct a consensus reconciliation we
must first identify those subtrees in the gene tree that are
conserved across all its optimal rootings, i.e., conserved
across all rooted gene trees in the set OptRoot

(
GU , S

)
.

This is necessary since not all subtrees exist in all rootings
of an unrooted gene tree. The set of conserved subtrees
is obtained by computing the strict consensus [19] of all
rooted gene trees in the set OptRoot

(
GU , S

)
. For com-

pleteness, we provide the definition of strict consensus
below.

Definition 3 (Strict consensus) Given a collection of
rooted trees T1, T2, . . . , Tl with identical leaf sets, i.e.,
Le(T1) = Le(T2) = . . . = Le(Tl), the strict con-
sensus of T1, T2, . . . , Tl is a rooted tree X such that
Le(X) = Le(T1) = . . . = Le(Tl) and Cluster(X) =⋂l

i=1 Cluster(Ti).

A consensus reconciliation can now be formally defined
as follows:

Definition 4 (Consensus reconciliation) Given an
unrooted gene tree GU and a rooted species tree S, a
consensus reconciliation for GU and S consists of (i) the
strict consensus tree SC for the trees in OptRoot

(
GU , S

)
,

(ii) for each node g ∈ I(SC) the distribution of event
types (speciation, duplication, or transfer) observed for
g across all optimal reconciliations for all gene trees in
OptRoot

(
GU , S

)
, and (iii) for each node g ∈ I(SC) the dis-

tribution of mappings (to nodes of the species tree) observed
for g across all optimal reconciliations for all gene trees in
OptRoot

(
GU , S

)
.

The next lemma states an important and useful property
of consensus reconciliations.

Lemma 1 Let SC denote the strict consensus tree of the
rooted trees in OptRoot

(
GU , S

)
. Then, each node in I(SC)\

rt(SC) must be binary.

Proof Observe that the lemma follows trivially if
|OptRoot

(
GU , S

) | = 1. Thus, in the remainder of this
proof we assume that |OptRoot

(
GU , S

) | ≥ 2. Let GR1
be any optimally rooted gene tree from OptRoot

(
GU , S

)
.

Each of the other optimally rooted gene trees can be
obtained by re-rooting GR1 along one of its edges. Let
A denote the set of edges from E

(
GR1

)
that correspond

to the other optimal rootings of GU . Now, define a set B

consisting of all those edges that lie on a path between
rt

(
GR1

)
and an edge from A. We label the edges in A ∪ B

as red edges, and all the other edges of E
(
GR1

)
as green

edges.
Consider any node v ∈ I

(
GR1

)
such that E

(
GR1(v)

)

contains only green edges. Since all the red edges of GR1
are outside of GR1(v), the subtree GR1(v) must appear
in all the rooted gene trees from OptRoot

(
GU , S

)
. By

definition, Cluster(SC) = ⋂
GR∈OptRoot(GU ,S) Cluster

(
GR)

,
which implies that any subtree that appears in all GR ∈
OptRoot

(
GU , S

)
also appears in the strict consensus tree.

Thus, for all nodes v ∈ I
(
GR1

)
such that E

(
GR1(v)

)
con-

tains only green edges, the subtree GR1(v)) must appear in
SC. Moreover, since v is a binary node in GR1, it must also
be binary in SC.

It now suffices to show that none of the other clusters
in GR1, except for the root cluster CGR1

(
rt

(
GR1

))
, appear

in SC. Consider any u ∈ I
(
GR1

) \ rt
(
GR1

)
such that

E
(
GR1(u)

)
contains a red edge. There must be at least

one tree GR2 ∈ OptRoot
(
GU , S

)
that is obtained by re-

rooting GR1 along an edge in E
(
GR1(u)

)
. Thus, the cluster

CGR1(u) would not appear in the tree GR2. And, since
Cluster(SC) = ⋂

GR∈OptRoot(GU ,S) Cluster
(
GR)

, the cluster
CGR1(u) cannot appear in SC, as was to be shown. This
implies that all non-root internal nodes of SC must be
binary (corresponding to the GR1(v)’s with no red edges)
while the root node itself must be non-binary (corre-
sponding to the root cluster of the optimally rooted gene
trees).

Lemma 1 implies that all subtrees rooted at a non-root
internal node of the strict consensus tree must, in fact,
have the same topology across the different optimal root-
ings (i.e., that they are conserved subtrees). Observe that
the consensus reconciliation shows the reconciliation for
exactly those nodes that are present in the strict consensus
tree. This includes the root node of the strict consensus
tree, which (if non-binary) does not represent any con-
served subtree and instead represents the trivial cluster
representing the entire gene tree.

In constructing a consensus reconciliation one must
account for the fact that even a rooted gene tree may have
many different optimal DTL reconciliations. To account
for this additional source of reconciliation uncertainty,
we make use of standard techniques for handling multi-
ple optimal reconciliations. Specifically, for each optimal
rooting of the gene tree, we sample the space of opti-
mal reconciliations uniformly at random [8], computing
100 such samples for each rooting. We then compute, for
each node in the strict consensus tree, an aggregation of
the mapping and event assignments for that node across
all different optimal rootings and all sampled reconcilia-
tions for each rooting. Figure 1 illustrates the concept and
construction of consensus reconciliations.
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Fig. 1 Consensus reconciliations. This figure illustrates the concept of a consensus reconciliation and shows how consensus reconciliations are
computed. Given an unrooted gene tree and a species tree, the first step is to compute all optimal rootings (those that minimize the DTL
reconciliation cost) of the unrooted gene tree. The second step is to reconcile each of the optimally rooted gene trees with the species tree multiple
times to sample the space of all most parsimonious reconciliations uniformly at random; this sampling is required to account for any variation in
different most parsimonious reconciliations for the same optimally rooted gene tree. In the figure, �, �, and � denote speciation, duplication, and
transfer events, respectively. Each internal node in the reconciled tree is labeled with both its event type and the species tree node to which it maps.
The final step is to aggregate each of the computed reconciliations into a single consensus reconciliation that shows the reconciliation of all those
portions of the gene tree that are conserved across all optimal rootings. Thus, the tree underlying the consensus reconciliation is the strict
consensus tree of all optimal rootings. Each internal node of this strict consensus tree is labeled with aggregated reconciliation information for that
node from all sampled reconciliations across all optimal rootings

Maximum size of a consensus reconciliation
The number of internal nodes in a strict consensus tree
on n leaves can range between 1 and n − 1, depending on
how many clusters appear in the strict consensus tree. We
refer to the number of internal nodes in the strict consen-
sus tree of all optimal rootings of a gene tree as the size
of that strict consensus tree. The size of such a strict con-
sensus tree depends on three factors: First, the number of
leaves, say n, in the unrooted gene tree. Second, the num-
ber of multiple optimal rootings, say k, for that gene tree.

And third, the placement of these optimal rootings on the
unrooted gene tree.

The next lemma provides a tight upper bound on the
size of the strict consensus tree for any fixed value of
n and k.

Lemma 2 Given an unrooted gene tree GU with n leaves
and k distinct optimal rootings, the strict consensus tree
SC for the trees in OptRoot

(
GU , S

)
can have no more than

(n − 1) −
⌊

k
2

⌋
internal nodes. Furthermore, there exists a
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placement of the k roots on GU such that SC has exactly
(n − 1) −

⌊
k
2

⌋
internal nodes.

Proof Observe that, since the number of internal nodes
in any rooted binary tree with n leaves is n − 1, the lemma
is trivially correct if k = 1. Let GR1 be any optimally
rooted gene tree from OptRoot

(
GU , S

)
. We partition the

edges of GR1 into red and green edges exactly as described
in the proof of Lemma 1. Let r denote the number of nodes
v ∈ I

(
GR1

) \ rt
(
GR1

)
that contain a red edge. From the

proof of Lemma 1 we know that if v ∈ I
(
GR1

)
is such

that E(GR1(v)) contains only green edges, then the sub-
tree GR1(v)) must appear in SC, and that if v ∈ I

(
GR1

) \
rt

(
GR1

)
is such that E

(
GR1(v)

)
contains a red edge then

the cluster CGR1(v) cannot appear in SC. This implies that
the number of internal nodes in SC must be exactly equal
to (n − 1) − r. It now suffices to show that

⌊
k
2

⌋
is a tight

lower bound on the value of r.
Consider a placement of the remaining k −1 roots along

the edges of GR1 in a level-by-level breadth-first traversal
starting at the level immediately below the edges inci-
dent on the root of GR1. The key observation is that, with
such a placement, the size of r increases by exactly one
for every two additional roots placed on GR1 (since each
internal node of the tree has exactly two child-edges, the
placement of a root on one or both of which affects only
that internal node and nothing else). More precisely, if an
even number of additional roots have been placed, then
the placement of the next root will increase the value of
r by 1, while if an odd number of additional roots have
been placed, then adding the next root will not affect any
new internal nodes and therefore leave r unchanged. This
placement thus corresponds to a value of

⌊
k
2

⌋
for r. More-

over, a placement of the k − 1 additional roots for which
r <

⌊
k
2

⌋
is only possible if at least one of the inter-

nal nodes of GR1 has more than two children. Hence, the
level-by-level breadth-first placement must be optimal,
showing that

⌊
k
2

⌋
is a tight lower bound on r.

Lemma 2 will be useful later for estimating how “closely”
the set of optimal rootings is clustered together on its
gene tree. It will also be useful for comparing the actual
size (or information content) of the consensus reconcilia-
tion for a gene tree against the maximum possible size of
a consensus reconciliation for that gene tree. We refer to
optimal rootings that are clustered as closely as possible
(thus maximizing the size of the consensus reconciliation)
as maximally clustered optimal rootings. More formally:

Definition 5 (Maximally clustered rootings) Given an
unrooted gene tree GU with n leaves and k distinct optimal
rootings, we say that the k optimal rootings are maximally

clustered if the strict consensus tree SC for the trees in
OptRoot

(
GU , S

)
has exactly (n − 1)−

⌊
k
2

⌋
internal nodes.

Figure 2 illustrates the concept of maximally clustered
optimal rootings on a gene tree.

Results and discussion
Description of the data set and experimental setup
For our analysis we used a biological data set of over 4700
gene families from a broadly sampled set of 100, predomi-
nantly prokaryotic, species [4]. We constructed two sets of
gene trees for the gene families in the data set. The first set
was constructed using RAxML [20], a standard and widely
used software package for constructing maximum likeli-
hood trees. In the interest of time, we terminated runs that
took longer than two days (gene trees with many hundreds
of leaves), resulting in 4571 RAxML gene trees. The sec-
ond set of gene trees was constructed using the gene tree
error correction software TreeFix-DTL [21], and these
TreeFix-DTL trees represent error-corrected versions of
the RAxML trees. We again terminated runs taking longer
than a few days of running time, resulting in 4547 TreeFix-
DTL gene trees. Our set of RAxML gene trees represents
a “default” set of gene trees constructed using a standard,
commonly used method for gene tree construction, while
the set of TreeFix-DTL trees represents a more accurate
set of gene trees with fewer topological errors [21] con-
structed using a state-of-the-art error-correction method.
Analyzing these two sets of gene trees separately makes
it possible to assess the impact of gene tree error on the
prevalence and structure of multiple optimal rootings.

For computing DTL reconciliations, we used a default
event cost assignment of 〈1, 2, 3〉 for loss, duplication, and
transfer events, respectively, as well as two additional cost
assignments 〈1, 2, 2〉 and 〈1, 2, 5〉 to study the impact of
low and high transfer costs on the prevalence of multiple
optimal rootings.

Finally, to assess the impact of using a dated species tree
on multiple optimal roots, we also used a dated species
tree and restricted transfer events to only occur between
coexisting species [5].

Prevalence of optimal rootings
Basic results and impact of gene tree error. We com-
puted all optimal rootings for our two collections of gene
trees (RAxML trees and TreeFix-DTL trees) using the
standard event cost assignment of 〈1, 2, 3〉 for loss, dupli-
cation, and transfer events, respectively, and using an
undated species tree for reconciliation. The number of
gene trees with multiple optimal rootings varied widely
across the two collections of gene trees. Specifically, 2197
of the 4571 RAxML gene trees had more than one optimal
root, while only 1168 of the 4547 TreeFix-DTL gene trees
had more than one optimal root. This dramatic difference
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a

b

Fig. 2 Maximal clusterings. This figure illustrates the concept of maximal clustering of optimal roots on a gene tree. The unrooted gene trees in
(a) have maximally clustered optimal roots such that those roots are as close together on the tree as possible. On the other hand, the gene trees in
(b) do not have maximally clustered optimal roots since those roots are not as close together as possible on either of those trees

of 48.1% of gene trees for RAxML vs 25.7% of gene trees
for TreeFix-DTL is due to the higher topological error
rate in the RAxML gene trees, and suggests that error
in gene trees can greatly inflate the number of optimal
rootings. Furthermore, the fact that over a quarter of the
relatively accurate TreeFix-DTL gene trees have multiple
optimal roots shows that ambiguous rooting assignment
is a significant problem in practice even when using accu-
rate gene trees. We also measured the average number of
optimal rootings across the gene trees with multiple opti-
mal roots: The 2197 RAxML gene trees had, on average,
7.3 optimal roots, while the 1168 TreeFix-DTL gene trees
had 8.2. Parts (a) and (b) of Fig. 3 show the distribution of
the number of optimal rootings for the TreeFix-DTL and
RAxML gene trees.

Relationship to gene tree size. Next, we calculated the
average sizes of the gene trees, in terms of their number of
leaves, with one and with multiple optimal rootings. Sur-
prisingly, we found that the gene trees with more than one
optimal root are significantly smaller than the gene trees
with only one optimal root. Specifically, for the TreeFix-
DTL gene trees, the average size of gene trees with mul-
tiple roots is 21.6, while for the rest of the gene trees it is
38.7. The difference is less dramatic for the RAxML gene
trees, with average sizes 33.3 and 38.1, respectively, but
this is likely due to the high error rate of RAxML trees
and the corresponding inflation in the number of gene

trees with multiple optima. Figure 3c shows the average
sizes of gene trees with different numbers of optimal root-
ings. Overall, this analysis suggests that multiple optimal
roots are more common when smaller gene trees are rec-
onciled with a larger species tree. Larger gene trees, with
genes from a larger fraction of the species represented in
the species tree, are perhaps more likely to have sufficient
topological information to have only a single root with
minimum reconciliation cost.

In the remainder of this section, we report detailed
results only for the more accurate TreeFix-DTL gene
trees. In general, we observed that the same overall pat-
terns also held for the RAxML gene trees.

Impact of using different transfer costs. We repeated
the above analysis twice, using transfer costs 2 and 5 (and
keeping other event costs the same). A transfer cost of
2 implies that many more transfer events are inferred,
while a transfer cost of 5 leads to fewer transfer events
being invoked. For the TreeFix-DTL trees, using a trans-
fer cost of 2, the number of trees with multiple optimal
roots and the average number of optimal roots per mul-
tiply rooted gene tree both increase significantly to 2343
and 12.6, respectively. With a transfer cost of 5, the corre-
sponding values decrease to 1014 and 6.2, respectively, for
the TreeFix-DTL trees. A similar pattern of increase and
decrease was observed when using transfer costs 2 and 5,
respectively, for the RAxML trees. These results suggest
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a b

c d

e f

Fig. 3 Experimental results. a and b Fraction of gene trees in the data set with the specified number of optimal rootings, for the TreeFix-DTL and
RAxML gene trees, respectively. c Average gene tree size, in terms of number of leaves, for the TreeFix-DTL and RAxML trees, for gene trees with
different numbers of optimal rootings. d Percentage of multiply rooted gene trees that have maximally clustered rootings for different numbers of
optimal rootings. e Fraction of gene tree clusters conserved across all optimal rootings, for different numbers of optimal rootings. f Relationship
between gene tree size and frequency of transfer events at their roots. Results shown are based on DTL reconciliation with loss, duplication, and
transfer costs of 1, 2, and 3, respectively, and with an undated species tree. Gene tree sizes are shown in terms of number of leaves
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that the prevalence of multiple optimal roots is positively
correlated with the number of inferred transfer events.

Impact of using dated species tree. To understand the
effect of using a dated species tree, we used a dated version
of the same species tree (obtained from [4]) and restricted
transfer events to only occur between coexisting species
using the dated DTL reconciliation model described in
[5]. For the TreeFix-DTL trees, we observed that the num-
ber of gene trees with multiple optimal roots increased
to 1561, compared to 1168 with the undated species tree.
However, the average number of optimal rootings across
the gene trees with multiple optimal roots decreased to
5.5, compared to 8.1 with the undated species tree. Thus,
even though there were more trees with multiple roots,
the number of optimal roots per gene tree decreased. For
the RAxML gene trees, the number of gene trees with
multiple roots stayed almost unchanged, likely since that
number is already inflated even when using the undated
species tree, while the average number of optimal rootings
showed the same decreasing trend as the TreeFix-DTL
trees and reduced from 7.3 with the undated species tree
to 5.1 for the dated species tree.

Structure of optimal rootings
Arrangement of optimal roots on gene trees. We ana-
lyzed the gene trees that had multiple optimal roots and
studied the arrangement of their optimal root positions.
We first used the result of Lemma 2 to compute the num-
ber of gene trees that had maximally clustered optimal
rootings. Of the 1168 TreeFix-DTL gene trees with mul-
tiple roots, we found that 1110, i.e., 95%, had maximally
clustered rootings. Thus, for the vast majority of the mul-
tiply rooted gene trees, all optimal roots were clustered
closely together on the gene tree. This is a highly desir-
able property since it makes it easier to estimate the “true”
root position and also maximizes the size of the consen-
sus reconciliation, leading to more complete evolutionary
inferences even after accounting for rooting uncertainty.
Figure 3d shows how the fraction of gene trees with max-
imally clustered rootings varies as the number of optimal
rootings increases. Interestingly, we observed a striking
difference between the average sizes of the multiply rooted
gene trees with maximally clustered rootings and those
without, with average sizes 19.8 and 57.1, respectively. In
line with the previous observation that smaller gene trees
tend to have more optimal rootings, the average num-
ber of optimal rootings is significantly higher for the gene
trees that are maximally clustered (8.3) versus the gene
trees that do not have maximally clustered rootings (4.7).
For the RAxML gene trees, we found that a much smaller
fraction of multiply rooted gene trees had maximally clus-
tered rootings, only 1197 out of 2197, pointing again to
the very large impact of gene tree error on the structure of
optimal rootings.

We further studied those gene trees whose optimal
roots were not maximally clustered to gauge how clus-
tered together the roots were in this case. We computed
consensus reconciliations and calculated, for each such
gene tree, the number of internal nodes in its consensus
reconciliation and divided this by the theoretically maxi-
mum possible size for that consensus reconciliation based
on Lemma 2. We call this ratio the clustering ratio. The
more clustered the optimal roots of a gene tree, the closer
this ratio is to 1, while a less clustered set of rootings
pushes the ratio towards 0. The average clustering ratio
was 0.88 for the TreeFix-DTL gene trees whose roots were
not maximally clustered. This clustering ratio is close to 1,
suggesting that even when optimal roots are not maxi-
mally clustered, they tend to be close to each other on the
gene tree. Results were similar for the RAxML trees, with
a clustering ratio of 0.79 for gene trees whose roots were
not maximally clustered.

Interesting patterns for singly rooted and multiply
rooted gene trees. When comparing singly rooted and
multiply rooted TreeFix-DTL gene trees, we noticed that
the roots of singly rooted gene trees are predominantly
(95% of the time) labeled as speciation events and were
never labeled as a transfer event, while the roots of mul-
tiply rooted gene trees had a much more equitable dis-
tribution of assigned event types with 37.6% of the roots
labeled as speciations, 22.3% as duplications, and 40.1%
as transfers. This is a surprising result and suggests that
the presence of a transfer at the root is a very strong indi-
cation of the presence of multiple optimal roots. We also
noticed that smaller gene trees are far more likely to have
transfer events at their roots. This relationship is clearly
depicted in Fig. 3f, and holds true for both TreeFix-DTL
and RAxML trees. This observation also helps explain
the previously discussed relationship between gene tree
size and prevalence of multiple optimal rootings where
we observed that smaller gene trees tend to have more
optimal rootings.

When considering only multiply rooted TreeFix-DTL
gene trees, we observed that multiply rooted gene trees
without maximally clustered rootings had almost 71% of
root nodes labeled as speciations compared to only 37%
for the multiply rooted gene trees with maximally clus-
tered rootings. This may be partly due to the fact that
the gene trees that do not have maximally clustered root-
ings are significantly larger on average and thus have
significantly fewer transfer events at their roots.

Consensus reconciliations
Size of consensus reconciliations. Next, we analyzed
the consensus reconciliation for each multiply rooted
TreeFix-DTL gene tree and measured the sizes of the
consensus reconciliations. Recall that a consensus recon-
ciliation only shows the reconciliation for those portions
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of the gene tree that are conserved across all its opti-
mal rootings. Thus, we first measured how much of the
gene tree is actually conserved across all rootings, i.e., for
each unrooted gene tree, we calculated the number of
internal nodes in the strict consensus of its optimal root-
ings divided by the number of internal nodes in any one
of the optimal rootings. This is motivated by the simple
observation that a larger consensus reconciliation con-
tains more evolutionary information about the original
unrooted gene tree than a smaller consensus reconcilia-
tion for that tree. For all TreeFix-DTL gene trees, this ratio
was 0.89, showing that across the entire data set, reconcil-
iation information could be inferred for 89% of the nodes
in the gene trees even after accounting for multiple opti-
mal rootings. When limiting this analysis to only multiply
rooted gene trees, the ratio falls to 0.58, indicating that
even for multiply rooted gene trees, reconciliation infor-
mation can be meaningfully inferred for almost 60% of the
nodes in the gene tree. This ratio is not any larger simply
because of the small average size of the multiply rooted
gene trees and the large average number of optimal root-
ings in those trees. Figure 3e shows this ratio for multiply
rooted gene trees with different numbers of optimal roots
for both TreeFix-DTL and RAxML trees.

Event and mapping inference from consensus rec-
onciliations. We checked how often the nodes of the
consensus reconciliation were assigned a fully consistent
event type or mapping across all optimal rootings and all
sampled optimal reconciliations for each rooting. (Recall
that to account for reconciliation uncertainty, in addition
to rooting uncertainty, we randomly sample 100 optimal
reconciliations for each optimal rooting.) We observed
that 93% of the nodes in the consensus reconciliations
of the multiply rooted TreeFix-DTL trees were assigned
a consistent event type (speciation, duplication, or trans-
fer), while 83% were mapped consistently to the same
node on the species tree. These numbers are only about
5% smaller than the averages for singly rooted gene trees,
showing that the event and mapping assignments remain
overwhelmingly conserved across different optimal root-
ings. Overall, these results show that unrooted gene trees
can be meaningfully reconciled and high-quality evolu-
tionary information can be obtained from them even after
accounting for multiple optimal rootings. Corresponding
numbers for the RAxML trees were 89 and 67%, respec-
tively, showing that gene tree error greatly affects not only
the prevalence and structure of optimal rootings but also
the consistency of event and mapping assignments in the
reconciliation itself.

Surprisingly, we observed that the root nodes of con-
sensus reconciliations (of multiply rooted gene trees) had
very low event and mapping consistency compared to
other nodes in consensus reconciliations. Specifically, for
the multiply rooted TreeFix-DTL trees, only 11% of the

root nodes had a consistently assigned event and only
5% had a consistently assigned mapping. For the RAxML
trees, these numbers were 36 and 8%, respectively. This
is in stark contrast to the very high consistency of events
and mappings for the non-root nodes in the consensus
reconciliations (98 and 88%, respectively, for TreeFix-
DTL trees, and 91 and 70%, respectively, for RAxML
trees). In addition, and also to our surprise, we observed
that each of the 3379 singly rooted TreeFix-DTL trees
and 2373 of the 2374 singly rooted RAxML trees had
a consistent mapping and event assignment at the root.
This, again, stands in stark contrast to the root mapping
and event assignments for multiply rooted gene trees.
These observations have important implications for stud-
ies focused on inferring locations of gene birth on the
species tree, e.g. [4], especially when gene tree rooting
is uncertain.

Conclusion
In this paper, we studied the problem of DTL reconcil-
iation with unrooted gene trees. We provided the first
in-depth analysis of the prevalence and structure of mul-
tiple optimal rootings and of their impact on the inferred
reconciliation. We introduced the notion of a consen-
sus reconciliation, which accounts for rooting uncertainty,
and provide the first computational tools for comput-
ing consensus reconciliations. Our analysis uncovered the
drastic impact of gene tree error on optimal rootings,
and we also studied the impact of alternative event cost
assignments and of using dated DTL reconciliation. Our
results confirm that a significant fraction of gene trees
that are used for DTL reconciliation have multiple opti-
mal rootings. They also show that the number of these
optimal roots is especially high for trees that are smaller
in size. However, since most of these optimal roots are
closely clustered together in the gene tree, we discov-
ered that the number of subtrees in the gene tree actually
affected by the presence of multiple optimal roots is rel-
atively low. Furthermore, we found that the vast majority
of the subtrees that are conserved across all of the opti-
mal rootings of a gene tree are reconciled identically
across all optimal rootings. Our results, along with the
new computational tools and techniques introduced in
this paper, will help biologists perform more accurate
analysis of gene family evolution by explicitly account-
ing for uncertainty in gene tree rooting when using DTL
reconciliation.

This work provides several useful directions for future
research. For instance, it would be useful to investigate
if the fact that optimal roots almost always appear clus-
tered together on any gene tree can be used to estimate
the “true” root for that gene tree. Similarly, it would be
interesting and informative to systematically compare the
accuracy of gene tree rooting using DTL reconciliation to
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other rooting methods and to identify the evolutionary
conditions under which reconciliation-based rooting fails
to perform well.
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