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ABSTRACT  Objective: Vectorcardiography (VCG) as an alternative form of ECG provides important
spatial information about the electrical activity of the heart. It achieves higher sensitivity in the detection
of some pathologies such as myocardial infarction, ischemia and hypertrophy. However, vectorcardiography
is not commonly measured in clinical practice, and for this reason mathematical transformations have been
developed to obtain derived VCG leads, which in application in current systems and subsequent analysis can
contribute to early diagnosis and obtaining other useful information about the electrical activity of the heart.
Methods and procedures: The most frequently used transformation methods are compared, namely the Kors
regression method, the Inverse Dower transformation, QLSV and the Quasi-orthogonal transformation. These
transformation methods were used on 30 randomly selected records with a diagnosis of myocardial infarction
from the Physikalisch-Technische Bundesanstalt (PTB) database and their accuracy was evaluated based on
the calculation of the mean square error (MSE). MSE was subjected to statistical evaluation at a significance
level of 0.05. Results: Based on statistical testing using the nonparametric multiselective Kruskall-Wallis test
and subsequent post-hoc analysis using the Dunn method, the Kors regression as a whole method achieved
the most accurate transformation. Conclusion: The results of statistical analysis provide an evaluation of
the accuracy of several transformation methods for deriving orthogonal leads, for possible application in
measuring and evaluation systems, which may contribute to the correct choice of method for subsequent
analysis of electrical activity of the heart at orthogonal leads to predict various diseases.

INDEX TERMS Transformation methods, transformation matrix, vectorcardiography, statistical evaluation.

Electrocardiogram (ECG) is currently the most common
method in clinical practice for the diagnosis of heart disease.
The ECG is most often measured as the potential difference
between the electrodes placed on the patient’s chest. The
most commonly used clinical ECG system is the 12-lead
ECG, which monitors basic cardiac electrical activity from
12 different angles.

Another method that measure the electrical activity of
the heart is vectorcardiography (VCG), which represents a
slightly different approach. The basic mathematical model
describing the heart cycle as a moving dipole. This dipole can
be represented as vector of the electrical forces of individual
heart cells [1]. This vector is represented by three orthogonal

components and time, where direct measurement of these
components is the basis of vectorcardiography.

The VCG is projected into three mutually perpendicular
planes: sagittal, transversal and frontal and is most often mea-
sured using Frank lead system [1]. Other VCG lead systems
that have been published are for example McFee and Parun-
gao [2], SVEC III [3], and hybrid lead systems [4]. However,
these systems were used rarely. Nowadays, the visualization
of a vectorcardiogram is usually performed using specialized
software. The curve of the vectorcardiogram has the shape
of a curve determined by the time-traveling vector of the
dipole moment. This method has proved promising because it
shows changes in the direction and magnitude of the electri-
cal forces of the heart revolution. This information is very
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important for the diagnosis of acute coronary syndromes,
unfortunately, classical methods such as ECG are still pre-
ferred in clinical practice [5]-[7]. The benefits of a 12-lead
ECG for the diagnosis of heart disease are unquestionable.
However, there are studies whose results indicate a higher
sensitivity of VCG, for example in the diagnosis of atrial
enlargement and right ventricular hypertrophy, and it has been
suggested to reconsider the frequency of 12-lead ECG use in
favor of VCG in clinical practice [8], [9]. The use of VCG
has also become useful in some specific situations, such as
the assessment of intraventricular conduction defects in com-
bination with inactive areas, identification and localization
of ventricular preexcitation, evaluation of specific aspects
of Brugg syndrome and estimation of the severity of some
enlargements [10]. VCG also achieves higher sensitivity in
the QRS complex analysis for better patient selection for
cardiac resynchronization therapy, detection of myocardial
injury [11] or extraction of VCG features from QRS [12] to
detect ischemia.

Vectorcardiography can be measured by several different
lead systems, but Frank orthogonal lead system is the most
common in clinical practice. It is measured using three bipo-
lar leads that are perpendicular to each other. It consists of
seven electrodes marked with capital letters I, E, C, A, M,
F and H. Each electrode has its location, see the Figure 1.

FIGURE 1. Location of electrodes in Frank lead system [13].

Electrode H is located on the neck, electrode F on the
left leg. Electrode E is located on the front of the chest
and electrode M is located opposite on the back. Electrode
I is located on the right central axillary line and electrode
A on the left axillary line. The last electrode C is placed
between the electrodes A and E due to the closest position
to the heart [14]. As can be seen in Figure 1, the individual
electrodes are routed through a resistor network. Malmivuo
and Plonsey [13] explains the correct connection of these
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resistors and their correct values in their book. The individ-
ual VCG leads are derived using mathematical equations 1,
where P,, Py and P, represents the potentials at the indi-
vidual electrode clips and I, E, C, A, M, F, H represent the
individual electrodes [14]. Macfarlane et al. [15] explained
the calculations of equations 1, which are based on a resistor
network.

P, =0,610-A+0,171-C—0,781 -1

Py =0,655-F +0,345-M — 1,000 - H

P.=0,133-A40,736-M — 0,264 -1 — 0,374 - E
—0,231.-C 1

Despite some advantages over standard methods, VCG is
rarely measured in clinical practice. The main reason is the
inexperience of this method among healthcare professionals
and also the insufficient computer technology of the last
century, where the first loops were drawn by hand on graph
paper. Due to the lack of VCG recordings and well established
12-lead ECG, transformation methods for converting 12-lead
ECGs to VCG leads were derived. These methods could
then be used in the systems to obtain additional important
information. The accuracy of the transformation method is
key in obtaining an accurate derived VCG record, especially
in pathological records, where transformation achieves worst
accuracy. In the following chapters, attention is paid to the
most frequently used transformation methods in publications
for the conversion of 12-lead ECG to 3-lead VCG.

Il. TRANSFORMATION METHODS

The first consideration of the possible transformation of indi-
vidual lead systems was presented by the authors in [16].
In publication [17], Kornreich described that 12-lead ECG
and Frank lead system are very similar in terms of their infor-
mation content. Therefore, he stated that their mutual trans-
formation is possible. This was followed by the first attempts
at transformation based on transformation from VCG to
12-lead ECG by Dower et al. [18], [19]. Later, Wolfet al. [20]
pointed out, that the measurements from orthogonal leads
can contribute to better diagnostics. He therefore consid-
ered the possibility of creating a bidirectional method for
the transformation of 12-lead ECG and VCG. The focus of
transformation methods is mainly on QRS complex, however,
there are also transformations that focus on other parts of
the cardiac cycle. The mathematical notation of the transfor-
mation method can be expressed as a multiplication of two
matrices according to equation 2, where VCGy,, represent
transformed VCG leads, M is transformation matrix and
E is matrix whose rows are formed by independent ECG
leads.

VCGyer =M -E )

Transformation methods for deriving orthogonal lead sys-
tems are an important method for obtaining other useful
information about cardiac activity.
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A. KORS REGRESSION TRANSFORMATION

The transformation matrix presented by Kors was based on
a regression technique for a group of patients from the CSE
(Common Standards for Electrocardiography) database. The
coefficients of the transformation matrix were derived by
minimizing the mean error between the directly measured
VCG and the transformed VCG. In this way, Kors derived
several transformation matrices for different ECG segments.
He then found that the matrices did not differ much from
each other. The resulting matrix, which is shown in Table 1,
is based on the regression of the QRS complex [21].

TABLE 1. Transformation coefficients of Kors regression method.

Lead 1 11 V1 V2 V3 V4 V5 Vo6
X 038 -0,07 -0,13 0,05 -0,01 0,14 0,06 054
Y -0,07 0,93 006 -002 -005 006 -0,17 0,13
z 0,11 -023 -043 -006 -0,14 -020 -0,11 031

B. INVERSE DOWER TRANSFORMATION (IDT)

Dower et al. [18] introduced the possibility of obtaining
12-lead ECG from Frank lead system, from which he sub-
sequently derived the transformation matrix [19], [22]. Later,
Edenbrandt and Pahlm [23] derived a pseudo inverse matrix
for deriving VCG from ECG leads. This matrix was named
as the Inverse Dower transform whose coefficients are in
Table 2.

TABLE 2. Transformation matrix for Inverse Dower transformation.

Lead 1 11 V1 V2 V3 V4 V5 V6
X 0.156  -0.010 -0.172  -0.074  0.122 0231  0.239  0.194
Y -0.227  0.887 0.057  -0.019 -0.106 -0.022  0.041  0.048
Z 0.022  0.102 -0229 -0.310 -0.246 -0.063 0.055 0.108

C. PLSV AND QLSV TRANSFORMATION

The transformation matrices derived by the regression
method focus mainly on the QRS complex and the accu-
racy of the transformation for the P and T waves is consid-
ered sufficient. Due to the fact that some pathologies also
interfere to a significant extent in the P and T waves, it is
necessary to have transformations focusing on these parts of
the heart revolution. Therefore Guillem et al. [24] presented
a transformation matrix based on a regression method that
is optimized for the P wave called PLSV (P Least Square
Value), whose coefficients are in Table 3. They also derived
a matrix focused only on the QRS complex called QLSV (Q
Least Square Value), see Table 4. Both of these matrices were
derived from dataset of 124 patients.

D. QUASI - ORTHOGONAL TRANSFORMATION

Recording from any ECG system can be converted to
a vectorcardiographic loops but it cannot be consid-
ered a full-fledged orthogonal lead. These derived sys-
tems are called as quasi-orthogonal systems and are an
approximation of Frank lead system. One of the most
commonly used quasi-orthogonal systems is derived by
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TABLE 3. QLSV transformation matrix.

Lead 1 11 Vi V2 V3 V4 V5 V6
X 0.199  -0.018 -0.147 -0.058 0.037 0.139 0232 0.226
Y -0.164  0.503 0.023  -0.085 -0.003  0.033 0.060  0.104
zZ 0.085 -0.130 -0.184 -0.163 -0.193 -0.119 -0.023 0.043

TABLE 4. PLSV transformation matrix.

Lead 1 11 Vi V2 V3 V4 V5 V6
X 0370  -0.154 -0.266  0.027 0.065 0.131 0203 0.220
Y -0.131  0.717 0.088  -0.088  0.003 0.042 0.048  0.067
zZ 0.184 -0.114 -0319 -0.198 -0.167 -0.099 -0.009 0.060

Kors [22], whose expression can be represented according to
equation 3.

X =V6
Y =1
Z=-0,5-V2 3)

Based on the measurement of the average absolute devia-
tion and also from the evaluation of cardiologists, Kors con-
cluded that the transformation method based on the regression
approach achieves higher accuracy [21].

Ill. MATERIAL AND METHODS

For the possible application of transformation methods to
health care systems, sufficient analysis is needed to verify
the significance of the individual method. Statistical analy-
sis is performed to determine which transformation method
achieves the highest accuracy in deriving orthogonal lead
systems. The basis for statistical analysis is a set of sufficient
data. These files must first be processed in an appropriate
manner in order to be able to work with this data.

A. STUDY POPULATION

In this study, ECG records from the Physikalisch - Technis-
che Bundesanstalt diagnostic database, which were recorded
from healthy volunteers and patients with various heart dis-
eases at the Cardiology Department of the Benjamin Franklin
University Clinic in Berlin, Germany, were used. The indi-
vidual records of this database consist of 15 simultaneously
recorded signals: a conventional 12-lead ECG and 3-lead
Frank orthogonal system. The signals were acquired for
2 minutes with a 16-bit resolution in the range of +16.384 mV
and sampled at a sampling frequency of 1 kHz. The PTB
database contains records from 294 subjects with different
diagnoses. For the purposes of this study, 30 records diag-
nosed with myocardial infarction were selected from this
database [25], [26].

B. DATA PREPROCESSING

As these are biological data (ECG/VCG), interfering com-
ponents are also measured together with the required signal.
Most of the interfering signal components have already been
removed from the original database, but there are still fluctu-
ations on the isoelectric line. Before the statistical evaluation
itself, it is necessary to remove baseline wandering. This
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FIGURE 2. Examples of transformation methods used on a 12-lead ECG from a randomly selected record s0554,e, with a diagnosis of myocardial
infarction. The blue curve indicates the VCG measured by the Frank lead system and the red curve indicates the transformed curve.
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FIGURE 3. Filtration of baseline wandering from a randomly selected
record s0554rem (lead Z) with a diagnosis of myocardial infarction.

was achieved by applying a Savitzky - Golay filter with a
window length of 1200, which detects this unwanted inter-
fering component in the signal. The window length value
was based on the sampling frequency and signal length. The
entire length of the record, which is two minutes, was used for
preprocessing and subsequent analysis. For clarity, Figure 3
shows the portion of the record where the red curve indicates
the filtered record and the blue curve indicates the original
with marked fluctuating component (black).

After data alignment, linear transformation methods were
applied to 12-lead ECGs to obtain derived orthogonal lead
systems. These derived orthogonal lead systems were then
compared with directly measured orthogonal leads measured
by Frank lead system, which were considered here as refer-
ence values.

C. STATISTICAL ANALYSIS
When testing hypotheses, the alpha significance level is deter-
mined. 95% (0.95) is considered a reliable estimate and the
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significance level is the remaining 5% (0.05). If the differ-
ences between the two files tested are less than alpha, then the
records differ in significance level. In statistics, the mean and
median are most often determined to perform a statistical test,
then the statistical analysis is based on hypothesis testing.
The null hypothesis (Hp) represents equilibrium while the
alternative hypothesis (H,4) then expresses imbalance. Based
on the selected statistical test, either the null hypothesis is
rejected and the alternative hypothesis is accepted, or vice
versa [27], [28].

Statistical analysis and all necessary calculations for indi-
vidual methods were performed in the software environment
Matlab 2018b. Statistical analysis was performed from the
mean square error (MSE) results between the derived orthog-
onal system with the directly measured orthogonal system for
each lead (X, Y, Z) calculated by equation 4.

1 n
MSE = —- ZI: (Vi —oV)? 4)
=

where n is the length of the record, Vi is the original mea-
sured vectorcardiography and oVi is the derived vectorcar-
diographic record. With this step, we got input values for
statistical analysis.

In order to choose the right method enabling the compar-
ison of MSE for individual methods and individual leads,
it was necessary to verify the normality of the data. We tested
the normality using the Shapiro - Wilk’s test. Shapiro - Wilk’s
test, sometimes also known as W-test, can be defined as:

(X ayi)

==, -2 )
Y=y
where y is an ordered sample of size n to be tested, a =
1
(@i, ...,a,)" is such that (n — 1)72 )_ a;y; is the best lin-

ear unbiased estimate of the standard of the y; assuming
normality. From a practical point of view, a normal proba-
bility graph should always be accompanied by a W-test to
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provide qualitative information on the shape of the sample
distribution [29], [30].

All tests are evaluated at a significance level of 0.05. In this
case, they are multi-sample independent data and specific
multi-sample tests of statistical analysis must be applied to
them. These tests include, for example, the homoskedas-
ticity tests of the Bartlett test, where the presumption of
normality must be met, and the Levene test, which is less
sensitive to the violation of the presumption of normality
compared to the Bartlett test. We also have tests to verify the
compliance of the mean values, respectively medians. These
tests include ANOVA, where the assumption of normality
and homoskedasticity must be met, the Kruskall-Wallis test,
which is applied in case of non-compliance with normality.

As these are biological ECG/VCG data, where a normal
distribution is usually not expected, non-parametric tests can
be used. The Kruskal-Wallis test is a nonparametric analog
of one-way analysis of variance, so it is sometimes called a
nonparametric ANOVA. It is used when we want to compare
the mean values of more than two independent sets based
on a selection that does not meet the requirements for the
use of parametric analysis of variance (especially normality).
The procedure analogous to the Mann-Whitney test is used
to calculate the observed value of the test statistic. It can
be said that the Kruskal-Wallis test is an extension of the
Mann-Whitney test to more than 2 selections. All n observed
values of the quantity are arranged in an increasing sequence
and their order is determined. We arrange these orders in a
table and determine the so-called sums of orders for individ-
ual T, selections. The total sum of all orders is (6). The (7)
are used as test statistics [31], [32].

nn+1)

T1+-~-+Tn=T (6)
12 & TP
Q=—3(n+l)+—n(n+1)§n—i
—3m+1 @)

The critical values of this statistic are tabulated in special
tables. If the ranges of the individual selections are at least
5 elements, the test statistic Q has approximately X? distri-
butions with k-1 degrees of freedom if the null hypothesis
is valid. Then p — value = 1 — Fy (xops), where Fy is
a distribution function X? with k-1 degrees of freedom and
XoBs is observed value [31]-[33].

IV. RESULTS

After applying the transformation method to the filtered 12-
lead ECG data, the MSEs between the derived and directly
measured orthogonal lead were calculated. Figure 4 shows
boxplot visualization of the mean square error for all trans-
formation methods used in individual leads.

Prior to the statistical analysis itself, remote observations
were detected in the data by the method of internal walls.
Due to the fact that these are biological data that no longer
carry significant interfering components and values in remote
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FIGURE 5. Gaussian curve with histograms of the tested methods.

observations can be expected, remote observations have been
retained in the data set.

A. NORMALITY TEST
To verify the normality of the data by Shapiro - Wilk’s test,
the following hypotheses were tested:

e Hy: Data is a selection from a normal distribution.

o Hy: —Hj (negation of the null hypothesis)

All p-values are <0.05. From the results of the p-values
and based on Figure 5 it can be stated that the assumption
about the normality of MSE must be rejected for all analyzed
data and in further testing we move to non-parametric tests.

Another way to verify the normality of the data is to use a

QQ diagram.

B. COMPARISON OF MISE FOR COMPARED
TRANSFORMATION METHODS

Based on the results of the Shapiro — Wilk’s test, the data
are subjected to the Kruskal - Wallis test. This test is a
nonparametric analog to one-way analysis of variance, so it is
sometimes called a nonparametric ANOVA. Just as analysis
of variance is a multi-sample test of the agreement of the
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TABLE 5. Kruskal-Wallis median concordance test of MSE for individual
leads.

Lead | X Y Z
p-value ‘ <0,001 <0,001 <0,001

mean values, the Kruskal-Wallis test is a multi-sample test of
the median agreement, generally the distribution agreement.

. Kors _ IDT _ Quasi _ QLSV .
o Ho:xp3" =xy5 =x55 =x55 (There are no statis-

tically significant differences between the median MSE
of the compared methods)

o Hyj: —Hjp (At least one pair of methods differs statisti-
cally significantly in their median MSE)

From the Table 5 we can see that based on the Kruskal -
Wallis test it is possible to reject the null hypothesis for all
leads (p-value < 0.05), i.e. for all leads there is a statistically
significant difference in the medians of MSE of the compared
transformation methods. In the next step, it was determined
by post-hoc analysis (multiple comparisons) whether there
are so-called homogeneous groups of methods among the
compared methods, which would give outputs with compa-
rable MSEs on individual leads. We used Dunn’s method
for post-hoc analysis. The results of the post-hoc analysis
can be seen in the summary Table 6. The resulting order of
transformation methods derived from the letter scheme can
be seen in Table 7.

TABLE 6. Results of the post-hoc analysis of the Dunn test for each lead.

Lead X
Tr. method Kors Dower Quasi QLSV
Kors * <0,00I  <0,001 0,905
Dunn test (p-value) Dower * * 0,828 0,020
Quasi * * 0,003
QLSV * * * *
Mean value (mV=) Letter scheme
0,0007 Kors * * *
Post hoc analysis 0,0019 QLSV B * *
0,0035 Kvazi * * C *
0,0059 Dower * * C D
Lead Y
Tr. method Kors Dower Quasi QLSV
Kors * 0,210 <0,001 <0,001
Dunn test (p-value) Dower * * 0,136 0,267
Quasi * * * 0,999
QLSV * # * =
Mean value (mV <) Letter scheme
0,0013 Kors * * *
Post hoc analysis 0,0023 QLSV A B * *
0,0023 Kvazi * B C *
0,0036 Dower * B C D
Lead Z
Tr. method Kors Dower Quasi QLSV
Kors * 0,002 0,990 0,740
Dunn test (p-value) Dower * * 0,014 <0,001
Quasi * * * 0,319
QLSV * * * ®
Mean value (mV =) Letter scheme
0,0054 Kors * *
Post hoc analysis 0,0086 QLSV B * *
0,0105 Quasi B C *
0,0242 Dower * * * D

Based on the results of the post-hoc analysis in lead X,
it can be argued at the significance level of 0.05 that the
MSE:s of the Kors regression method and the QLSV method
is statistically significantly lower compared to the MSEs of
the Quasi-orthogonal method and IDT.
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The results of the post-hoc analysis in the Y lead, it can
be argued at the significance level of 0.05 that the MSEs of
the Kors regression method is significantly lower than for the
other transformation methods.

In the Z lead, it can be argued at the significance level
of 0.05 that the MSEs of the QLSV, Quasi-orthogonal and
Kors regression methods are significantly lower than in IDT.
A graphical representation of the post-hoc analysis can be
seen in Figure 6.

TABLE 7. Resulting order for each lead from post-hoc analysis.

| Resulting order for lead X | Resulting order for lead Y | Resulting order for lead Z |
Kors, QLSV Kors QLSYV, Kors, Quasi
Quasi, Dower 2. | Dower, Quasi, QLSV | 2. | Dower

B

V. DISCUSSION

Transformation methods were derived to obtain a derived
orthogonal lead system from a 12 lead ECG to obtain addi-
tional information from electrical activity of the heart. There
are many transformation methods. The most frequently used
transformation methods include the Kors regression method,
IDT, QLSV and the Quasi-orthogonal method. Examples of
the transformation methods used in this work can be seen
in Fig. 2, where the main goal is to obtain such a derived
curve in which no diagnostic information is lost. Choosing
the right transformation method is key to the correct detection
of pathology. With the right choice of the transformation
method and the subsequent processing of the derived VCG,
it can lead to a faster and more accurate diagnosis of a
certain pathology. However, each transformation method has
its advantages and disadvantages, especially in application to
pathological records. In this case, it is important to know the
effect of pathology on the ECG, because using the wrong
transformation method may result in the loss of important
information. For these reasons, the analysis was focused on
records diagnosed with myocardial infarction, because the
stages of the infarction affect both the QRS complex and the
T wave. It was also confirmed by the cooperating cardiolo-
gist from the Ostrava Municipal Hospital that the diagnostic
information of the derived VCG using the Kors regression
method was preserved compared to the VCG measured by the
Frank lead system and that application to current systems is
feasible.

One of the most commonly used transformation methods
is IDT and Kors regression method. More and more studies
point to more accurate results based on the use of the Kors
regression method [21], [34]-[37]. QLSV transformation is
specialized mainly in a certain part of the ECG (QRS com-
plex). The Quasi-orthogonal method is derived by approxi-
mation and is not suitable for further processing due to the
high error rate.

The Quasi-orthogonal transformation is very rarely used
due to the high error rate of this method [21], [38], [39].
Rubel et al. in [38] compared quasi-leads to another trans-
formation matrix. The evaluation was done by calculating
root mean square error (RMSE) and correlation. Rubel et al.
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FIGURE 6. Graphical representation of post-hoc analysis for individual leads.

in [38] confirmed that Quasi-orthogonal leads achieved the
worst results.

Several publications have studied the transformation meth-
ods introduced by Kors. The authors in [36] and [35] dis-
cussed which of the available transformation methods will
provide the QRS-T spatial angle most accurately to the angle
obtained from Frank lead system. For their analysis, they
used the two most commonly used transformation methods:
Kors regression and IDT. The authors argue that the resulting
values from the Kors regression method do not differ signif-
icantly from the values from Frank lead system. In their next
study, the authors also focused on the QRS-T solid angle, but
now in patients with hypertrophic cardiomyopathy. Similarly,
Man et al. [34] analyzed the QRS-T angle from derived VCG
records using the Kors regression method and IDT. In the
comparison between the derived records and the records mea-
sured by the Frank lead system, it was Kors regression method
that achieved more accurate results.

Statistical evaluation of individual transformation meth-
ods was performed by Jaros et al. [40]. In their study, they
examined the accuracy of transformation methods used on
50 physiological records. In their analysis, they performed
a Mann-Whitney nonparametric median test on calculated
MSEs and correlation coefficients between derived and
directly measured VCG records. From their results Kors
regression transformation was statistically the most accurate
for X and Y leads compared to other transformation methods.
The difference between Kors regression transformation and
the PLSV and QLSV methods was not statistically significant
for Z lead. From the overall evaluation in all leads, Kors
regression method was also the most accurate.

Certain analyzed transformation methods can then also be
used in clinical practice, given that a 12-lead ECG is the most
common method for analyzing electrical activity in the heart.
The use of VCG in clinical practice is especially appropriate
in applications of machine learning and other algorithms
using advanced computational algorithms [41]-[44]. It was
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in this analysis that the higher sensitivity of the VCG was
found compared to the conventional ECG. By extracting
certain features, a higher success rate of the pathology can be
achieved. The first use of transformation methods was made
in ECG systems of Marquette Electronics, Inc. used in [8]
and [23]. With more modern technologies, these methods
can be applied in practice and thus provide physicians with
other important information that could contribute to early
diagnosis.

VI. CONCLUSION

The accuracy of transformation methods is key to the correct
interpretation of derived VCGs. If the transformation method
is used correctly, it will increase the chance of successful
pathology detection from VCG. In this work, a total of four
transformation methods were analyzed: Kors regression, IDT,
QLSYV and Quasi-orthogonal method for possible use in clini-
cal practice on 12 lead ECG data. These transformation meth-
ods were applied to 30 pathological records diagnosed with
myocardial infarction from the PTB physionet database. The
results of the transformation methods were compared with
the original Frank lead system based on the MSE calculation.
The MSE values for the individual leads (X, Y, Z) were the
input values for the detailed statistical analysis, where we
wanted to verify that the values of the Kors regression method
achieve the lowest error rate in the signal transformation. The
nonparametric multiselective Kruskal-Wallis test was used
for statistical analysis, where we rejected the null hypothesis.
To complete our statistical test, a post-hoc analysis using the
Dunn test was required. Based on the results of the Dunn
test, it was determined which transformation method can
provide the most accurate derived orthogonal lead systems
with respect to the directly measured VCG. The statistical
analysis shows that, as a whole method, Kors regression
method achieves the best values and can be considered the
most accurate in application to the records diagnosed with
myocardial infarction. The use of this linear transformation
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method in clinical systems can contribute to the extraction
of spatial features for subsequent analysis and thus achieve a
more accurate diagnosis.
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