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NMR-based metabolomics in 
pediatric drug resistant epilepsy – 
preliminary results
Łukasz Boguszewicz1*, Ewa Jamroz2, Mateusz Ciszek1, Ewa Emich-Widera3, Marek Kijonka1, 
Tomasz Banasik1, Agnieszka Skorupa1 & Maria Sokół1

Epilepsy in children is the most frequent, heterogeneous and difficult to classify chronic neurologic 
condition with the etiology found in 35–40% of patients. Our aim is to detect the metabolic differences 
between the epileptic children and the children with no neurological abnormalities in order to define the 
metabolic background for therapy monitoring. The studied group included 28 epilepsy patients (median 
age 12 months) examined with a diagnostic protocol including EEG, videoEEG, 24-hour-EEG, tests for 
inborn errors of metabolism, chromosomal analysis and molecular study. The reference group consisted 
of 20 patients (median age 20 months) with no neurological symptoms, no development delay nor 
chronic diseases. 1H-NMR serum spectra were acquired on 400 MHz spectrometer and analyzed using 
multivariate and univariate approach with the application of correction for age variation. The epilepsy 
group was characterized by increased levels of serum N-acetyl-glycoproteins, lactate, creatine, glycine 
and lipids, whereas the levels of citrate were decreased as compared to the reference group. Choline, 
lactate, formate and dimethylsulfone were significantly correlated with age. NMR-based metabolomics 
could provide information on the dynamic metabolic processes in drug-resistant epilepsy yielding not 
only disease-specific biomarkers but also profound insights into the disease course, treatment effects or 
drug toxicity.

Based on the official International League against Epilepsy (ILAE) report, Fisher et al. proposed the following 
clinical definition of epilepsy embracing occurrence of any of the following conditions: - at least two unprovoked 
seizures which occurred >24 hours apart; - one unprovoked (or reflex) seizure together with a probability of fur-
ther seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, taking place over 
the next 10 years; - diagnosis of an epilepsy syndrome1

Being the most frequent chronic neurologic condition in childhood, epilepsy afflicts around 1% of children. 
During the first 10 years of life 1 out of 150 children is diagnosed with epilepsy, with the highest incidence rate 
observed during infancy2.

The etiology of epilepsy is found in 35–40% of patients. Large heterogeneity of epileptic syndromes and the 
pleiotropic effect of genes make classification of epilepsy difficult. Moreover, the research shows that between 6% 
and 41% patients, does not respond in an adequate manner to antiepileptic drugs (AEDs) and their disease evolve 
into refractory (intractable) epilepsy3,4.

In 2017, the ILAE released an update of classification of seizures and the epilepsies5–8. The diagnostic proce-
dure involves the seizure-type diagnosis (focal, onset, generalized onset, unknown onset) the epilepsy-types diag-
nosis (focal epilepsy, generalized epilepsy, combined generalized and focal epilepsy, or unknown epilepsy types) 
and recognizing epilepsy syndromes1,5–7. Among the poor prognosis factors in epilepsy a younger onset and a 
longer epilepsy duration are being mentioned. As reveals from the Ramos-Lizana et al. study3 the worse prognosis 
is expected in children below 12 months old suffering from symptomatic epilepsy accompanied with pathological 
neuroimaging study, or with frequent seizures before diagnosis of drug-resistant epilepsy. Another strong factors 
indicating poor prognosis are reported by Sillanpaa & Schmidt9 and include seizures with weekly frequency dur-
ing the first year of treatment or prior to treatment as well as diagnosis of remote symptomatic epilepsy.
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Though magnetic resonance imaging (MRI) is an appropriate tool to be applied to identify an epilepsy cause 
(e.g., tumors, traumatic brain injury, vascular malformations, hippocampal sclerosis, cortical malformations), 
in nearly 30% of cases there are no clear epileptogenic lesions (non-lesional or MRI-negative)10. In vivo pro-
ton magnetic resonance spectroscopy (1H-MRS) is helpful in localization or lateralization of the epileptogenic 
foci and in the patient monitoring during the antiepileptic therapy and/or after resection of the epileptogenic 
tissue. However, in case of the patients with non-lesional insular epilepsy the spectroscopic method is at least 
inadequate. Because there are only several lines present in the in vivo MR spectra - it is impossible to identify 
the molecular paths and find the real biomarkers from such spectra. The brain metabolites being disturbed are 
primarily N-acetyl aspartate (NAA), creatine (Cr) and phosphocreatine (PCr), cholines (Cho), glutamine (Gln) 
and glutamate (Glu)11–14. An additional difficulty is the fact that most of the works concern the epilepsy in adults, 
whereas, there is little data on the use of magnetic resonance spectroscopy in the studies of drug-resistant epilepsy 
in children. The latter, though valuable, comprise rather small and heterogeneous populations14,15.

High resolution in vitro NMR (HR NMR) spectroscopy of body fluids is more feasible for pediatric patients 
and gives insight into a significantly larger (about ten times) group of detectable metabolites. Application of 
multivariate projection methods to analyze the spectroscopic data allows for examination of the metabolome (i.e. 
detection of the low molecular weight metabolites present in a particular biological system: fluid, cells or tissue), 
to determine its changes and mutual correlations of the individual metabolites. Such approach to the studies 
of metabolism – called metabolomics16 – allows for better insight into the biological basis of drug resistance in 
epilepsy. Because metabolism is, an important regulator of neuronal excitability, thus its dysregulation after a sei-
zure, may lead to many damaging consequences. The influence of the “disturbed metabolism” (which is, however, 
under control) is seen in the ketone diet – such diet is being applied to reduce or prevent seizures in children with 
drug-resistant epilepsy17.

Thus, serum 1H NMR based metabolomics approach seems to be more suitable to detect the metabolic sig-
natures in epilepsy, to predict disease state and response to treatment. Serum as a systemic pool of metabolites, 
reflects all processes and their systematic disturbances, even those in the brain due to the bi-directional flow of 
endogenous metabolites between blood and brain compartments.

The central hypothesis of this work is that epilepsy has a unique chemical signature influencing the naturally 
occurring chemicals and metabolic pathways in the brain. Thus, our aim is to detect the metabolic differences 
between the epileptic children and the children with no neurological abnormalities in order to define the meta-
bolic background for therapy monitoring.

Materials and Methods
Subjects selection.  The study was approved by the ethical committee of the Silesian Medical University, and 
written informed consent was obtained from each child’s parent(s) or guardian to the participation of their child 
in the study. All methods were performed in accordance with the relevant guidelines and regulations.

48 patients were enrolled in the study. The patients were divided into two groups: the Epilepsy Group (EG) 
and the Reference Group (RG). EG included 28 individuals suffering from epilepsy (median age was 12 months, 
female to male ratio was 13:15). The seizure types, epilepsy types and epilepsy syndromes were defined accord-
ing to the International League Against Epilepsy Classification and Terminology (ILAE 2017). All children with 
epilepsy (EG) underwent diagnostic protocol including EEG, videoEEG, 24-hour EEG (in selected sapienti), 
laboratory tests for inborn errors of metabolism, chromosomal analysis and molecular study. All patients with 
epilepsy were treated with 1 to 5 antiepileptic drugs (AEDs): VPA = 23 (47,9%), LVT = 11 (22,9%), VGB = 9 
(18,8%), ACTH = 7 (14,6%), PB = 4(8,3%), CBL = 3 (6,3%), TPM = 2 (4,55%), LTG = 1 (2,1%), CLZ = 1(2,1%), 
OXC = 1 (2,1%). None of the patients was on the ketogenic diet (KD). As a result of treatment, 16 treated patients 
were seizures free.

EG was divided into 2 subgroups. The epilepsy group with seizures (EG1) included 12 patients with seizures 
in the course of study (median age was 10 months, female to male ratio was 4:8) [Table 1]. Age of epilepsy onset 
was 1–30 months. Focal onset seizures were classified in 2 patients, generalized onset seizures in 7 patients, focal 
and generalized onset seizures in 2 patients. Focal epilepsy type was classified in 2 patient, generalized type in 7 
patients, combined focal and generalized type in 2 patients, epileptic spasm in 1 patient and epilepsy syndromes 
in 8 patients (West syndrome in 5, Lennox-Gastaut syndrome in 2, Dravet syndrome in 1). The etiology of epi-
lepsy was established in 6 patients (structural etiology in 5 patients: hypoxic-ischemic encephalopathy in 4 and 
genetic etiology in 1 patient: Dravet syndrome) and remained unknown in 50% (n = 6). Development delay was 
identified in 10 patients.

EG2 was the subgroup of the patients with no seizures during the study (median age was 13 months, female 
to male ratio was 9:7, n = 16) [Table 2]. Age of epilepsy onset was 1–36 month. Focal onset seizures were clas-
sified in 8 patients, generalized onset seizures in 5 patients, focal and generalized onset seizures in 2 patients. 
Epilepsy types were classified as: focal epilepsy in 8 patients, generalized epilepsy in 5 patients, combined focal 
and generalized epilepsy in 2 patients. Epilepsy syndromes was established in 6 patients (West syndrome in 4, 
Lennox-Gastaut syndrome in 1, Dravet syndrome in 1). The etiology of epilepsy was established in 12 (75%) 
patients (structural etiology in 10 patients: brain malformation in 6, hamartoma in 1, hypoxic-ischemic enceph-
alopathy in 3, genetic etiology in 6 patient: Noonan syndrome, chromosomal aberration – trisomy 21, TSC, NF1, 
SCN1A mutation and metabolic etiology in 1 patient: methylomalonic aciduria) and remained unknown in 25% 
(n = 4). Development delay was identified in 13 patients, ASD in 1 patient.

In all EG patients the concentrations of valproic acid in serum were in the therapeutic range, the patients had 
normal liver and renal functions and the serum transaminases levels were normal.

The RG group included 20 patients (median age was 20 months, female to male ratio was 7:13). All children 
revealed no neurological symptoms, no development delay nor chronic diseases. The family and gestation history 
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were negative. No abnormalities were revealed in the routine laboratory tests, EEG and MRI of the brain. All 
children were drug free.

A relatively broad age span (from 3 to 48 months) of the EG group is caused by the differences in the age of 
epilepsy onset in the children and the resulting later diagnosis of the refractory epilepsy. However, in order not 
to reduce the already small group size, the youngest patients were not excluded from the study. On the other 
hand, since healthy children should not be subjected to research (due to ethical issues), the reference (RG) group 
was selected from the patients with minor health problems (according to the inclusion criteria described above) 
diagnosed in our Department. Such diagnostic procedures are particularly difficult under the age of 12 months. 
Thus, matching both groups on age was a challenge. To diminish the study limitation due to the age mismatch of 
the studied groups, the age correction was applied to the data, as described in detail in section 2.8.

Clinical presentations.  The clinical characteristics of the EG patients are shown in Tables 1 and 2.

Serum samples preparation for NMR spectroscopy.  Overnight peripheral blood samples were col-
lected between 6 and 9 a.m. In 5 patients, the samples were collected twice: before and after AED modification. 
The total number of acquired serum samples was 53 (33 in the EG group and 20 in the RG group). The sera 
samples for the metabolomics experiment were prepared according to the modified Bruker protocol18 involving 
two-step thawing (in 4 °C and at room temperature) and using phosphate buffer (pH 7.4) with D2O and TSP. The 
aliquots of 600 µl of the solution were poured into 5 mm NMR tubes (Wilmad WG-1235-7) and stored at 4 °C 
until the spectroscopic analysis.

Measurement protocols.  1H NMR spectra were acquired on a Bruker 400 MHz Avance III spectrometer 
(Bruker Biospin, Rheinstetten, Germany) equipped with a 5 mm PABBI probe. The quality assurance, measure-
ment and the post-processing procedures followed the protocol previously described by Boguszewicz et al. in the 
previous work18. Quality assurance tests were carried out in a daily manner prior to the start of the measurements, 
adjustment of acquisition parameters was always done for each measured sample. Spectra were acquired with 
constant receiver gain (90.5) and at temperature of 310 K. NOESY (Nuclear Overhauser Effect Spectroscopy), 
CPMG (Carr-Purcell-Meiboom-Gill), DIFF (diffusion edited) and two dimensional JRES (J-resolved) spectra 
were acquired for each blood serum sample.

The total number of acquired NMR spectra was 212 (4 spectra per each of 53 samples). Description and 
justification of the applied NMR acquisition sequences and parameters are available in Supplementary material.

Spectra post-processing.  Exponential line broadening (0.3 Hz) and automatic phase correction were 
applied using Topspin (Bruker Biospin). The Amix software (Bruker Biospin) was used for alignment of NMR 
spectra to alanine signal at 1.5 ppm, followed by narrowing of the spectral region to the range between 9.0–0.5 
ppm, removal of the residual water signal and spectral bucketing (with bucket size of 0.002 ppm). No normali-
zation was applied. Our previous results show that strict adherence to the sample preparation protocol and the 
measurement protocol provides very stable and reproducible results allowing for biological interpretations18–20.

Metabolite quantification.  1D positive projections of JRES spectra were used for quantification of low 
molecular weight metabolites, while the lipid signals were quantified based on the diffusion edited spectra. The 
peaks were integrated by area using AMIX (Bruker Biospin) and the integrals were measured in the spectral 

No Gen Age (month) OA Seizures types Epilepsy types Epilepsy syndromes Etiology AEDs Tried Co-morbidities

1 M 9 1 Focal Focal West syndrome Structural HIE LVT, VPA, VGB DD

2 M 7 5 Generalized Generalized Epileptic spasms Structural HIE LVT, VPA DD

3 M 48 6 Focal and Generalized Combined Focal 
Generalized Lennox-Gastaut syndrome Structural HIE VPA, LTG, TPM DD

4 M 7 3 Generelized Generalized West syndrome Unknown LVT, VPA, ACTH DD

5 F 30 30 Focal Generalized Combined Focal 
Generalized Dravet syndrome Genetic VPA, CLB

6 M 8 5 Generalized Generalized West syndrome Unknown VPA, ACTH, VGB DD

7 F 21 18 Generalized Generalized Unknown VPA

8 F 7 6 Generalized Generalized West syndrome Unknown VPA, VGB, ACTH DD

9 F 30 8 Focal and Generalized Focal and 
Generalized Lennox-Gastaut syndrome Structural HIE VPA, PB, CLZ, TPM DD

10 M 16 14 Generalized Generalized Unknown VPA, LVT DD

11 M 7 1 Generalized Generalized Unknown LVT, VPA DD

12 M 11 10 Focal Focal West syndrome Structural HIE ACTH,VPA DD

Table 1.  Clinical characteristics of epilepsy group (EG1) with seizures. Abbreviation: No – patient number; 
Gen - gender: male/female (M/F); Age - age at investigation; OA - age of epilepsy onset; HIE - Hipoxic-ischemic 
encephalopathy; AEDs - Antiepileptic drugs; VPA – Valproic acid; LVT – levetiracetam; VGB – Vigabatrin; 
ACTH –Adrenocorticotrophic hormone; PB –Phenobarbital; CLB – Clobazam; TPM – Topiramate; LTG 
-Lamotrigine; CLZ – Clonazepam; DD – developmental delay.
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regions defined individually for each low molecular weight metabolite, whereas in case of the lipid signals 0.12 
ppm range around a particular peak was applied.

Metabolite identification.  Metabolites identification was done based on comparison with reference com-
pounds library (in Chenomx NMR Suite Professional (Chenomx Inc., Edmonton, Canada)), multiplicity and 
scalar couplings information extracted from 2D JRES spectra as well as information from Human Metabolome 
Database (http://www.hmdb.ca/) and available literature21.

Age dependency.  Because the concentration of many metabolites change during the development, espe-
cially in infancy and toddlerhood22–24, the integral intensities of the NMR signals were investigated upon their 
age dependency and corrected using the residual method25,26. The residual method is based on determining the 
course of variation of a feature in the control group and calculating the predicted value of this feature for the 
entire dataset. The residuals are acquired by subtracting this predicted course from the observed values for each 
subject and represent the deviations from the course predicted for a control group (using the subject’s specific 
values for each covariate)25,26. The age dependency was determined from the metabolic profiles measured for the 
reference group – the patients revealing no metabolic disturbances due to epilepsy.

There are many publications that describe the normal spectral appearance and the concentrations of the 
metabolites in the developing organism. Such reports provide a basis for calculation the differences between the 
spectral data acquired for children and adults as well as a norm from where to investigate pathology22–24. In these 
works various mathematical functions are used to describe the changes in the metabolic concentrations with age 
(the monoexponential or multiexponential functions, logarithm and linear regression).

In our approach the percentage of the explained variance and the significance of the parameters of various 
models in the description of the relationship between metabolite integrals and age (monoexponential, multiex-
ponential, logarithm and homographic function) were analyzed. The homographic function was selected as it 
describes best the data variability and the desirable traits of monotonicity.

Spearman’s rank correlation coefficient, with standard significance threshold of p < 0.05, was chosen to deter-
mine if the nonlinear age-associated changes are observed in the acquired data. The analysis and modeling of the 
developmental metabolic changes were performed only for the statistically significant age-related correlations.

In accordance with the residual method the age-related dependencies of the metabolite concentrations were 
approximated by the homographic function CRG(age) defined as27:

= +C age a a
age

( )
(1)

RG
1

2

This is a rational function with a horizontal asymptote for age tending to +∞ equal a1, whereas the parameter 
a2 determines the developmental dynamics seen in serum metabolome.

No Gen
Age 
(month) OA Seizures types Epilepsy types

Epilepsy  
syndromes Etiology AEDs Tried Co-morbidities

1 M 12 4 Focal Focal West syndrome Structural (brain malformation) Genetic 
(Noonan syndrome) VPA, VGB DD

2 M 12 7 Generalized Generalized Unknown LVT, VPA DD

3 F 48 20 Focal Focal Structural (brain malformation) VPA, OXC ASD, DD

4 F 36 36 Focal Focal Unknown VPA

5 F 30 15 Generalized Generalized Unknown VPA DD

6 M 24 10 Focal Focal Structural (brain malformation) Genetic 
(chromosomal abberation Trisomy 21) VPA, PB DD

7 M 10 9 Generalized Generalized Structural HIE VPA

8 F 24 23 Focal Focal Structural (hamartoma) Genetic (TSC) VPA, VGB, DD

9 F 18 5 Generalized Generalized Unknown VPA,

10 F 7 4 Focal Focal West syndrome Structural (brain malformation) Genetic (NF1) VGB, ACTH, LVT DD

11 F 7 1 Focal Focal Structural HIE ACTH, VGB, LVT, VPA, CLB DD

12 F 3 1 Focal Focal Structural HIE PB, LVT DD

13 F 6 5 Generalized Generalized West syndrome Metabolic genetic (MA) VGB, ACTH DD

14 M 4 4 Generalized Generalized West syndrome Structural (brain malformation) VGB, LVT, ACTH DD

15 M 19 6 Focal and 
Generalized

Combined Focal 
Generalized Dravet syndrome Genetic VPA, LVT, CLB DD

16 M 14 4 Focal and 
Generalized

Combined Focal 
Generalized Lennox-Gastaut s. Structural HIE VPA, PB DD

Table 2.  Clinical characteristics of epilepsy group (EG2) without seizures. Abbreviation: No – patient number; 
Gen – gender: male/female (M/F); Age - age at investigation; OA - age of epilepsy onset; HIE - Hypoxic-
ischemic encephalopathy; AEDs - Antiepileptic drugs; VPA – Valproic acid; LVT – levetiracetam; VGB – 
Vigabatrin; ACTH –Adrenocorticotrophic hormone; PB –Phenobarbital; CLB – Clobazam; OXC –  
Oxcarbazepine; DD – developmental delay; ASD – autistic spectrum disorders; TSC – tuberous sclerosis 
complex; NF1 – neurofibromatosis; MA - methylmalonic aciduria.
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The parameters a1 and a2, describing the maturation processes, were estimated using the Gauss–Newton algo-
rithm and the nonlinear least squares method.

The statistical validity of the obtained model was checked with the normality test of the residuals and the sta-
tistical significance of the estimated parameter, the R-value > 0.45.

The age-related functions reflecting the metabolic changes in RG were assumed as the references course for 
the residual values calculation to make the level of the metabolomic marker independent of age for the R (RRG) 
and epilepsy (REG) groups25,26:

= − = −R C C age R C C age( ), ( ) (2)RG
measured
RG RG EG

measured
EG RG

where Cmeasured
RG  and Cmeasured

EG  are the metabolite integrals quantified from the NMR spectra.

Data analysis.  Multivariate analyses of the NMR spectra were carried out using SIMCA-P+ (Umetrics, vs. 
14) and Stata (StataCorp LP, vs. 13.1) software. The NMR variables were Pareto scaled. The initial analyses were 
conducted using unsupervised principal component analysis (PCA). Then, orthogonal partial least square dis-
criminant analysis (OPLS-DA) was applied. The results from the multivariate projection techniques (MPT) are 
presented graphically in two types of plots, which detailed description and interpretation is available in18.

Because of the relatively small size of the studied group validation of the supervised OPLS-DA model was 
carried out using internal cross-validation. The statistical significance of the estimated predictive power of the 
OPLS-DA model was tested using ANOVA of the cross-validated residuals (cv-ANOVA) test.

The metabolites integrals were evaluated for their statistical significance with t-student test and 
Mann-Whitney U (MWU) test (for non-normally distributed variables, Shapiro-Wilk).The correlations between 
age and the metabolites integrals were checked using Spearman’s rank correlation coefficients. Statistica software 
(Statsoft, v. 12) was applied for univariate statistics.

The final classification model based on the metabolite integrals and age corrected metabolite integrals (R) was 
built using linear discriminant analysis (LDA) for Z-normalized metabolite data. The LDA method is focused on 
finding the linear combination of the individual variables that will provide the greatest separation between the 
groups. The LDA model is based on assumptions that the observations in each group (EG and RG) have a multi-
variate normal distribution and the covariance matrices are equal across the groups but with different means. The 
assumptions of multivariate normality of the observation vector and the covariance matrix equality were tested 
using Doornik-Hansen and F (Box) tests, respectively.

The LDA results are presented graphically and tabulated. The assessment of metabolites importance for dis-
crimination between the EG and RG groups is based on LDA structure coefficients measuring the correlation 
between the discriminant function and each metabolite. The evaluation of LDA classification performance 
was carried out using a stepwise approach. First, the predictive power of the LDA model was validated using 
leave-one-out validation (LOO) using the prior probabilities of 0.53 and 0.47 for the EG and RG groups, respec-
tively. The association between the studied groups is presented by a scores plot, where the LOO discriminant 
scores (y-scale) are graphically presented for each patients in question (x-scale).

Then, the ROC curve was plotted as a measure for assessing the performance of LDA classifier, which corre-
sponds to the total proportion of the correctly classified observations and the area under curve (AUC).

The metabolic pathway analysis was done using MetaboAnalyst 4.0 (MetPA) with Fisher’s exact test chosen for 
an over-representation analysis and relative betweenness centrality for pathway topology analysis.

Results
Figure 1 shows the mean 1H-CPMG spectra of blood serum obtained from the EG (black) and RG (red) groups –  
the main metabolites are indicated by numbers.

The directions of the largest variation in the four types of the acquired NMR data was visualized using PCA 
method with the best separation between the EG and RG groups observed in the CPMG spectra. For this reason 
only the CPMG spectra were subjected to supervised OPLS-DA analyses. The PCA scores plot (Fig. 2a) dis-
plays clustering of the epileptic (EG) and non-epileptic (RG) children along the first principal component (t[1]) 
explaining 56.5% of the variation in the data. The PCA model goodness of fit (R2) and goodness of prediction 
(Q2) values are 0.815 and 0.693 respectively. In order to identify the epileptic molecular phenotype, two-class 
OPLS-DA was performed between the RG and EG groups. The OPLS-DA scores plot (Fig. 2b) displays distinct 
separation between these two classes, along the predictive component (t[1]) representing 15.1% (R2X = 0.151) of 
the predictive variation - the amount of variation in the data that is correlated to the class separation). The model 
parameters for the orthogonal variation (R2X(o) – variation in the data uncorrelated (orthogonal) with class 
separation, R2Y (cum) – total sum of variation related to class separation explained by the model and Q2 – good-
ness of prediction) were respectively: R2X(o) = 0.423, R2Y (cum) = 0.648 and Q2 = 0.379. The total variation 
explained by the OPLS-DA model is R2X(cum) = 0.662, p-value of cv-ANOVA < 0.001.

Since the metabolic profiles obtained for EG and RG were found to differ, a possible influence of epileptic sei-
zures occurring prior to blood collection on the metabolic profile of the blood serum was also investigated. There 
were, however, no statistically significant metabolic differences (OPLS-DA and MWU test) between the EG1 and 
EG2 groups. The EG1 and EG2 groups are denoted in Fig. 2b with various markers, but in view of the statistical 
results the information about seizures was not implemented into the OPLS-DA model and is used purely for 
visual assessment of data clustering.

The metabolites that discriminate the classes are identified based on the s-line plot from the OPLS-DA analysis 
(Fig. 3), where the color of the particular spectral points corresponds to their correlation with the class segrega-
tion (the more red color, the higher correlation (p(corr)) is)18. Metabolomic OPLS-DA analysis of the serum 1H 
NMR spectra allows identification of the discriminating metabolites (i.e. with p(corr) > 0.328) for the investigated 
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Figure 1.  Mean 1H-CPMG spectra of serum samples obtained from the EG and RG groups. Main detected 
metabolites are indicated: 1, lipids; 2, BCAA (branched chain amino-acids: leucine, isoleucine and valine); 3, 
lactate; 4, alanine; 5, acetate; 6, N-acetyl-glycoprotein (NAG); 7, glutamine; 8, acetone; 9, pyruvate; 10, citrate; 
11, creatinine; 12, choline; 13, methanol; 14, glucose.

Figure 2.  (a) PCA analysis of 1 H CPMG NMR serum spectra shows clustering of the epileptic (EG, Δ) 
and non-epileptic (RG, •) children. (b) The R2X scaled (distances in the plot correspond with the explained 
variation) score plot obtained from the OPLS-DA analysis of 1 H CPMG NMR spectra of serum samples 
from the patients with epilepsy (EG1, Δ, EG2,▼) and the reference subjects without epilepsy (RG, •). The 
information about seizures in EG patients (EG1 and EG2) was not implemented into the OPLS-DA model and is 
used purely for a visual assessment of data clustering.
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groups. Patients with epilepsy are characterized by the increased serum levels of NAG, lactate, creatine, glycine 
and lipids (methylene group at 1.3 ppm), whereas the serum levels of citric acid (at 2.55 and 2.7 ppm) and choline 
are decreased as compared to RG. The OPLS-DA identified discriminating metabolites were quantified and eval-
uated in terms of their statistical significance with the t-student and MWU tests. Table 3 lists the discriminating 
metabolites as well as the p values from the statistical significance tests and the p(corr) coefficients values from 
the OPLS-DA model.

To identify the potential differences between the EG and RG groups that may be age-dependent, Spearman’s 
rank correlation coefficients were calculated between age and 27 metabolite integrals (14 metabolites listed 
in Fig. 1 as well as formate, creatine, glycerol, methanol, phosphocholine, dimethyl sulfone, acetoacetate, 
3-hydroxybutyrate, lysine, betaine, threonine, glycine and pyruvate) obtained from the sera average spectrum 
from the RG group. Three metabolites were found to be significantly negatively correlated (formate, lactate and 
choline) and one metabolite was positively correlated (dimethylsulfone) with age (Table 3). The significantly 
age-related metabolites in the RG group were approximated by the homographic function (Eq. 1, Table 3) to 
obtain the reference metabolome course in the maturation (developmental) process. To remove the age depend-
ency in the concentration of metabolites, the residual values (Eq. 2) were calculated for the EG and RG data. 
Then, both age-independent and corrected (age-related) data were subjected to statistical analysis. Formate 
and dimethylsulfone were not important for the class discrimination before and after age-correction. The 
age-corrected choline became not statistically important while age-corrected lactate became very close to statis-
tical importance with the p value of 0.506 (Table 3).

The box plot representation of the relative changes in the significant metabolites identified by the OPLS-DA 
model as important to discriminate between EG and RG groups is presented in Fig. 4.

Based on the above results the classification LDA model was created using the significant metabolites (as clas-
sification variables) listed in Tables 3 and 4. The model assumption of multivariate normality was fulfilled in RG 
but not in the EG group. We failed in assessing covariance matrix homogeneity. However, it should be noted that 
the test statistics for homogeneity of covariance matrix are generally sensitive against to the lack of multivariate 
normality. Wahl and Kronmal suggest that linear rule for small (or even moderate) samples can potentially result 
in a greater across-sample stability of the results (with or without normality)29. If the nj:p ratios (where nj = num-
ber of elements in the group j and p = number of classification variables) are small, then the use of a linear rule is 
favored even with covariance heterogeneity30.

The linear discriminant function was calculated for maximal group separation. Table 4 shows the structure 
coefficients. All metabolites were positively correlated except for citrate (structure coefficient was −0.56). The 
total leave-one-out (LOO) classification results are included in Table 4. The prior probabilities, on which the 
classification results partially depend, are also reported in Table 4. The known groups are listed in rows, while 
the columns correspond to the grouping as assigned by the LDA model. Based on LOO classification true EG (28 
observation) had 75% observations correctly classified and 25% observation misclassified. Figure 5 visualizes the 
LDA model can distinguish between the groups.

The receiver operating characteristic (ROC) plot is useful for evaluation of a biomarker’s ability for classifying 
the group members and to quantify the diagnostic ability of the LDA model. The maximum potential effective-
ness of a biomarker expressed in the Youden Index as well as the area under ROC curve (AUC) being a common 
numeric summary of the ROC curve are provided in Fig. 5b which shows the ROC curve as a graph of the sensi-
tivity versus 1-specificity of the LOO scores from Fig. 5a. The sensitivity is the fraction of epileptic cases that are 
correctly classified by the LDA model, whereas the specificity is the fraction of non-epileptic cases that are cor-
rectly classified. The prior probability for epileptic cases was 0.53 as presented in Table 4. The global performance 

Figure 3.  The OPLS-DA s-line plot indicating the metabolites that differentiate the epileptic, EG, and non-
epileptic, RG, groups. The correlation of particular metabolites towards segregation between the EG and RG 
groups (p(corr)) is assessed according to the associated color bar.
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of the LDA model in context of ROC analysis is summarized by the AUC. The estimates of AUC (0.808) and 
95%CI (0.686, 0.931) match well. The proposed threshold was 0.02.

The joint metabolic pathway analysis showing altered metabolic pathways in the EG group is presented in 
Fig. 6. The pathways were identified based on significantly altered metabolites listed in Table 3 and 6 (with excep-
tion to the lipid metabolites and glycoproteins (NAG)). NAG was implemented into the analysis as gene 1401 
corresponding to C-reactive protein (NAG is considered an NMR marker of inflammation). Table 5 summarizes 
11 identified metabolic pathways, from which the first 5 were found to be significantly altered in terms of pathway 
enrichment (p < 0.05) and/or topology (Impact > 0.1): glyoxylate and dicarboxylate metabolism, glycine serine 
and threonine metabolism, cyanoamino acid metabolism, citrate cycle (TCA cycle) as well as glutathione metab-
olism. The numbering in Table 5 corresponds to the numbers in Fig. 6.

Discussion
The presented study reports significant serum metabolomic differences between the clinically diagnosed young 
children with drug-resistant epilepsy and the reference non-epileptic individuals between 2–48 months of age. 
Several statistical and classification methods (supervised and unsupervised) were applied in order to model and 
explain these metabolic changes. Basic upon them we attempted to create a predictive model for detection of drug 
resistant-epilepsy in pediatric patients. The factors that might affect the results have been either removed (e.g. 
age-related differences) or thoroughly discussed (e.g. influence of AEDs) in the section below. Though, there is a 
relatively small size of the studied group, however due to very young age of the patients it was difficult to gather 
a larger representative group for a prospective study. For this reason, it was not possible to perform the external 
validation of the obtained multidimensional models and, instead, the LOO method was used. The predictive lin-
ear discriminant analysis model correctly classified 80% (n = 16/20) and 75% (n = 21/28) cases from the RG and 
EG groups, respectively. Taking into account the extremely complex nature of the data and the enormous weight 
of the problem, these results seems to be important in terms of the ability of the models build on the NMR serum 
spectroscopic data to classify the epileptic and non-epileptic young children.

Epileptic seizures are activated by the neuroendocrine system secreting hormones. The hormones induce 
whole body muscle contractions and increase cardiac, muscular and cerebral oxygen demands, not satisfied by 
the impaired breathing. Lactate, urea and ammonia are released from strained tissues and, at the same time, cre-
atine kinase and myoglobin leak into bloodstream from exasperated skeletal muscles. This triggers an inflamma-
tory reaction accompanied by cytokine release and leukocytosis31. The source of these inflammatory processes is 
probably the central nervous system, however, they can penetrate from the circulatory system due to breakdown 
of the blood-brain barrier32. The critical inflammatory events, presumably contributing to epilepsy, can be consid-
ered a potential source of molecular biomarkers and become targets for therapeutic approaches for epilepsy33–36.

The metabolic changes due to generalized tonic clonic seizures, status epilepticus, but even partial seizures 
are so profound that can be analyzed with laboratory testing of the blood36,37. The response of an organism to 
disease as well as the environmental and treatment-related factors is reflected in the metabolic composition of 
blood serum, thus the systemic biomarkers, specific for a given epilepsy disease state, can be determined also by 
metabolomics38. Though, the identification of biomarkers of epilepsy has been at the center of interest in the past 
decade, however the complex and multifactorial nature of epilepsy, and its heterogeneity make this issue still open 

Metabolites significantly correlated with patients’ age

No. Name
Spearman 
coeff.

Parameter a1 
of age-related 
function 
[arbitrary units]

Parameter a2 of age-related function 
[arbitrary units*month]

1 Choline −0.67 26575.93 63438.19

2 Lactate −0.46 1.55e + 06 165e + 06

3 Formate −0.55 7123.44 26495.39

4 Dimethylsulfone 0.45 20263.04 −28421.12

Metabolites important for discrimination between EG and RG groups

Name ppm p(corr) p Value p Value (age 
corrected)

Metabolites decreased in EG

1 Citrate 2.55/2.7 0.39/0.45 0.0009*/0.0008* —

2 Choline 3.24 0.49 0.037** 0.7**

Metabolites increased in EG

3 NAG 2.07 0.62 0.018** —

4 Creatine 3.93 0.41 0.04** —

5 Lipids 0.9/1.3 0.48/0.56 0.6**/0.023** —

6 Glycine 3.56 0.67 0.039** —

7 Lactate 1.33 0.37 0.08** 0.0506**

Table 3.  List of metabolites with age dependent concentrations and discriminant metabolites based on the 
OPLS-DA analysis. *t student test, **Mann-Whitney U test.
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for further research35. Moreover, the number of publications dealing with the quest for biomarkers characteristic 
for epilepsy in children is sparse.

The present study shows that the serum levels of NAG, creatine, lipids (at 1.3 and 0.9 ppm), glycine and lactate 
are increased in children with drug-resistant epilepsy, thus these metabolites might be considered as the systemic 
biomarkers of a diagnostic utility. In case of the lipid signals the statistical significance is reached only for the 
methylene protons – this so-called “mobile lipids” (ML) signal at 1.3 ppm is due to the fatty acyl chains -CH2- in 
triacylglycerides. Whereas the increase in lactate becomes significant (p = 0.0506) after the correction for age 

Figure 4.  The box plot representation of the relative changes in the significant metabolites identified by the 
OPLS-DA model as important to discriminate between EG and RG groups. For choline and lactate only the age 
corrected values are presented.
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dependency. The level of citric acid (the signals at 2.55 and 2.7 ppm) is significantly decreased in EG as compared 
to the non-epileptic reference group, whereas the choline changes are not important after the age related correc-
tion. In the present study, no significant difference was seen between the EG and RG groups as regards the total 
glucose levels and there were no significant biomarkers for discrimination of the EG1 and EG2 groups. The joint 
pathway analysis revealed 5 significantly altered metabolic pathways, however with only two involved metabo-
lites, glycine (4 pathways) and citrate (2 pathways).

These results should be analyzed taking into account the processes that accompany the epileptic seizures – at 
the mitochondrial, cellular and systemic levels, as well as the therapeutic process. Mitochondrial dysfunction, 
seizure induced hypoxia, ROS formation occurring as a result of reoxygenation of the tissue39, GABAergic dereg-
ulation and inflammation40 are among the main processes characteristic for the epilepsy course41.

The role of oxidative stress in epilepsies is already well recognized42. ROS formation begins with unpaired elec-
trons escaping from the electron transport chain and combining with molecular oxygen, resulting in formation 
of superoxide. Superoxides easily react with cellular membrane components (i.e. lipids and proteins) and DNA. 
Hence, the the longer increase in ROS, the higher risk of neurodegeneration, such as that seen in epilepsy38,43. 
This effect depends on age, and presumably, epileptogenesis is strictly associated with mitochondrial dysfunction 
due to chronic oxidative stress44. Liang and Patel45 have demonstrated that persistent seizures (status epilepticus) 
cause oxidative damage to DNA and cellular membrane components leading to protein carbonylation, nitric 
oxide formation and lipid peroxidation. Though, the levels of oxidative markers were found to be significantly 

LDA: structure coefficients for discriminant metabolites

No. Metabolites Structure coefficients

1 Lactate 0.385

2 Citrate −0.557

3 NAG 0.391

4 Creatine 0.234

5 Glycine 0.392

6
Lipids (signal 
at 1.3 ppm) 0.390

LDA leave-one-out (LOO) classification

True classification

LDA

RG EG total

Reference group 16 (80%) 4 (20%) 20 (100%)

Epilepsy group 7 (25%) 21 (75%) 28 (100%)

Total 23 (45,8%) 25 (54,2%) 48 (100%)

Priors 0,47 0,53

Table 4.  Results from the LDA analysis.

Figure 5.  (a) Scatter plot of the LOO scores belonging to non-epileptic (RG, •) and epileptic (EG1, Δ, EG2,▼) 
children. (b) ROC plot for the leave-one-out (LOO) classification model; AUC equals 0.808 and 95%CI is 
(0.686, 0.931). The proposed threshold was 0.02, and the Youden’s index was 0.61.
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increased in epileptic patients, the antiepileptic drugs were not confirmed to affect the markers’ levels, which 
suggests that mainly seizures and the induced oxidative stress are responsible for the biomarkers46.

In our study the changes in the concentration of lactate, creatine, citrate and lipids may be – to at least some 
extent – associated with an increased oxidative stress. In tissue hypoxia, impaired mitochondrial oxidation (the 
major cause for increases in BCAAs levels47) results in overproduced and underutilized global and localized lac-
tate. Although we observe increased lactate, there is no evident increase in BCAAs, only elevated plasma glycine 
is seen in the sera of the EG patients. Glycine, the simplest, nonessential amino acid, is implicated in many biolog-
ical processes, i.e. the body’s production of DNA, phospholipids and collagen, it is also necessary for glutathione 
(scavenger of free radicals in nervous system) synthesis, as well as is involved in release of energy. It functions 
both as an inhibitory and excitatory neurotransmitter and in high concentrations may produce excitoneuro-
toxicity, seizure and brain damage48. Homeostasis of glycine, thus, is important for the maintenance of balance 
between enhanced and decreased neuronal excitability. The glycine and lactate higher levels in plasma and CSF 
have been reported in a subgroup of mitochondriopathies related to iron-sulfur cluster defects49. Furthermore, 
glycine serine and threonine metabolism as well as glyoxylate and dicarboxylate metabolism, cyanoamino acid 

Figure 6.  The joint pathway analysis revealing the metabolic pathways altered in the EG group. 1 - glycine 
serine and threonine metabolism; 2 - citrate cycle (TCA cycle); 3 - glutathione metabolism; 4 - glyoxylate and 
dicarboxylate metabolism; 5 - cyanoamino acid metabolism.

No. Pathway name Total Hits p-value
−
log(p)

Holm 
p Impact

1 Glycine serine and threonine 
metabolism 68 2 0.013 4.317 1 0.708

2 Citrate cycle (TCA cycle) 50 1 0.136 1.989 1 0.576

3 Glutathione metabolism 75 1 0.199 1.611 1 0.133

4 Glyoxylate and dicarboxylate 
metabolism 53 2 0.008 4.805 0.654 0.057

5 Cyanoamino acid metabolism 12 1 0.034 3.375 1 0

6 Arginine and proline metabolism 102 1 0.263 1.333 1 0.016

7 Primary bile acid biosynthesis 63 1 0.169 1.772 1 0

8 Pyruvate metabolism 64 1 0.172 1.758 1 0

9 Porphyrin and chlorophyll 
metabolism 70 1 0.187 1.675 1 0

10 Aminoacyl-tRNA biosynthesis 87 1 0.228 1.476 1 0

11 Glycolysis/Gluconeogenesis 91 1 0.237 1.435 1 0

Table 5.  The results of the joint pathway analysis from discriminating metabolites between EG and RG groups. 
Legend: Total represents the total number of compounds involved in a pathway, Hits is the actual number of 
matched metabolites in one pathway, Holm p is Holm-Bonferroni adjusted p value and Impact is the pathway 
impact value from a pathway topology analysis.
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metabolism and glutathione metabolism, where glycine is also involved in, were listed by the joint pathway anal-
ysis as significantly altered in EG group. However, a more prosaic reason for the higher glycine levels than for 
the reference group seems to be also of importance – it may be due to the fact that almost all patients receive the 
antiepileptic drug valproic acid. VPA is one of the first line drugs for the treatment of all types of epilepsy and its 
main risk factors include younger age and polytherapy50. The inhibitory influence of valproic acid and valproyl‐
CoA on the glycine cleavage enzyme complex resulting in elevated amounts of glycine in serum has been known 
since 198051. Elevated glycine levels in serum were confirmed (along with alanine and serine, however) in epilep-
tic patients treated with VPA alone52 and in patients receiving VPA in combination with other AEDs53. Significant 
changes in the serum amino acids laboratory profiles (increased glycine and glutamine and decreased levels of 
arginine, BCAAs, histidine, methionine, phenylalanine, taurine, threonine and tryptophan) in epileptic patients 
treated with AEDs were found by Rao et al.54. However, these changes were not correlated with age, duration of 
illness or seizure frequency, and seizure type54. Their studied group was large (73 epileptic patients), but it was 
age-heterogeneous, which may matter, especially in case of the comparisons with very young children. Rainesalo 
et al.55 also claim that the plasma amino acid levels in epileptic patients may be related to their medication and 
confirmed that VPA increases the plasma levels of glycine. Although, Scholl-Bürgi et al.56 using ion exchange 
chromatography observed no detectable influence of age, gender and AEDs on cerebrospinal fluid/plasma ratios 
of glycine (as well as of alanine, arginine, histidine, lysine, ornithine, proline and threonine) but in later studies of 
the homogeneous group of children with propionic acidemia showed that glycine alone is elevated and medica-
tion (notably valproic acid) can affect the plasma amino acid concentrations to a variable degree57. Thus, our 1H 
NMR observations generally agree with the mentioned reports, in spite of various analytical techniques used. In 
our EG group serum glycine is increased and the p value (p = 0.039) is significant in the Mann-Whitney U test.

It is also claimed that VPA therapy impairs lipid metabolism58 and may lead to both transient elevation in 
liver-function tests in 15–30% of patients and a rare, fatal hepatotoxicity59. Thus, there are clear and confirmed 
risk factors for valproic acid-associated hepatotoxicity. One of the markers of the hepatocellular damage are 
increased blood concentrations of triglycerides60. Triglycerides were, in fact, significantly higher in the patients 
treated with AEDs in the poly therapy regime than in monotherapy one61. In our study the methylene CH2 lipid 
signal is markedly higher (the p value equals 0.023) in the patients treated with VPA and additional anticonvul-
sant drugs than in the reference group.

We observed no statistically significant alternations in other serum amino acid (AA) levels. Such changes 
are reported in human epilepsy, though the results are often contradictory. In epileptic adults the AA decrease is 
reported after acute tonic–clonic seizures and partially explained as being a result of increased muscular and met-
abolic stimulation, similar to that observed in intense training62,63. Furthermore, the release of stress hormones 
during the seizure may also lower the amino acid levels in blood plasma55.

Serum of the EG patients had higher levels of creatine/phosphocreatine than in the reference subjects but 
the differences in the creatinine levels were out of detection. Increased creatine levels were reported in myotonic 
dystrophy64. Creatine and creatinine phosphate are present in blood, muscles and organs, while phosphocreatine 
is a phosphate donor for the generation of ATP. Creatine is synthesized in liver and kidney and its perturbed level 
may reflect altered liver functioning. Thus, we can assume that the elevated creatine in blood samples from the 
EG patients indicate an increased energy demand in the form of ATP and fatty acids, both during the disease and 
due to impaired liver function caused by VPA. However, this increased level may be also associated – to some 
extent – with oxidative stress as all creatine kinase isoenzymes are extremely susceptible to oxidative damage65.

Another metabolite that plays an important, multidimensional metabolic role is citrate and the fluctuations in 
the citrate levels are often considered as a useful diagnostic tool or biomarker66. Most of the citrate in the blood 
circulates unbound and the remaining quota is complexed to calcium, potassium and sodium. Citrate molecules 
are signaling molecules in inflammation processes and in the beginnings of the non-alcoholic fatty liver disease. 
The citric acid cycle (TCA cycle) or Krebs cycle is the central metabolic process of the cell67. Mitochondrial citrate 
is transported outside the mitochondria by the citrate carrier (CIC), thus, the availability of citrate depends on 
the amount of citrate transported from the mitochondria, but during the oxidative stress, mitochondrial function 
is being impaired68,69. Citrate, together with glycine, is also involved in glyoxylate and dicarboxylate metabolism 
which we found significantly altered in terms of the pathway enrichment.

One of the most pronounced differences between the EG and RG groups concerns the NAGs, mainly 
N-acetylglucosamine and N-acetylneuramic acid – they are acute phase proteins with anti-inflammatory proper-
ties and are expressed more during inflammation and immune responses70,71. That is why NAG is called an NMR 
marker of inflammation. Though NAG is higher in children than in adults, the N-acetyl-glycoprotein (NAG) sig-
nal at 2.07 ppm in the EG group most presumably reflects the inflammation processes, as it is compared to that for 
the RG group of the similar age spectrum. Łukasiuk et al.72 justify the usefulness of proteins reflecting inflamma-
tion or neurodegeneration in an epileptic lesion as potential molecular biomarkers. Attractiveness of blood serum 
and plasma as the sources for such biomarkers is beyond question. However, to date, the only inflammatory 
proteins proposed as the markers of epileptogenesis are C-reactive protein, interleukin 1-beta, and interleukin 
672 – presumably, because their presence or excess in the blood can arise both “spillover” of neuroinflammatory 
molecules, as well as due to peripheral inflammation.

Similar study was done by Murgia et al.73 in the adult subjects with epilepsy, however, they excluded the 
patients receiving valproic acid and lacosamide. Their main findings in the sera of the epileptic, drug resistant 
adults73 are the decreased concentrations of glucose, citrate, and lactate and the increased levels of ketone bod-
ies (3-OH-butyrate, acetate, acetoacetate, and acetone) as compared to the controls. The only common feature 
is the decreased level of citrate – thus the feature that presumably reflects the oxidative stress. The discrepancy 
between the metabolic profiles of the adults and children with epilepsy seems, however, to be expected, as the 
metabolic profiles are age dependent and reflect different aging processes74. Furthermore, the age-specificity is 
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also responsible for a different rate of valproate metabolism and thus, a various degree of hepatotoxicity – the 
elderly may be more vulnerable to adverse effects of AEDs than young children undergoing significant matura-
tion changes.

The main limitation of the study – the relatively small patients groups sizes in the individual age categories 
– has obviously a deleterious effect on the probability of differentiating the age related effects from those due to 
epilepsy and makes it difficult to externally validate the multivariate models. Despite these threats, we decided 
to perform the modeling using the age-corrected data and to strengthen the analysis by applying various multi-
variate modeling methods. We believe, that our results of the 1H NMR serum studies on epilepsy are important, 
because there is not much papers on this subject available and there is even less those showing the diagnostic use-
fulness of the high resolution NMR spectroscopy techniques in epileptic young children. The NMR sera studies 
and NMR-based metabolomics provide important insights into the underlying epileptic processes and may be 
useful for understanding the epilepsy and the therapy effects in children.

Ethical approval.  All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.

Informed consent.  Informed consent was obtained from legal representatives of all individual participants 
included in the study.

Conclusion
To our best knowledge this is the first attempt of metabolic description of drug-resistant epilepsy in young chil-
dren and infants performed with the use of 1H NMR-based metabolomics. We identified 6 serum metabolites 
discriminating the epileptic patients from the reference group. These metabolites are involved in 11 metabolic 
pathways of which 5 were significantly altered. Although, the interpretation of the results requires verification on 
a larger group of patients, however, the first guesses indicate the coincidence of oxidative stress (decreased cit-
rate and increased lactate, creatine and lipids), inflammatory state (increased level of N-acetyloglycoprotein), as 
well as the valproic acid therapy related metabolic disturbances (presumably resulting in elevated glycine) as the 
characteristic metabolic pattern for pediatric drug-resistant epilepsy. Furthermore, we identified 5 significantly 
altered metabolic pathways (TCA cycle, glutathione metabolism and several amino acids metabolisms as well as 
glyoxylate and dicarboxylate metabolism) in the epilepsy group, four of them involving glycine and two involving 
citrate. The metabolic phenotyping of the therapy course in young epileptic children seems to be useful in provid-
ing insight into the mechanisms of treatment-resistance or help in diagnosis.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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