
Cite as: Corano Scheri, K. et al. (2024). Single Cell Isolation from Human Diabetic Fibrovascular Membranes for Single-

Cell RNA Sequencing. Bio-protocol 14(20): e5096. DOI: 10.21769/BioProtoc.5096. 

Copyright: © 2024 The Authors; exclusive licensee Bio-protocol LLC. 

This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/). 

 

 

1 

 

Published: Oct 20, 2024 

Open Access 

Single Cell Isolation from Human 

Diabetic Fibrovascular Membranes for 

Single-Cell RNA Sequencing 
 
Katia Corano Scheri, Thomas Tedeschi and Amani A. Fawzi* 

 

Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 

*For correspondence: afawzimd@gmail.com  

 

Abstract 

 
 

Key features 
• Single-cell suspension from fibrovascular membranes isolated from PDR patients. 

• Single-cell RNA sequencing analyses performed using Seurat package in RStudio. 

• Trajectory analyses or pseudotime analyses to study the trajectory over (pseudo)time of specific cell types. 

• This protocol requires Illumina HiSEQ4000 instrument and knowledge of R and RStudio language for the analyses. 
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This protocol is used in: JCI Insight (2023), DOI: 10.1172/jci.insight.172062 

 

Single-cell transcriptomic analyses have emerged as very powerful tools to query the gene expression changes at the 

single-cell level in physiological and pathological conditions. The quality of the analysis is heavily dependent on 

tissue digestion protocols, with the goal of preserving thousands of single live cells to submit to the subsequent 

processing steps and analysis. Multiple digestion protocols that use different enzymes to digest the tissues have been 

described. Harsh digestion can damage certain cell types, but this might be required to digest especially fibrotic 

tissue as in our experimental condition. In this paper, we summarize a collagenase type I digestion protocol for 

preparing the single-cell suspension from fibrovascular tissues surgically removed from patients with proliferative 

diabetic retinopathy (PDR) for single-cell RNA sequencing (scRNA-Seq) analyses. We also provide a detailed 

description of the data analysis that we implemented in a previously published study. 

https://creativecommons.org/licenses/by-nc/4.0/
mailto:afawzimd@gmail.com
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Graphical overview 
 

 
 

Fibrovascular membrane isolation and sequencing 

 

 

Background 
 

Proliferative diabetic retinopathy (PDR) is a late-stage complication of diabetes, responsible for vision loss in 

diabetic patients. The formation of fibrovascular membranes and scar tissue in the pre-retinal space leads to retinal 

traction and detachment [1]. Understanding the molecular features of the cells contributing to fibrovascular 

membrane formation and the cell–cell interactions is crucial for identifying new therapeutic targets that improve 

treatment approaches and patients’ quality of life.  

scRNA-Seq is a powerful technique that allows us to study the molecular profile of each single cell. Since the first 

paper on scRNA-Seq was published in 2009, studies on this technique have provided insightful information in 

several fields, followed by exponential growth in the last decade [2–8]. In the context of retinal biology, this 

approach was fundamental for building a comprehensive transcriptome atlas of fetal and adult retinas and for 

dissecting the retinal developmental stages [9–11]. scRNA-Seq assays have also revealed the complexity and 

heterogeneity of the different cell types in the retina and aided in uncovering cell-specific gene expression changes 

in pathological conditions [12–17]. Single-cell transcriptomics also enables the study of individual pathogenic cell 

populations in the context of fibrosis at quite high resolution [18–22]. 

Despite significant improvements, scRNA-Seq is still a challenging technique [23]. Generating high-quality single-

cell suspensions from any tissue is critical to preserve their expression profile and ensure meaningful downstream 

transcriptome data analysis. Several parameters in the dissociation protocol can compromise the viability of the cells 

and potentially impact the quality of the scRNA-Seq data. Preparing cell suspensions might be difficult for tissue 

samples, especially for fibrotic tissue, where gentle dissociation might not be sufficient to break the fibers of scar 

tissue, leading to inefficient cell yield after processing. On the other hand, an excessively harsh digestion might 

differentially damage cells that are more fragile [23,24].  

Papain-based protocols have been shown to successfully dissociate retinal tissue and have been described in several 

scRNA-Seq studies of retina tissue and organoids [16,23,25]. Another enzyme described for tissue digestion is 

Collagenase (I and IV), which was described to digest fibrovascular membranes from proliferative diabetic 

retinopathy patients as well as mouse retinas and other tissues into single-cell suspensions [18,21,26–28]. In our 

experiments, we used a Collagenase I–based protocol [29]. 

Another important factor in the scRNA-Seq experiments is the downstream data analyses. Throughout the analysis, 

it is important to include filtering steps in data analysis processing with the aim of excluding low-quality cells or 

empty droplets that have very few genes and cell doublets that may exhibit an aberrantly high gene count. 

Our protocol is quite efficient in digesting the fibrovascular membranes from PDR patients [29], and we were able 

to preserve a lot of cell types with a high number of genes detected per cell. 
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Materials and reagents 
 

Biological materials 

 

1. Fibrovascular membranes surgically removed from proliferative diabetic retinopathy (PDR) patients 

 

Reagents 

 

1. Collagenase Type I (Worthington, catalog number: LS004194) 

2. Bovine serum albumin (BSA) (Sigma-Aldrich, catalog number: A7906) 

3. Ethylenediaminetetraacetic acid (EDTA) (Amresco, catalog number: E522) 

4. Illumina TruSeq stranded mRNA (Illumina, catalog number: 20020594) 

5. Chromium Single Cell 3′ v3 kit (10X Genomics, catalog number: PN-1000268) 

6. Hank's balanced salt solution (HBSS) (Thermo Fisher Scientific, catalog number: 14025092) 

7. 1× Dulbecco’s phosphate-buffered saline (DPBS) with calcium and magnesium (Thermo Fisher Scientific, 

catalog number: 14040133) 

8. 1× Dulbecco’s phosphate-buffered saline (DPBS) without calcium and magnesium (Thermo Fisher Scientific, 

catalog number: 14190094) 

 

Solutions 

 

1. Collagenase I solution (see Recipes) 

2. Bovine serum albumin (BSA)-EDTA (see Recipes) 

 

Recipes 

 

1. Collagenase I solution 

Reagent Final concentration Quantity or Volume 

Collagenase type I 2 mg/mL 
500 µL/sample 

PBS with Ca2+ and Mg2+  

 

2. Bovine serum albumin (BSA)-EDTA 

Reagent Final concentration Quantity or Volume 

Bovine serum albumin (BSA) 1%  

500 µL/sample EDTA 2 mM 

PBS w/o Ca2+ and Mg2+  

 

Laboratory supplies 

 

1. 1.5 mL microcentrifuge tubes (Eppendorf, catalog number: 022431021) 

2. 1 mL pipette (USA Scientific, catalog number: 7110-1000) 

3. Laboratory tips (TipOne, catalog number: 1111-2720) 

 

 

Equipment 
 

1. Agilent 2100 Bio-analyzer 

2. Illumina HiSEQ4000 

3. Microcentrifuge (Eppendorf, model: 5424R) 
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Software and datasets 
 

1. R software (free download from https://cran.r-project.org/bin/windows/base/) (R version 4.3.2, 2023-10-31) 

2. RStudio (free download from https://posit.co/download/rstudio-desktop/) (Version 2023.03.1+446 

(2023.03.1+446) 

3. Seurat (version 5.1.0) and Monocle (Version 2.32.0) packages for RStudio 

4. All raw data have been deposited to GEO (accession no. GSE245561) and trajectory inference analysis code 

was deposited on GitHub (https://github.com/katiacoranoscheri/PDR-trajectory-analysis). 

 

 

Procedure 
 

A. Fibrovascular membrane collection 

 

Patients with fibrovascular traction diabetic detachments undergo standard 23-gauge pars plana vitrectomy. 

Using a combination of microsurgical instruments, dissect the epiretinal fibrovascular membranes and extract 

large pieces from the eye. These extracted membranes need to be immediately transferred in HBSS on ice. 

 

B. Tissue digestion, single-cell suspension preparation, and sequencing 

 

1. After surgery, place the PDR fibrovascular membranes in HBSS and store them on ice.  

2. Prepare a solution of 1× DPBS with calcium and magnesium containing 2 mg/mL Collagenase Type I for 

tissue digestion (Figure 1).  

3. Pipette 500 μL of the digestion solution to each sample and dissociate them for 30 min at 37 °C, shaking 

the tubes manually every 5 min.  

4. Gently triturate the samples by pipetting the solution 20 times with a p1000 pipette. 

5. After digestion and trituration, use a 70 μm filter to remove any clumps and debris. 

6. After dissociation, spin down the cell suspension at 400× g for 8 min at 4 °C and carefully discard the 

supernatant (Figure 1). 

7. Resuspend the cell pellet in 500 μL of 1× DPBS without calcium and magnesium with 1% BSA and 2 mM 

EDTA and keep the samples on ice until further processing (Figure 1).  

 

 
 

Figure 1. Overview of the dissociation procedure for single-cell suspension preparation 

 

Before sequencing, the cell number and viability need to be assessed using an automated cell counter with 

AO/PI dye.  

https://cran.r-project.org/bin/windows/base/
https://posit.co/download/rstudio-desktop/
https://github.com/katiacoranoscheri/PDR-trajectory-analysis
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All our scRNA-Seq experiments were performed at the Functional Genomics Core at the University of 

Chicago (Chicago, Illinois, USA). Single-cell libraries were generated using a Chromium Single Cell 3′ 

v3 kit (10× Genomics) and RNA quality and quantity were assessed using an Agilent Bio-analyzer. RNA-

Seq libraries were prepared using Illumina mRNATruSEQ kits following manufacturer instructions 

(Illumina). Library quality and quantity were checked using an Agilent Bioanalyzer. In our study, we 

implemented the scRNA-Seq analysis based on the Drop-Seq method that was first published in 2015 [30] 

and sequenced using the Illumina HiSEQ4000 (paired-end 100 bp) following the manufacturer’s reagents 

and instructions. 

 

 

Data analysis 
 

A. Pre-processing workflow and quality check 

 

1. Raw sequencing data need to be converted into a FASTQ format, and the files need to be aligned to the 

hg38 reference genome (for human data) provided by 10× Genomics. Seurat package (Satija Lab, NYGC) 

is used to analyze the data.  

2. If using multiple samples, preprocess, normalize, and scale each individual raw data sample following the 

Seurat pipeline (https://satijalab.org/seurat/articles/pbmc3k_tutorial). 

3. Consider as outlier cells with <500 or >5000 unique features as well as cells with >25% mitochondrial 

RNA.  

4. Perform a doublet detection analysis and remove the doublet using the scDblFinder pipeline [31]. 

5. Doublet detection and removal can be performed using the standard parameters of 1% doublets per 1000 

droplets sequenced. Copy the scDblFinder metadata from the new object into the original dataset.  

6. Droplets identified as "singlets" can be used for subsequent analysis and doublets are discarded.  

 

B. Sample integration, scaling, and clustering 

 

1. Integrate the samples using the canonical correlation analysis (CCA) with the integration pipeline in Seurat 

(https://satijalab.org/seurat/articles/integration_introduction.html). Only variable features present in all 

samples are selected for dataset integration.  

2. Following CCA integration, scale the dataset and calculate the principal components for plotting and 

clustering of the integrated dataset. Use ElbowPlot() to estimate the selection of which principal 

components can be included. 

3. Following dimensionality estimation, “r full.dataset.dims” dimensions are used for UMAP projection and 

cluster identification of the integrated dataset. Cluster the CCA-aligned data using a Louvain algorithm 

implemented in Seurat at a resolution of 0.1 and r full.dataset.dims dimensions. 

4. Implement the functions FindNeighbors and FindClusters to cluster the cells that you can then visualize 

with the function RunUMAP. 

5. Calculate the percentage of cells in each cluster for each sample and, for statistical analysis, perform the 

hypergeometric distribution analysis using the phyper function [phyper (q=, m=, n=, k=, lower.tail = TRUE, 

log.p = TRUE)]. In the phyper function, # q = cells in cluster from sample, # m = total cells from that 

sample, # n = total cells from all other samples, # k = total cells in cluster. Consider P < 0.001 for statistical 

significance. 

 

C. Differential gene expression analysis and re-clustering 

 

1. Perform a differential expression analysis using “FindAllMarkers” function (min.pct = 0.25, log2FC > 1) 

to identify the cell clusters.  

https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://satijalab.org/seurat/articles/integration_introduction.html
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2. For the visualization of specific markers, use the data visualization methods from Seurat pipeline 

(https://satijalab.org/seurat/articles/visualization_vignette). DotPlot, VlnPlot, and FeaturePlot are 

examples of visualization of the data (Figure 2, first output, DotPlot).  

 

 
 

Figure 2. Workflow of the scRNA-Seq data analysis and expected output. Images from Corano Scheri 

et al. [29]. 

 

3. Save the object with the SaveRDS function. 

4. After identification of all cell clusters, re-cluster each cell type individually with the “subset” function 

indicating the number of the cluster to analyze separately [e.g., stromal <- (subset(original Seurat object, 

idents = 4))]. 

5. Run PCA again, then implement the functions FindNeighbors and FindClusters to find the subclusters of 

each cell type and visualize them with the function RunUMAP. 

6. Perform a differential gene expression analysis to identify the subclusters in each cell type.  

7. Save the object of each cell cluster individually with the SaveRDS function.  

 

D. Pathway enrichment, inference, and ligand-receptor analyses 

 

1. Select the most significant differentially upregulated and downregulated genes (log2FC > 1, logFC<-1 and 

p-adj < 0.01) to perform a pathway enrichment analysis in each subcluster. 

2. Use the g: GOSt functional profiling tool available on the g: Profiler web server (version 

e99_eg46_p14_f929183) to identify significant pathways upregulated or downregulated in the clusters.  

3. Generate the dotplots in R using PathFindR package in RStudio (Figure 2, second output). 

4. Monocle3 workflow (https://cole-trapnell-lab.github.io/monocle3/docs/trajectories/) (Becht, Cao, Qiu, 

Trapnell) can now be used to perform cell inference trajectory analysis or pseudotime analysis. We 

implemented this workflow to perform the pseudotime analysis on the stromal cluster. 

5. Import the Seurat object (previously saved as .rds file) into Monocle with the Monocle3 conversion tool 

as. cell_data_set () function.  

6. Use Monocle tools to order the cells.  

https://satijalab.org/seurat/articles/visualization_vignette
https://cole-trapnell-lab.github.io/monocle3/docs/trajectories/
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7. The differentialGeneTest function can be used to identify the differentially expressed genes among clusters 

along the trajectory and then generate a UMAP graph to illustrate the trajectory across the clusters (Figure 

2, third output).  

8. Perform a ligand-receptor analysis and evaluate the interactions between the cell types using CellphoneDB 

module. 

9. Calculate the mean gene expression values and p-values from the cell barcode and counts extracted from 

the Seurat object and use it in conjunction with the statistical_analysis module.  

10. Use the dot_plot module of CellphoneDB with the statistical analysis to generate the dot plots. 

 

The description of these analyses can be found in the “Methods” section of the paper Corano Scheri et al. [29] JCI 

Insight. The raw data are available on GEO under accession number GSE245561. The code for the inference analysis 

has been uploaded on GitHub ((https://github.com/katiacoranoscheri/PDR-trajectory-analysis). 

 

 

Validation of protocol 
 

This protocol has been used in the following research article: 

• Corano Scheri et al. [29] JCI Insight. Single-cell transcriptomics analysis of proliferative diabetic retinopathy 

fibrovascular membranes reveals AEBP1 as fibrogenesis modulator.  

 

 

General notes and troubleshooting 
 

General notes 

 

Limitations of our study might include a small sample size, which may reflect a general limitation of certain cells’ 

ability to withstand the technical process of single-cell isolation. It is recommended to have a minimum of 10,000 

cells with > 90% viability to sequence and allow subsequent further analyses. 

 

Troubleshooting 

 

Problem 1: Cell number and viability can be low throughout the experiment. 

Solution(s): It is recommended to use as many specimens as possible and to optimize the protocol, time, and reagents 

based on the tissue to maximize the yield and viability of the cells. It is important to take into consideration that 

different cell types and tissues might respond differently to single-cell digestion protocols that need to be changed 

accordingly. 
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