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Abstract: Methionine restriction reduces animal lipid deposition. However, the molecular mechanism
underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In
this study, a feeding trial was performed on rice field eel Monopterus albus with six isonitrogenous and
isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg). Compared
with M0 (0 g/kg), the crude lipid and crude protein of M. albus increased markedly in M8 (8 g/kg)
(p < 0.05), serum (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density
lipoprotein cholesterol, and non-esterified free fatty acids), and hepatic contents (hepatic lipase,
apolipoprotein-A, fatty acid synthetase, total cholesterol, triglyceride, and lipoprteinlipase). However,
in the serum, very-low-density lipoprotein and hepatic contents (hormone-sensitive triglyceride
lipase, Acetyl CoA carboxylase, carnitine palmitoyltransterase, and mirosomal triglygeride transfer
protein) decreased markedly in M8 (p < 0.05). The contents of hepatic C18:2n-6, C22:6n-3, and n-
3PUFA in the M8 group were significantly higher than those in M0 (p < 0.05), and the contents of lipid
droplets in M8 were higher than those in M0. Compared with M0, the hepatic gcn2, eif2α, hsl, mttp,
ldlrap, pparα, cpt1, and cpt2 were remarkably downregulated in M8, while srebf2, lpl, moat2, dgat2, hdlbp,
srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8. Moreover, hepatic SREBP1
and FAS protein expression were upregulated significantly in M8 (p < 0.01). In short, methionine
restriction decreased the lipid deposition of M. albus, especially for hepatic lipid deposition, and
mainly downregulated hepatic fatty acid metabolism. Besides, gcn2 could be activated under
methionine restriction.

Keywords: methionine; hepatic structure; hepatic lipid metabolism; Monopterus albus

1. Introduction

Recently, studies reported that soybean protein can be used to replace fish meal (FM)
in aquatic feed [1]. However, methionine is the most limiting amino acid in soybean protein,
and essential sulfur amino acids for fish [2] must be obtained from feed [3]. Methionine
not only participate in the body’s protein synthesis but also directly or indirectly (through
transsulfuration, transamination, and transmethylation) regulates the body’s metabolism
as a signal molecule, mainly metabolizing into cysteine, creatine, carnitine, hydrogen
sulfide, taurine, and glutathione for various metabolic purposes [4]. If an aquatic animal’s
methionine intake is deficient, the process of protein synthesis will be limited, metabolism
will be disturbed, and the growth performance of the fish will be inhibited [2,5,6].

A previous study showed that methionine restriction enhances the clearance of glucose,
promotes hepatic fat accumulation, and decreases muscular fat accumulation in rainbow
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trout (Oncorhynchus mykiss) [7]. In addition, methionine restriction suppresses the targets
of amino acid response pathways in the primary muscular cells of turbot (Scophthalmus
maximus L.), reduces cellular protein synthesis, enhances protein degradation, increases
levels of intracellular free amino acid, and leads to amino acid degradation. Methionine
restriction also reduces glycolysis and lipogenesis while stimulating lipolysis, decreases
the intracellular lipid pool, remarkably enhances energy expenditure by stimulating the
tricarboxylic acid cycle and oxidative phosphorylation, and upregulates general controlled
nonderepressible 2 (gcn2, also encoded by eif2ak4) expression [8].

In the process of evolution, animals have gradually evolved the ability to adapt to
a lack of essential nutrients such as essential amino acids. In vertebrates, gcn2 plays
a key role in sensing essential amino acid deprivation and activates the translational
derepression of specific mRNAs by inhibiting general translation initiation [9]. A study
on the Cobia (Rachycentron canadum) showed that crude lipids were markedly elevated
with a higher level of dietary methionine and then plateaued. Hepatic lipid synthesis
genes (sterol regulatory element binding protein-1 (srebp1), fatty acid synthetase (fas),
peroxisome proliferator activated receptor γ (pparγ), and stearoyl-CoA desaturase-1 (scd1))
were significantly upregulated when the animals were fed a diet with higher levels of
methionine, whereas the expression of lipolytic genes (peroxisome proliferator activated
receptor α (pparα), carnitine acyl transferase-1 (cpt1), and lipase lipoprotein lipase (lpl))
was elevated in fish fed a methionine-deficient diet [10]. Guo et al. (2007) found that the
adipose tissue of wild-type mice lacking leucine decreased by 50% after one week and
almost completely disappeared after 17 days. Further research found that when leucine
was deficient in the diet, gcn2 was activated, and its downstream eif2α, the level of mRNA,
and protein expression increased. However, there was no significant difference observed
in the expression of srebp1a and srebp2 mRNA and protein, although srebp1c mRNA and
protein expression were significantly inhibited. Moreover, the expression of srebp1c mRNA
and protein was regulated by the gcn2-eif2α pathway. The expression of fat synthesis genes
(srebp1c, ATP-citrate lyase (acl), fas, scd, glucose 6-phosphate 1-dehydrogenase (g6pd),
and malic enzyme (me)) occurred downstream, and hepatic SREBP1 and FAS protein
expression was downregulated. The authors also found that a diet lacking leucine led to an
increase in lipid absorption and fatty acid oxidation in the livers of mice, suggesting that
the increase of lipid absorption and decomposition in mice under the condition of leucine
deficiency was an adaptive change to reduce lipid synthesis [11].

Rice field eel (Monopterus albus, M. albus) is a subtropical freshwater benthic fish
that is widely raised in central and southern China in cages [12]. Our previous studies
showed that M. albus needs better-quality and higher levels of protein, as well as an
optimum protein/lipid ratio [13]. In the study, FM was replaced by soybean meal [14],
and soy protein concentrate inhibited the growth performance of M. albus [15]. Moreover,
dietary deficiency methionine feed decreased the growth performance of M. albus, induced
lipid metabolism disorder, and decreased lipid content [16]. Our laboratory is focused on
studying the nutrition of M. albus. We also consulted a large number of papers of M. albus
and found no obvious adipose tissue in M. albus. Lipids mainly accumulated in tissues,
especially in the liver, which provides a new and interesting avenue for exploring lipid
metabolism. In the present study, we generated more severe methionine-deficient diets
compared to our previous study [16] and explored the mechanism by which methionine
regulates lipid deposition and the metabolism of M. albus.

2. Results
2.1. Composition of M. Albus

There was no significant difference in the moisture and crude ash of M. Albus among
all groups (p > 0.05). The crude lipid of M. albus increased markedly as methionine
concentrations increased to 8 g/kg (M8) (p < 0.05) and gradually decreased as methion-
ine concentrations increased to 10 g/kg (M10). The crude protein of M. albus increased
markedly as methionine concentrations were increased (p < 0.05) (Table 1).
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Table 1. Effects of different levels of methionine on the composition of M. Albus after 8 weeks (wet weight %).

Proximate
Composition M0 M2 M4 M6 M8 M10 p Value

Moisture 77.22 ± 0.44 77.48 ± 0.58 77.14 ± 0.47 77.55 ± 0.68 77.81 ± 0.69 77.2 ± 0.07 0.939
Crude ash 2.7 ± 0.01 2.73 ± 0.08 2.72 ± 0.01 2.69 ± 0.03 2.73 ± 0.04 2.71 ± 0.02 0.959

Crude lipid 1.79 ± 0.02 a 2.4 ± 0.11 b 2.55 ± 0.12 b 2.56 ± 0.06 b 3.1 ± 0.03 c 2.91 ± 0.06 c <0.001
Crude protein 14 ± 0.27 a 14.69 ± 0.24 b 15.04 ± 0.15 b 15.38 ± 0.17 b 16.54 ± 0.37 c 16.85 ± 0.13 c <0.001

Values are presented as the means ± SEM (n = 3). Values in the same row with the same superscript or the absence of superscripts are not
significantly different (p > 0.05) (the same below).

2.2. Serum Biochemical Indices

Serum ACP, Glu, TC, TG, HDL, LDL, and NEFA increased markedly as methionine
concentrations increased to 8 g/kg (M8) (p < 0.05) and gradually decreased as methionine
concentrations increased to 10 g/kg (M10). The serum TP, BUN, and Ba also increased
markedly as methionine concentrations increased to 10 g/kg (M10) (p < 0.05). Serum AKP,
ALT, AST, and VLDL decreased markedly as methionine concentrations increased to 8 g/kg
(M8) (p < 0.05) and gradually increased as methionine concentrations increased to 10 g/kg
(M10) (Table 2).

Table 2. Effects of different levels of methionine on the serum biochemical indices of M. Albus after 8 weeks.

Index M0 M2 M4 M6 M8 M10 p Value
1 ACP 17.95 ± 0.2 a 18.46 ± 0.03 b 18.61 ± 0.06 b 19.23 ± 0.11 c 19.42 ± 0.21 c 19.42 ± 0.19 c <0.001
2 AKP 149.07 ± 23.6 b 116.11 ± 12.57 a,b 100.11 ± 2.73 a 98.21 ± 2.57 a 78.32 ± 3.9 a 98.69 ± 17.47 a 0.018
3 ALT 7.42 ± 0.09 e 6.15 ± 0.13 d 5.55 ± 0.19 c 5.3 ± 0.08 b,c 4.74 ± 0.06 a 5.1 ± 0.05 b <0.001
4 AST 19.25 ± 0.34 d 17.9 ± 0.07 c 17.64 ± 0.17 c 16.47 ± 0.27 b 13.17 ± 0.09 a 13.38 ± 0.4 a <0.001
5 Glu 2.13 ± 0.02 a 2.67 ± 0.02 b 2.89 ± 0.04 c 3.26 ± 0.03 d 3.58 ± 0.03 e 3.26 ± 0.02 d <0.001
6 TC 3.9 ± 0.04 a 3.92 ± 0.04 a 4.5 ± 0.02 b 4.54 ± 0.04 b 4.9 ± 0.03 c 4.83 ± 0 c <0.001
7 TG 1.04 ± 0 a 1.14 ± 0.01 b 1.14 ± 0.01 b 1.25 ± 0.01 c 1.62 ± 0.02 d 1.27 ± 0.01 c <0.001
8 TP 43.05 ± 0.27 a 46.01 ± 0.31 b 46.82 ± 0.09 b,c 47.4 ± 0.54 c 50.62 ± 0.31 d 51.03 ± 0.42 d <0.001

9 HDL 1.55 ± 0.04 a 1.75 ± 0.06 a 2.5 ± 0.32 b 2.76 ± 0.3 b 2.94 ± 0.24 b 2.78 ± 0.27 b <0.001
10 LDL 0.4 ± 0.03 a 0.42 ± 0.03 a 0.45 ± 0.05 a 0.83 ± 0.05 b 1.04 ± 0.05 c 1.02 ± 0.05 c <0.001

11 VLDL 3.06 ± 0.13 d 2.69 ± 0.1 c 2.44 ± 0.14 c 1.93 ± 0.08 b 1.29 ± 0.1 a 1.82 ± 0.04 b <0.001
12 NEFA 87.93 ± 3.78 a 90.5 ± 2.52 a 94.94 ± 6.42 a 118.69 ± 5.43 b 136.29 ± 4.23 b 121.34 ± 9.8 b <0.001
13 BUN 1.09 ± 0.02 a 1.16 ± 0.05 ab 1.35 ± 0.05 b,c 1.43 ± 0.07 c 1.47 ± 0.08 c 1.49 ± 0.12 c 0.001

14 Ba 166.08 ± 1.5 a 183.37 ± 2.52 ab 197.91 ± 2.1 b,c 199.19 ± 2.7 b,c 212.55 ± 7.35 c 215.05 ± 12.36 c <0.001
1 ACP: Acid phosphatase (g/L). 2 AKP: Alkaline phosphatase (mg/L). 3 ALT: Alanine aminotransferase (u/L). 4 AST: Aspartate amino-
transferase (u/L). 5 Glu: Glucose (mmol/L). 6 TC: Total cholesterol (mmol/L) 7 TG: Triglyceride (mmol/L). 8 TP: Total protein (g/L).
9 HDL: High-density lipoprotein cholesterol (mmol/L). 10 LDL: Low-density lipoprotein cholesterol (mmol/L). 11 VLDL: Very-low-density
lipoprotein (mmol/L). 12 NEFA: Nonesterified Free fatty acids (umol/L). 13 BUN: Blood urea nitrogen (mmol/L). 14 Ba: Blood ammonia
(umol/L). Values are presented as means ± SEM (n = 3). Values in the same row with the same superscript or absence of superscripts are
not significantly different (p > 0.05). The same below.

2.3. Hepatic Biochemical Indices

Compared to M0 (0 g/kg), the hepatic HL, Apo-A, FAS, TC, and AKP increased
markedly under methionine supplementation (p < 0.05). Moreover, hepatic TG and ALT
increased markedly under greater than 2 g/kg methionine supplementation (p < 0.05),
the hepatic AST increased markedly with more than 4 g/kg methionine supplementation
(p < 0.05), and hepatic LPL increased markedly in the M6 (6 g/kg) and M8 (8 g/kg) groups
(p < 0.05). Compared to M0 (0 g/kg), the hepatic HSL and ACC decreased markedly when
methionine was added (p < 0.05); the hepatic CPT decreased markedly with greater than
2 g/kg methionine (p < 0.05); and the hepatic MTTP decreased markedly in M2 (2 g/kg),
M6 (6 g/kg), M8 (8 g/kg), and M10 (10 g/kg) (p < 0.05) (Table 3).
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Table 3. Effects of different levels of methionine on the hepatic biochemical indices of M. Albus after 8 weeks.

Index M0 M2 M4 M6 M8 M10 p Value
1 HL 45.35 ± 4.22 a 54.37 ± 0.79 b 57.8 ± 0.92 bc 62.25 ± 0.95 cd 64.95 ± 1.42 de 68.99 ± 0.66 e <0.001

2 MTTP 8.46 ± 0.41 c 6.51 ± 0.11 b 7.91 ± 0.15 c 6.64 ± 0.25 b 5.6 ± 0.41 a 5.33 ± 0.1 a <0.001
3 Apo-A 7.64 ± 0.15 a 14.31 ± 0.5 cd 12.44 ± 0.73 b 13.11 ± 0.25 bc 13.64 ± 0.22 bcd 14.89 ± 0.72 d <0.001

4 HSL 2.83 ± 0.06 d 2.36 ± 0.02 c 2.19 ± 0.08 c 1.91 ± 0.03 b 1.53 ± 0.03 a 1.9 ± 0.1 b <0.001
5 LPL 1.05 ± 0.01 a 1.16 ± 0.05 ab 1.15 ± 0.09 ab 1.22 ± 0.02 b 1.39 ± 0.03 c 1.16 ± 0.04 ab 0.001
6 FAS 3.95 ± 0.03 a 4.58 ± 0.06 b 4.43 ± 0.06 b 4.44 ± 0.34 b 4.74 ± 0.09 b 5.23 ± 0.08 c <0.001

7 ACC 9.25 ± 0.24 b 7.41 ± 0.24 a 7.57 ± 0.39 a 7.43 ± 0.65 a 7.69 ± 0.32 a 6.7 ± 0.57 a 0.008
8 CPT 1.12 ± 0.04 d 1.04 ± 0.01 cd 0.95 ± 0.01 c 0.96 ± 0.04 c 0.82 ± 0.04 b 0.69 ± 0.01 a <0.001
9 TG 102.13 ± 1.68 a 103.16 ± 3.53 a 141.19 ± 3.17 b 167.94 ± 1.49 c 202.84 ± 3.04 e 179.79 ± 3.22 d <0.001
10 TC 106.43 ± 1.49 a 127.09 ± 3.25 b 131.4 ± 1.35 b 152.83 ± 2.68 c 185.41 ± 1.06 e 174.89 ± 3.28 d <0.001

11 AKP 103.05 ± 1.59 a 114.37 ± 0.37 b 124.59 ± 1.64 c 162.96 ± 3.64 d 165.64 ± 1 d 163.92 ± 1.93 d <0.001
12 ACP 21.09 ± 0.23 21.43 ± 0.29 21.08 ± 0.18 21.8 ± 0.23 21.16 ± 0.1 21.11 ± 0.29 0.204
13 AST 7.22 ± 0.68 a 7.89 ± 0.42 a 8.47 ± 0.42 a 10.19 ± 0.3 b 11.54 ± 0.36 c 11.78 ± 0.26 c <0.001
14 ALT 9.24 ± 0.45 a 9.98 ± 0.35 a 11.18 ± 0.29 b 11.84 ± 0.36 b 14.12 ± 0.21 c 13.34 ± 0.61 c <0.001
1 HL: hepatic lipase (U/g). 2 MTTP: mirosomal triglygeride transfer protein (pg/mg prot). 3 Apo-A: Apolipoprotein -A (ug/g prot). 4 HSL:
hormone-sensitive triglyceride lipase (U/g prot). 5 LPL: lipoprteinlipase (U/g prot). 6 FAS: fatty acid synthetase (U/g prot). 7 ACC: Acetyl
CoA carboxylase (U/100 g prot). 8 CPT: carnitine palmitoyltransterase (U/g prot). 9 TG: Triglyceride (umol/g prot). 10 TC: Total cholesterol
(umol/g prot). 11 AKP: Alkaline phosphatase (King’s unit/g prot). 12 ACP: Acid phosphatase (King’s unit/g prot). 13 AST: Aspartate
aminotransferase (U/g prot). 14 ALT: Alanine aminotransferase (U/g prot).

2.4. Contents of Hepatic Amino Acids and Fatty Acids

Compared to M0 (0 g/kg), the contents of hepatic amino acids, total essential amino
acids, total nonessential amino acids, and total amino acids increased gradually under
supplementation with 8 g/kg (M8) methionine (Table 4). Moreover, compared to M0
(0 g/kg), the hepatic C18:2n-6, C22:6n-3, and n-3PUFA significantly increased in the M8
(8 g/kg) group (p < 0.05) (Table 5).

Table 4. Effects of different levels of methionine on the contents of hepatic amino acids of M. albus
after 8 weeks (mg/g).

Amino Acid M0 M8 p Value

His
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Glu 8.3 ± 0.1 8.92 ± 0.22 0.066  
Thr ☆ 2.95 ± 0.15 3.01 ± 0.04 0.719  

Ala 4.52 ± 0.04 4.88 ± 0.13 0.064  
Pro 2.92 ± 0.13 3.04 ± 0.03 0.416  
Cys 0.08 ± 0 0.1 ± 0.01 0.176  

Lys ☆ 4.45 ± 0.21 4.65 ± 0.09 0.444  
Tyr 1.26 ± 0.06 1.45 ± 0.08 0.135  

Met ☆ 0.88 ± 0.11 1.11 ± 0.03 0.117  
Val ☆ 3.57 ± 0.16 3.71 ± 0.05 0.466  
Ile ☆ 2.61 ± 0.12 2.62 ± 0.05 0.919  

Leu ☆ 4.99 ± 0.23 5.17 ± 0.08 0.496  
Phe ☆ 2.9 ± 0.13 2.98 ± 0.04 0.582  

Total essential amino acids 26.93 ± 1.18 28.11 ± 0.42 0.399 
Total non-essential amino acids 29.47 ± 0.65 31.3 ± 0.16 0.052 

Total amino acids 56.39 ± 1.74 59.41 ± 0.39 0.221 
* Note: ☆ essential amino acids. Values are presented as the means ± SEM (n = 3). Values were 
considered not significant at p > 0.05 (the same below). 

Table 5. Effects of different levels of methionine on the contents of hepatic fatty acids of M. albus 
after 8 weeks (mg/100 g). 

Fatty Acid M0 M8 p Value 
C14:0 1.74 ± 0.15 2.61 ± 1.11 0.516 
C16:0 7.46 ± 0.4 7.2 ± 0.32 0.642 
C17:0 16.11 ± 2.12 17.59 ± 6.34 0.836 
C18:0 7.57 ± 0.4 7.66 ± 0.39 0.880 
C23:0 19.47 ± 0.74 20.3 ± 1.2 0.587 

1 SFAs 52.35 ± 2.6 55.36 ± 6.62 0.694 
C14:1 1.95 ± 0.23 1.26 ± 0.16 0.067 
C16:1 5.51 ± 0.86 8.65 ± 4.69 0.575 
C18:1 22.33 ± 0.72 24.58 ± 0.68 0.086 

2 MUFA 29.79 ± 1.41 34.49 ± 4.85 0.405 
C18:2n-6 5.9 ± 0.19 6.71 ± 0.11 0.020 
C20:4n-6 4.47 ± 0.66 6.49 ± 1.51 0.287 

3 n-6 PUFA 10.37 ± 0.5 13.2 ± 1.42 0.134 
C20:5n-3 3 ± 0.09 3.13 ± 0.52 0.822 
C22:6n-3 28.75 ± 0.5 38.42 ± 1.17 0.020 

4 n-3PUFA 31.75 ± 0.42 41.55 ± 1.68 0.005 
1 SFAs: saturated fatty acids. 2 MUFAs: mono-unsaturated fatty acids. 3 n-6PUFAs: n-6 poly-un-
saturated fatty acids. 4 n-3PUFAs: n-3 poly-unsaturated fatty acids. 

2.5. Hepatic H&E and Oil Red O-Stained Pictures 
Hepatic H&E and Oil red O-stained images are shown in Figures 1 and 2. Vacuoles 

were observed in these two groups. As the number of vacuoles increased in the M0 group, 
the proportions of vacuoles decreased in the M8 (8 g/kg) group. We also observed move-
ment of the nucleus in M0 (0 g/kg) and blurred boundaries of hepatic cells in the M0 
group. Compared to M0 (0 g/kg), the number of lipid droplets was increased in the M8 (8 
g/kg) group (Figures 1 and 2). 
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Gly 3.85 ± 0.18 4 ± 0.08 0.479
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Glu 8.3 ± 0.1 8.92 ± 0.22 0.066
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Table 5. Effects of different levels of methionine on the contents of hepatic fatty acids of M. albus after
8 weeks (mg/100 g).

Fatty Acid M0 M8 p Value

C14:0 1.74 ± 0.15 2.61 ± 1.11 0.516
C16:0 7.46 ± 0.4 7.2 ± 0.32 0.642
C17:0 16.11 ± 2.12 17.59 ± 6.34 0.836
C18:0 7.57 ± 0.4 7.66 ± 0.39 0.880
C23:0 19.47 ± 0.74 20.3 ± 1.2 0.587

1 SFAs 52.35 ± 2.6 55.36 ± 6.62 0.694
C14:1 1.95 ± 0.23 1.26 ± 0.16 0.067
C16:1 5.51 ± 0.86 8.65 ± 4.69 0.575
C18:1 22.33 ± 0.72 24.58 ± 0.68 0.086

2 MUFA 29.79 ± 1.41 34.49 ± 4.85 0.405
C18:2n-6 5.9 ± 0.19 6.71 ± 0.11 0.020
C20:4n-6 4.47 ± 0.66 6.49 ± 1.51 0.287

3 n-6 PUFA 10.37 ± 0.5 13.2 ± 1.42 0.134
C20:5n-3 3 ± 0.09 3.13 ± 0.52 0.822
C22:6n-3 28.75 ± 0.5 38.42 ± 1.17 0.020

4 n-3PUFA 31.75 ± 0.42 41.55 ± 1.68 0.005
1 SFAs: saturated fatty acids. 2 MUFAs: mono-unsaturated fatty acids. 3 n-6PUFAs: n-6 poly-unsaturated fatty
acids. 4 n-3PUFAs: n-3 poly-unsaturated fatty acids.

2.5. Hepatic H&E and Oil Red O-Stained Pictures

Hepatic H&E and Oil red O-stained images are shown in Figures 1 and 2. Vacuoles
were observed in these two groups. As the number of vacuoles increased in the M0
group, the proportions of vacuoles decreased in the M8 (8 g/kg) group. We also observed
movement of the nucleus in M0 (0 g/kg) and blurred boundaries of hepatic cells in the M0
group. Compared to M0 (0 g/kg), the number of lipid droplets was increased in the M8
(8 g/kg) group (Figures 1 and 2).
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2.6. Hepatic Lipid Metabolism mRNA Expression

Compared to M0 (0 g/kg), the hepatic gcn2, eif2α, hsl, mttp, ldlrap, pparα, cpt1, and
cpt2 were remarkably downregulated in M8 (8 g/kg) (p < 0.01, p < 0.001, p < 0.01, p < 0.001,
p < 0.05, p < 0.01, p < 0.001, and p < 0.001, respectively). However, srebf2, lpl, moat2, dgat2,
hdlbp, srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8 (8 g/kg)
(p < 0.05, p < 0.01, p < 0.001, p < 0.05, p < 0.01, p < 0.001, p < 0.01, p < 0.001, p < 0.01, p < 0.01,
p < 0.01, p < 0.05, and p < 0.001, respectively) (Figure 3).
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Figure 3. Effects of dietary methionine on the hepatic lipid metabolism mRNA expression of M. Albus
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2.7. Correlative Analysis of Hepatic Lipid Metabolism Gene Expression

We observed that hepatic eif2α, scap, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 gene ex-
pression was positively correlated with gcn2 (p < 0.01, p < 0.01, p < 0.01, p < 0.001, p < 0.01,
p < 0.01, p < 0.001, and p < 0.001, respectively), while hepatic srebf2, lpl, moat2, dgat2, hdlbp,
vldlr, srebf1, fas, fads2, me1, pfae, and icdh gene expression was negatively correlated with
gcn2 (p < 0.01, p < 0.01, p < 0.01, p < 0.01, p < 0.01, p < 0.01, p < 0.01, p < 0.001, p < 0.001,
p < 0.05, p < 0.05, and p < 0.001) (Figure 4).
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2.8. Hepatic SREBP1 and FAS Protein Expression

Compared to M0, both hepatic SREBP1 and FAS protein expression was upregulated
significantly in M8 (8 g/kg) (p < 0.01) (Figure 5).
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3. Discussions

Our previous study showed that dietary methionine restriction induced lipid metab-
olism disorder, decreased the lipid content [16], and also decreased the growth performance
of M. Albus [17]. In the present study, the crude lipids of M. albus increased markedly as
methionine concentrations increased to 8 g/kg and gradually decreased as methionine
concentrations increased to 10 g/kg. The crude protein of M. albus increased markedly
as methionine concentrations were increased. Our results are similar to those of a study
on juvenile yellow tail (Seriola dorsalis) [18]. We inferred that more energy was allocated
to visceral organs to maintain basic metabolism while fewer nutrients were allocated to
growth performance when methionine was restricted.

Amino acids are commonly involved in life activities through the synthesis of pro-
teins. Excess amino acids are generally decomposed into ammonia and carbon skeletons,
while ammonia is further metabolized into urea nitrogen [19]. The acid phosphatase
(ACP) enzyme is involved in protein pinocytosis and intracellular digestion [20]. Alkaline
phosphatase (AKP) is a key enzyme with a protective role in fish under stress, parasitic
infection, and wound healing [21]. In this study, serum ACP increased markedly when
supplemented with a suitable level of methionine (8 g/kg), the serum AKP decreased
markedly as methionine concentrations increased to 8 g/kg, and hepatic AKP significantly
increased when supplemented with methionine. Transaminases are produced by the liver.
Aspartate aminotransferase (AST) primarily transfers the amino of aspartic acid to a-ketone
glutaric acid, producing oxaloacetic acid and glutamic acid, while alanine aminotransferase
(ALT) primarily transfers the amino of alanine to a keto-glutamic acid, producing pyruvate
and glutamic acid; these acids are also the main indexes used to evaluate hepatic injury [22].
In this study, the serum ALT and AST decreased markedly under supplementation with
methionine (8 g/kg). Meanwhile, the hepatic ALT and AST increased markedly when
supplemented with methionine concentrations greater than 4 g/kg. Moreover, the serum
total protein, blood urea nitrogen, and blood ammonia increased markedly when sup-
plemented with a suitable level of methionine (8 g/kg). The contents of hepatic amino
acids, total essential amino acids, total nonessential amino acids, and total amino acids
also increased. This phenomenon increased the utilization efficiency of amino acid. In this
study, we also observed that the proportions of vacuoles decreased under supplementation
with methionine (8 g/kg). Meanwhile, the nucleus moved and blurred the boundaries
of hepatic cells when methionine was restricted. We concluded that suitable methionine
may be better for hepatic amino-acid metabolism and a healthy condition, as we reported
in [16].

Interestingly, we also observed that the serum glucose, total cholesterol, and triglyc-
erides increased significantly with 8 g/kg dietary methionine. Meanwhile, the hepatic
total cholesterol and triglycerides increased markedly when supplemented with higher
than 2 g/kg methionine in this study. High-density lipoprotein (HDL) and low-density
lipoprotein (LDL) are major lipoproteins produced by the liver. LDL transports lipid
molecules from the liver around the body, while HDL carries lipids from the surrounding
tissue into the liver. These lipoproteins mainly carry cholesterol and are formed as HDL-C
and LDL-C, respectively [23]. Very-low-density lipoprotein (VLDL) is secreted by hepa-
tocytes of the liver; the large sizes of VLDL particles secreted by the liver result in major
disturbances to lipoprotein metabolism [24]. Hormone-sensitive lipase (HSL) regulates
lipolysis, especially in adipose tissue [25]. Microsomal triglyceride transfer protein (MTP)
facilitates the transport of fat by assisting in the assembly and secretion of triglyceride-rich
apolipoprotein [26]. Apolipoprotein A-1 (ApoA1) is considered to be an important factor
in lipid transport and metabolism in various tissues [27]. Lipoprotein lipase (LPL) is a key
enzyme in lipid metabolism and primarily catalyzes the hydrolysis of triglycerides in chyle
particles and very-low-density lipoprotein [28]. Fatty acid synthase (FAS) is involved in
fatty acid synthase [29], and Acetyl-CoA carboxylase (ACC) is the rate-limiting enzyme
for fatty-acid synthesis [30]. Carnitine palmitoyltransterase (CPT) participates in the pro-
cess of fatty acid β-oxidation [31]. In the present study, hepatic HL, Apo-A, FAS, and
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LPL increased markedly when supplemented with methionine, while hepatic HSL, ACC,
CPT, and MTTP decreased markedly when methionine was added. This phenomenon
indicated that methionine restriction not only inhibited amino-acid metabolism but also
disturbed lipid metabolism. Our results showed that dietary methionine offers benefits
for lipid metabolism. This phenomenon is similar to that observed in Cobia (Rachycentron
canadum) [10].

In addition, the lipid droplets (visualized by hepatic Oil red O staining) was increased
in the group supplemented with methionine (8 g/kg). This result intuitively shows the
difference in the hepatic lipid deposition of M. Albus between the M0 (0 g/kg) and M8
(8 g/kg) groups. To further explain the reasons why methionine deficiency affects the lipid
metabolism of M. albus, we chose the M0 (0 g/kg) and M8 (8 g/kg) groups to explore the
molecular mechanisms of lipid metabolism. gcn2 and eif2a respond to essential amino
acid deprivation and regulate the downstream genes related to lipid metabolism [32]. In
this study, compared to M0 (0 g/kg), hepatic gcn2 and eif2α were remarkably downreg-
ulated in M8 (8 g/kg), which means that the gcn2 and eif2α genes may be regulated by
different levels of methionine. Thus, we determined the genes related to lipid metabolism
and explored the relationship between amino-acid sensing and lipid metabolism. Sterol
regulatory element binding transcription factor (srebf ), including srebf1 (mainly regulates
fatty acids biosynthesis) and srebf2 (mainly regulates cholesterol synthesis), controls cel-
lular lipid metabolism and homeostasis and performs functions in lipid biosynthesis and
uptake-gene expression [33]. scap (srebf cleavage-activating protein) is a sterol-regulated
escort protein that transports srebf from its site of synthesis in the endoplasmic reticulum
to its site of cleavage in the Golgi [34]. Peroxisome proliferator-activated receptor α (pparα)
mainly controls the β-oxidation of fatty acids [35], while peroxisome proliferator-activated
receptor γ (pparγ) regulates the adipogenic and lipogenic pathways [36]. mogat2, dgat2,
me1, me2, fas, fads2, and acc are key enzymes involved in lipogenesis and fatty-acid synthe-
sis [37–43], while lpl, hsl, cpt1, and cpt2 are key genes involved in lipolysis and fatty-acid
β-oxidation [44,45]. icdh is one of the key enzymes involved in the production of NADPH,
which is an essential cofactor for fat cholesterol biosynthesis and fat metabolism [46]. The
polyunsaturated fatty acid elongase (pfae) gene encodes desaturase and elongase enzymes
with all the activities required for the production of long-chain polyunsaturated fatty
acid [47]. Here, compared to M0 (0 g/kg), hepatic pparα, cpt1, and cpt2 were remarkably
downregulated in M8 (8 g/kg), while hepatic srebf1, srebf2, lpl, moat2, dgat2, fas, fads2, me1,
pfae, and icdh were upregulated in M8 (8 g/kg). We also observed that lipid synthesis
genes were upregulated under a dietary-suitable level of methionine, while genes related
to lipid catabolism were downregulated. These phenomena observed in the present study
are similar to those observed in a previous study on Cobia (Rachycentron canadum) [10,48]
and large Yellow croaker (Larimichthys crocea) [49]. We also found that hepatic SREBP1 and
FAS protein expression was upregulated significantly in M8 (8 g/kg). Interestingly, hepatic
C18:2n-6, C22:6n-3, and n-3PUFA remarkably increased when supplemented with methio-
nine (8 g/kg). Thus, we determined that M. albus dietary intake deficient in methionine
mainly affected fatty-acid metabolism, specifically unsaturated fatty-acid synthesis.

Microsomal triglyceride transfer protein (mttp) facilitates the transport of fat by as-
sisting in the assembly and secretion of triglyceride-rich lipoproteins [26]. High-density
lipoprotein-binding protein (hdlbp) mainly participates in the endocrine regulation of both
lipids and cholesterol [50], while low-density lipoprotein receptor adapter protein (ldlra)
maintains levels of homeostatic LDL. Moreover, the ldlra pathway has emerged as a target
to reduce circulating cholesterol [51]. The very-low-density lipoprotein receptor (vldlr)
receptor binds triglyceride-rich lipoproteins, along with lpl [52]. In this study, hepatic
mttp and ldlrap were remarkably downregulated when supplemented with methionine
(8 g/kg), while hdlbp was up strongly regulated in M8 (8 g/kg). This result indicates that
lipid metabolism is more active if the feed intake of M. albus features a suitable level of
methionine. Moreover, hepatic eif2α, scap, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 gene expres-
sion was positively correlated with gcn2, and hepatic srebf2, lpl, moat2, dgat2, hdlbp, vldlr,
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srebf1, fas, fads2, me1, pfae, and icdh gene expression was negatively correlated with gcn2.
These results indicate that gcn2 could respond to the condition of methionine restriction in
M. albus and regulate lipid metabolism genes. However, the specific mechanism by which
gcn2 regulates hepatic lipid metabolism requires further study.

4. Materials and Methods
4.1. Ingredients and Experimental Diets

The basic diet (110 g/kg fish meal and 400 g/kg soy protein concentrate) was based
on our previous data [15,16]. Different levels of methionine (0, 2, 4, 6, 8, or 10 g/kg)
were supplemented in the basic diet based on the rule of equal nitrogen and our previous
studies [14,16], showed in Tables 6–8.

Table 6. Composition of the diets and levels of nutrition (g/kg).

Ingredients M0 M2 M4 M6 M8 M10

Fish meal 110 110 110 110 110 110
Soy protein concentrate 400 400 400 400 400 400

Fish oil 40 40 40 40 40 40
1 DL-Methionine 0 2 4 6 8 10

Lysine 3.6 3.6 3.6 3.6 3.6 3.6
Glycine 16 14 12 10 8 6

Glutamate 4 4 4 4 4 4
2 Food Attractant 1 1 1 1 1 1

Wheat meal 138.4 138.4 138.4 138.4 138.4 138.4
α- starch 200 200 200 200 200 200

Brewer yeast 50 50 50 50 50 50
Choline chloride 5 5 5 5 5 5

Ca(H2PO4)2 20 20 20 20 20 20
3 Vitamin and Mineral Premix 12 12 12 12 12 12

Total 1000 1000 1000 1000 1000 1000

Proximate analysis
Dry matter (g/kg) 922.66 925.27 928.12 928.43 923.63 924.78

Crude protein (g/kg) 445.92 443.41 458.73 447.40 451.84 450.77
Crude lipid (g/kg) 67.86 67.11 68.69 67.70 67.92 68.07
Crude ash (g/kg) 102.60 101.90 100.60 102.60 101.90 100.60

Gross energy (kJ/g) 19.10 18.86 18.74 19.17 19.25 19.10
1 DL-Methionine (BR, 99%) was obtained from Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China). 2 Attractants: 40% betaine; 20%
DMPT; 20% threonine; 10% glycine; 10% inosine-5′-diphosphate trisodium salt. 3 Vitamin and Mineral premix was provided by MGOTer
Bio-Tech Co.Ltd (Qingdao, Shandong, China)—premix composition (mg/kg diet): KCl, 200 mg; KI(1%), 60 mg; CoCl2·6H2O (1%), 50 mg;
CuSO4·5H2O, 30 mg; FeSO4·H2O, 400 mg; ZnSO4·H2O, 400 mg; MnSO4·H2O, 150 mg; Na2SeO3·5H2O (1%), 65 mg; MgSO4·H2O, 2000 mg;
Zeolite power, 3645.85 mg; VB1, 12 mg; Riboflavin, 12 mg; VB6, 8 mg; VB12, 0.05 mg; VK3, 8 mg; Inositol, 100 mg; Pantothenic acid, 40 mg;
Niacin acid, 50 mg; Folic acid, 5 mg; Biotin, 0.8 mg; VA, 25 mg; VCP1, 5 mg; VE, 50 mg; VC, 100 mg; Ethoxyquin, 150 mg; wheat meal,
2434.15 mg.

Proximate analysis (moisture, crude protein, crude lipid, ash, and gross energy)
of experimental feed and M. albus was performed based on our previous papers [53].
Amino acids were analyzed by an automatic amino acid analyzer (Agilent-1100, Agilent
Technologies Co., Ltd., Santa Clara, CA, USA) based on Wijerath’s method [54], and fatty
acids were analyzed by GC-MS (Agilent 7890B-5977A, Agilent Technologies Co., Ltd., Santa
Clara, CA, USA) based on Jin’s method [55], the results are shown in Tables 2 and 3.
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Table 7. The contents of amino acids of experimental diets (g/kg).

Amino Acid M0 M2 M4 M6 M8 M10

His
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2.5. Hepatic H&E and Oil Red O-Stained Pictures 
Hepatic H&E and Oil red O-stained images are shown in Figures 1 and 2. Vacuoles 

were observed in these two groups. As the number of vacuoles increased in the M0 group, 
the proportions of vacuoles decreased in the M8 (8 g/kg) group. We also observed move-
ment of the nucleus in M0 (0 g/kg) and blurred boundaries of hepatic cells in the M0 
group. Compared to M0 (0 g/kg), the number of lipid droplets was increased in the M8 (8 
g/kg) group (Figures 1 and 2). 
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Total amino acids 56.39 ± 1.74 59.41 ± 0.39 0.221 
* Note: ☆ essential amino acids. Values are presented as the means ± SEM (n = 3). Values were 
considered not significant at p > 0.05 (the same below). 
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Hepatic H&E and Oil red O-stained images are shown in Figures 1 and 2. Vacuoles 

were observed in these two groups. As the number of vacuoles increased in the M0 group, 
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group. Compared to M0 (0 g/kg), the number of lipid droplets was increased in the M8 (8 
g/kg) group (Figures 1 and 2). 
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2.5. Hepatic H&E and Oil Red O-Stained Pictures 
Hepatic H&E and Oil red O-stained images are shown in Figures 1 and 2. Vacuoles 

were observed in these two groups. As the number of vacuoles increased in the M0 group, 
the proportions of vacuoles decreased in the M8 (8 g/kg) group. We also observed move-
ment of the nucleus in M0 (0 g/kg) and blurred boundaries of hepatic cells in the M0 
group. Compared to M0 (0 g/kg), the number of lipid droplets was increased in the M8 (8 
g/kg) group (Figures 1 and 2). 
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2.5. Hepatic H&E and Oil Red O-Stained Pictures 
Hepatic H&E and Oil red O-stained images are shown in Figures 1 and 2. Vacuoles 

were observed in these two groups. As the number of vacuoles increased in the M0 group, 
the proportions of vacuoles decreased in the M8 (8 g/kg) group. We also observed move-
ment of the nucleus in M0 (0 g/kg) and blurred boundaries of hepatic cells in the M0 
group. Compared to M0 (0 g/kg), the number of lipid droplets was increased in the M8 (8 
g/kg) group (Figures 1 and 2). 
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2.5. Hepatic H&E and Oil Red O-Stained Pictures 
Hepatic H&E and Oil red O-stained images are shown in Figures 1 and 2. Vacuoles 

were observed in these two groups. As the number of vacuoles increased in the M0 group, 
the proportions of vacuoles decreased in the M8 (8 g/kg) group. We also observed move-
ment of the nucleus in M0 (0 g/kg) and blurred boundaries of hepatic cells in the M0 
group. Compared to M0 (0 g/kg), the number of lipid droplets was increased in the M8 (8 
g/kg) group (Figures 1 and 2). 

18.640 18.211 18.637 18.379 18.590 18.323
Ile

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 18 
 

 

Glu 8.3 ± 0.1 8.92 ± 0.22 0.066  
Thr ☆ 2.95 ± 0.15 3.01 ± 0.04 0.719  

Ala 4.52 ± 0.04 4.88 ± 0.13 0.064  
Pro 2.92 ± 0.13 3.04 ± 0.03 0.416  
Cys 0.08 ± 0 0.1 ± 0.01 0.176  

Lys ☆ 4.45 ± 0.21 4.65 ± 0.09 0.444  
Tyr 1.26 ± 0.06 1.45 ± 0.08 0.135  

Met ☆ 0.88 ± 0.11 1.11 ± 0.03 0.117  
Val ☆ 3.57 ± 0.16 3.71 ± 0.05 0.466  
Ile ☆ 2.61 ± 0.12 2.62 ± 0.05 0.919  

Leu ☆ 4.99 ± 0.23 5.17 ± 0.08 0.496  
Phe ☆ 2.9 ± 0.13 2.98 ± 0.04 0.582  

Total essential amino acids 26.93 ± 1.18 28.11 ± 0.42 0.399 
Total non-essential amino acids 29.47 ± 0.65 31.3 ± 0.16 0.052 

Total amino acids 56.39 ± 1.74 59.41 ± 0.39 0.221 
* Note: ☆ essential amino acids. Values are presented as the means ± SEM (n = 3). Values were 
considered not significant at p > 0.05 (the same below). 

Table 5. Effects of different levels of methionine on the contents of hepatic fatty acids of M. albus 
after 8 weeks (mg/100 g). 

Fatty Acid M0 M8 p Value 
C14:0 1.74 ± 0.15 2.61 ± 1.11 0.516 
C16:0 7.46 ± 0.4 7.2 ± 0.32 0.642 
C17:0 16.11 ± 2.12 17.59 ± 6.34 0.836 
C18:0 7.57 ± 0.4 7.66 ± 0.39 0.880 
C23:0 19.47 ± 0.74 20.3 ± 1.2 0.587 

1 SFAs 52.35 ± 2.6 55.36 ± 6.62 0.694 
C14:1 1.95 ± 0.23 1.26 ± 0.16 0.067 
C16:1 5.51 ± 0.86 8.65 ± 4.69 0.575 
C18:1 22.33 ± 0.72 24.58 ± 0.68 0.086 

2 MUFA 29.79 ± 1.41 34.49 ± 4.85 0.405 
C18:2n-6 5.9 ± 0.19 6.71 ± 0.11 0.020 
C20:4n-6 4.47 ± 0.66 6.49 ± 1.51 0.287 

3 n-6 PUFA 10.37 ± 0.5 13.2 ± 1.42 0.134 
C20:5n-3 3 ± 0.09 3.13 ± 0.52 0.822 
C22:6n-3 28.75 ± 0.5 38.42 ± 1.17 0.020 

4 n-3PUFA 31.75 ± 0.42 41.55 ± 1.68 0.005 
1 SFAs: saturated fatty acids. 2 MUFAs: mono-unsaturated fatty acids. 3 n-6PUFAs: n-6 poly-un-
saturated fatty acids. 4 n-3PUFAs: n-3 poly-unsaturated fatty acids. 

2.5. Hepatic H&E and Oil Red O-Stained Pictures 
Hepatic H&E and Oil red O-stained images are shown in Figures 1 and 2. Vacuoles 

were observed in these two groups. As the number of vacuoles increased in the M0 group, 
the proportions of vacuoles decreased in the M8 (8 g/kg) group. We also observed move-
ment of the nucleus in M0 (0 g/kg) and blurred boundaries of hepatic cells in the M0 
group. Compared to M0 (0 g/kg), the number of lipid droplets was increased in the M8 (8 
g/kg) group (Figures 1 and 2). 
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Table 8. The contents of fatty acids in the experimental diets (mg/100 g).

Fatty Acids M0 M2 M4 M6 M8 M10

C4:0 13.21 13.72 14.49 13.53 13.15 14.16
C8:0 5.07 5.08 4.91 5.05 5.04 5.00

C12:0 3.13 3.64 4.34 3.35 3.35 4.37
C13:0 11.13 10.39 9.71 11.29 10.32 10.14
C14:0 181.39 183.69 182.55 182.37 183.62 182.57
C14:1 2.19 2.62 2.81 2.88 2.70 2.83
C15:0 19.90 20.22 20.52 19.93 20.21 20.51
C16:0 609.04 608.96 606.58 609.36 608.55 606.84
C16:1 6.46 7.59 6.88 6.56 7.58 6.88
C17:0 12.58 13.74 13.65 12.80 13.42 13.52
C17:1 6.27 6.91 7.33 6.73 6.97 7.38
C18:0 120.68 121.92 121.78 121.68 121.97 121.80
18:1-T 16.16 16.09 17.89 16.10 16.02 17.86

C18:1N9C 415.27 410.17 418.66 413.30 410.15 418.53
18:2-T 2.74 3.35 2.45 2.73 3.34 2.46

C18:2N6C 17.35 16.63 18.71 18.34 16.86 18.12
C20:0 11.13 10.45 10.49 10.30 10.40 10.42
C20:1 25.44 27.37 27.27 23.43 27.34 27.22

C18:3N3 235.71 235.00 236.16 235.11 236.65 235.11
C20:2 10.35 10.88 10.31 10.36 10.85 10.34
C22:0 5.84 5.85 5.95 5.39 5.88 5.91

C22:1N9 197.83 197.62 194.40 197.33 197.65 196.49
C20:3N3 32.37 31.17 34.19 32.74 33.13 34.16
C20:4N6 25.20 25.82 25.45 25.57 25.18 25.40

C24:0 248.36 249.92 237.64 248.40 249.18 237.43
C20:5N3 101.77 100.98 101.88 101.17 101.90 101.89

C24:1 21.19 21.36 22.29 21.39 21.32 23.23
C22:6N3 575.88 571.14 571.93 575.90 571.16 570.93

4.2. Fish Rearing and Management

M. albus was obtained from Changde, China. M. albus of uniform size (25.08 ± 0.31 g)
was stochastically divided into 18 float cages (2.0 m× 1.5 m× 1.5 m). Each group contained
triplicates with 60 fish, based on our previous study [23].
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4.3. Ethics Statement

Our study was supported by the Animal Care Committee of Hunan Agricultural
University (Changsha, Hunan, China) and conducted according to the Chinese guidelines
for animal welfare. According to the guidelines established by the National Institutes of
Health, all experimental fish were anesthetized with eugenol (1:12,000; Shanghai Reagent
Corporation, Shanghai, China). Ethic code number: 2021094; date of Ethics Statement: 13
December 2021.

4.4. Sample Collection and Analyses

After the feeding trial, the caudal vein blood was heparinized from five fish in each
cage. Serum (3500× g) was obtained by centrifugation for 10 min and then stored at−80 ◦C
until use. Serum alanine aminotransferase, aspartate aminotransferase, acid phosphatase,
alkaline phosphatase, glucose, lactate dehydrogenase, total cholesterol, triglyceride, total
protein, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, non-
esterified free fatty acids, blood urea nitrogen, and blood ammonia were determined by
a kit from NanJing JianCheng Bioengineering (Nanjing, China). Serum very-low-density
lipoproteins were determined using a kit from Shanghai Enzyme-linked Biotechnology
Co., Ltd. (Shanghai, China).

Hepatic lipase, lactate dehydrogenase, microsomal triglyceride transfer protein, apolip-
oprotein-A, hormone-sensitive triglyceride lipase, fatty acid synthetase, lipoprotein lipase,
acetyl CoA carboxylase, and carnitine palmitoyltransterase were determined using a kit
from Shanghai Enzyme-linked Biotechnology Co., Ltd. (Shanghai, China). Hepatic triglyc-
eride, total cholesterol, aspartate aminotransferase, alanine aminotransferase, alkaline
phosphatase, and acid phosphatase were determined using a kit from NanJing JianCheng
Bioengineering (Nanjing, China).

Hepatic amino acids were analyzed by an automatic amino acid analyzer (Agilent-
1100, Agilent Technologies Co., Ltd., Santa Clara, CA, USA), and hepatic fatty acids were
analyzed by GC-MS (Agilent 7890B-5977A, Agilent Technologies Co., Ltd., Santa Clara,
CA, USA) using the same method.

The liver was taken from five fish per cage for histometric evaluation. The methods for
creating slides and observing the muscular sections stained with H&E were based on those
used in our previous paper [17]. The liver was sectioned (8 µm) using a cryostat microtome
and stained with Oil Red O [56]. The slides were then observed using CaseViewer.

Total hepatic RNA was obtained from five fish per cage using the Monzol™ reagent
(Monad, Shanghai, China). Smart cDNA was synthesized using a SMART cDNA Synthesis
kit (Clontech Laboratories, Palo Alto, CA, USA). Primers were synthesized by Biosune
Biotechnology, Inc. (Shanghai, China), as shown in Table 4. Quantitative real-time PCR
(qPCR) was performed as described in our previous paper [57]. The amplification efficiency
was between 0.95 and 1.10, as calculated by the formula E = 10*(−1/slope)−1, and 5-fold
serial dilutions of cDNA (triplicate) were used to generate the standard curve. The 2−44Ct

method was used to calculate the relative mRNA expression [58].
Hepatic proteins were extracted from the liver with a lysis solution. After centrifuga-

tion for 5 min at 12,000 rpm/min and 4 ◦C, we determined the content of protein, ensured
the protein concentrations were consistent, and used the concentrations for Western blot
analysis. The first antibody was as follows: GAPDH Mouse Monoclonal antibody (pro-
teintech, catalog number: 60004-1-Ig), SREBP1 anti-Rabbit pAb (Wanleibio, WL02093), and
FAS anti-Rabbit pAb (Wanleibio, WL03376). We used the ImageJ software to calculate the
expression of the protein (Table 9).
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Table 9. Primer sequence for q-PCR.

Gene Forward (5′-3′) Reverse (5′-3′) * Accession no. Size (bp)
1 gcn2 GGAACTCGTCCTGAACTG TGGTGAAGAACTTGCCTAT XM_020586241.1 298
2 eif2a CCCCTTCCTTTGTTCGTC GCTGAGGCTTTCTTGTTCC XM_020621840.1 121

3 srebf1 GAAGACGCCAAGCCAAATGT CCAGATGAGCAAAGCAGGGT XM_020616413.1 152
4 srebf2 AGGTACAGGTCCTCCATCAACG ATCGCCTTCCTCAGCACTCC XM_020624958.1 101
5 scap GATGGCAAACCAGAAGAACAAG TCCGAGTCCACGCAGTAAGG XM_020615524.1 141
6 mttp AAGATGCTCCAGGCTTTGTT TGTCAGGACCCTCTAAAATCAG XM_020602163.1 172
7 hdlbp CCACCCCAGACGACAAAGAC GGCGAGCAACAAAATAACGA XM_020609988.1 165
8 ldlrap CAGGAAGACAAAAGCAAGAAGG CGAGTGGGGTTACTATGAGGC XM_020617284.1 194
9 vldlr ACATCCGTCGTTTGGGTCTA GTGGTAGTGTCCCCTCGTTT XM_020601062.1 169
10 lpl CGTTGACATCGGAGACCTGA CAAAGACCACCTTGGACTGAG XM_020613041.1 146

11 pparγ TTCACAAGAAGTCCCGCA AAAGAACAGGCAGGAAAACA XM_020609689.1 203
12 moat2 TCTCCCTGCCTCTCTTTCA TGTCCACTCCATAGTTGCCT XM_020622089.1 213
13 dgat2 ACTTCCGCTTTCCCTTG ATTCCCTGTCTCGTTATGTG XM_020622054.1 104
14 pparα GATGATGCCCTGGGATTTGA AGCCTTGTCTGAGCACACCTG XM_020601270.1 186

15 hsl CCTGGGCTTTCAGTTTTCAC AGGTTCTGGGTAATGCGTTC XM_020597684.1 216
16 fas CTGTCCGAGGCGGCATAAT CCTGTTCCTTCCCCTTCTGG XM_020608884.1 189

17 fads2 CAGCATCACGCTAAACCCA GCGAAGATAAAATGTCAAGGC GQ258116.1 261
18 me1 TCTTCTATCGGGTGCTAATGT AGCCCTGATGTCTTTTTCC XM_020621574.1 188
19 me2 AGGAGACCTTGGTGTTTATGG TGGATTAGTGTGCCGTGC XM_020593804.1 252
20 acc TCTGACAGCGACCCCTTCT GCCCCACACATTCTTATTGC XM_020598745.1 136

21 cpt1 CCTGGAAGAAGCGTGTCATCAGAC TGACTGGCAGGTGCTCCTGTATC XM_020625222.1 168
22 cpt2 GCCATCTTCTGTCTCTGCC AAGGACTTGTCATACCACCG XM_020609923.1 107
23 icdh GGGTATGATGAGCAGTGAGC TATGGGATTGGTGGAGGTC XM_020620011.1 127
24 pfae AACTACCCACCGACCTTTG ATGACCTTGTTATCCACTTCCT GQ258117.1 239

25 rpL17 CGAGAACCCGACTAAATCA GTTGTAGCGACGGAAAGG XM_020587712.1 169
1 gcn2: general control non-derepressible. 2 eif2a: eukaryotic translation initiation factor 2. 3 srebf1: sterol regulatory element binding
transcription factor 1. 4 srebf2: sterol regulatory element binding transcription factor 2. 5 scap: SREBF chaperone. 6 mttp: microsomal
triglyceride transfer protein. 7 hdlbp: high density lipoprotein binding protein. 8 ldlrap: low density lipoprotein receptor adapter protein.
9 vldlr: very-low-density lipoprotein receptor. 10 lpl: lipoprotein lipase. 11 pparγ: peroxisome proliferators-activated receptor γ. 12 mogat2:
monoacylglycerol O-acyltransferase 2. 13 dgat2: diacylglycerol acyltransferase 2. 14 pparα: peroxisome proliferator-activated receptor α.
15 hsl: hormone-sensitive lipase. 16 fas: fatty acid synthase. 17 fads2: fatty acid desaturase 2. 18 me1: malic enzyme 1. 19 me2: malic enzyme
2. 20 acc: acetyl-CoA carboxylase. 21 cpt1: carnitine palmitoyltransferase 1. 22 cpt2: carnitine palmitoyltransferase 2. 23 icdh: isocitrate
dehydrogenase. 24 pfae: polyunsaturated fatty acid elongase. 25 rpl17: ribosomal protein L17, it is reference gene. * NCBI Reference
Sequence.

4.5. Statistical Analysis

Data were analyzed by one-way analysis of variance (ANOVA), and significant differ-
ences among all groups were assessed by Duncan’s multiple-range test. The data of two
groups (M0 & M8) were calculated by an independent T-test. The ANOVA and indepen-
dent t-test were performed using the SPSS 22 software. The results were expressed as the
means ± SEM (standard error of the mean), and differences were considered significant at
p < 0.05.

5. Conclusions

Methionine restriction inhibited the lipid deposition of M. albus, especially for hepatic
lipid deposition, and primarily downregulated hepatic fatty acid metabolism. In addition,
gcn2 was activated when methionine was restricted, and hepatic lipid-metabolism genes
were correlated with gcn2.
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