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Next-generation sequencing (NGS) technology has provided researchers with opportunities to study the genome in unprecedented
detail. In particular, NGS is applied to disease association studies. Unlike genotyping chips, NGS is not limited to a fixed set of
SNPs. Prices for NGS are now comparable to the SNP chip, although for large studies the cost can be substantial. Pooling techniques
are often used to reduce the overall cost of large-scale studies. In this study, we designed a rigorous simulation model to test the
practicability of estimating allele frequency from pooled sequencing data. We took crucial factors into consideration, including
pool size, overall depth, average depth per sample, pooling variation, and sampling variation. We used real data to demonstrate
andmeasure reference allele preference in DNAseq data and implemented this bias in our simulation model. We found that pooled
sequencing data can introduce high levels of relative error rate (defined as error rate divided by targeted allele frequency) and that
the error rate is more severe for low minor allele frequency SNPs than for high minor allele frequency SNPs. In order to overcome
the error introduced by pooling, we recommend a large pool size and high average depth per sample.

1. Introduction

Over the last decade, large-scale genome-wide association
studies (GWAS) based on genotyping arrays have helped
researchers to identify hundreds of loci harboring common
variants that are associated with complex traits. However,
multiple disadvantages have limited genotyping arrays’ ability
for disease association detection. A major disadvantage of
genotyping arrays is the limited power for detecting rare
disease variance. Rare variants with minor allele frequency
(MAF) less than 1% are not sufficiently captured byGWAS [1].
Such lowMAF variantsmay have substantial effect sizes with-
out showing Mendelian segregation. The lack of a functional
link between the majority of the putative risk variants and
the disease phenotypes is another major drawback for geno-
typing array-based GWAS [2]. The most popular genotyping
chip, the Affymetrix 6.0 array, contains nearly 1 million SNPs,
yet only one-third of these SNPs resides in the coding regions.
Even though many GWAS-identified statistically significant

SNPs lie in the intron or intergenic regions, [3–5] their biolog-
ical function remains difficult to explain. Another limitation
of genotyping arrays is that, because the SNPs are predeter-
mined on the array, no finding of novel SNPs is possible.

Most of the above limitations can be overcome by using
high throughput NGS technology [6]. NGS can target a
specific region of interest, such as the exome or the mito-
chondria. Often, the functions of variants identified in coding
regions of interest are much easier to explain than those of
variants identified in the intron or intergenic regions. Also,
by targeting the exome, we can effectively examine nearly
30 million base pairs in the coding region rather than just
0.3 million SNPs on the Affymetrix 6.0 array. Sequencing
technology has been used to detect rare variants in many
studies [7–10], with rare variants defined as 1%–5% frequency.
Due to the large sample size needed to detect such low
frequency variants, detection of rare variants less than 1% can
still pose a significant challenge forNGS technology. Oneway
to overcome this limitation is by doing a massive genotyping
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catalogue such as the 1000 Genomes Project [11]. Researchers
are often too limited financially to conduct a genotyping study
on such a large scale. DNA pooling is a strategy often used to
reduce the financial burden in such cases.

The concept of pooling in genetic studies began in 1985
with the first genetic study to apply a pooling strategy [12].
Since then, pooling has been extensively applied in linkage
studies in plants [13], allele frequency measurements of
microsatellite markers and single nucleotide polymorphisms
(SNPs) [10, 14–18], homozygosity mapping of recessive dis-
eases in inbred populations [19–22], and mutation detection
[23]. Even though pooling has also been used widely with
NGS technology [24–26], the effectiveness of the pooling
strategy has long been debated. On the one hand, several
studies have claimed that data generated frompooling studies
are accurate and reliable. For example, Huang et al. claimed
that the minor allele odds ratio estimated from pooled
DNA agreed fairly well with the minor allele odds ratio
estimated from individual genotyping [27]. Docherty et al.
demonstrated that pooling can be effectively applied to the
genome-wide Affymetrix GeneChip Mapping 500K Array
[28]. Some studies have even found that pooling designs have
an advantage in the detection of rare alleles and mutations,
such as the study by Amos et al., which suggested that
mutations in individuals could be more efficiently detected
using pools [23]. On the other hand, several studies have
argued that, when compared with individual sequencing,
pooled sequencing can generate variant calls with high false-
positive rates [29]. Other studies also found that the ability
to accurately estimate the allele frequency from pooled
sequencing is limited [30, 31].

Usually two different kinds of pooling paradigms are
involved.The first is multiplexing (also known as barcoding).
On an IlluminaHiSeq 2000 sequencer, one lane can generate,
on average, from 100 to 150 million reads per run. For exome
sequencing, from 30 to 40 million reads per sample are
needed to generate reliable coverage in the exome for variant
detection. Thus, the common practice is to multiplex from 3
to 4 samples per lane to reduce cost. Using multiplexing with
barcode technology, we are able to identify each read’s orig-
ination. The disadvantage of multiplexing with barcoding is
the extra cost of barcoding and labor.The cheaper alternative
to poolingwithmultiplexing is poolingwithoutmultiplexing,
which prevents us from identifying the origin of each read.

In this study, we focused on pooling without multi-
plexing. By using comprehensive and thorough simulations,
we tried to determine the effectiveness of estimating allele
frequency from pooled sequencing data. In our simula-
tion model we considered important factors of pooled
sequencing, including overall depth, the average depth per
sample, pooling variation, sampling variation, and targeted
minor allele frequency (MAF). Another important issue we
addressed in our simulation is the reference allele preferential
bias, which is a phenomenon during alignment when there
is preference toward the reference allele. We used real data
to show the effect of reference allele bias and adjusted our
simulation model accordingly. We describe our simulation
model in detail and present the results from the simula-
tion.

2. Materials and Methods

We designed a thorough simulation model to closely reflect
the real-world pooled sequencing situation. Our simulation
model includes notations which we have defined as follows:
let 𝐹 be the allele frequency estimated from pooled sequenc-
ing data, and let 𝐹 be the true allele frequency in the pool.
Under the ideal assumption, all samples’ contributions to
the pool are equal. However, in practice, factors such as
human error and library preparation variation can affect a
sample’s contribution to the pool. Very likely, each time a
sample is added to the pool, an error is introduced. We let
𝜀
𝑖
denote the error of sample 𝑖 during the pooling process,

and 𝜀
𝑖
should follow a normal distribution 𝑁(𝜇, 𝜎2), where

𝜇 = 0, and 𝜎2 denotes the variance of error in the pool. We
assume that the amount of DNA added to the pool for each
sample 𝑐 + 𝜀

𝑖
follows a normal distribution 𝑁(𝑐, 𝜎2), where

𝑐 is a constant and denotes the ideal constant contribution
to the pool by each sample. The probability that a read is
contributed by sample 𝑖 can be represented as 𝑝

𝑖
= (𝑐 +

𝜀
𝑖
)/∑
𝑁
𝑠

𝑖=1
(𝑐 + 𝜀

𝑖
), where 𝑁

𝑠
denotes the number of samples

in the pool. The contribution of each sample in the pool
to a SNP can be modeled as a multinomial distribution
𝑅
1
, 𝑅
2
, 𝑅
3
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),
where 𝐷 equals the depth at this SNP and 𝑅

𝑖
represents the

reads contributed by sample 𝑖 for this SNP. The depth 𝐷
follows a possion distribution 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆

𝐷
), where 𝜆

𝐷
equals

the average depth for the exome regions. For sequencing data,
the reads at heterozygous SNPs should have an allele balance
of 50%,meaning 50%of the read should support the reference
allele while the other 50% of the read should support the
alternative allele. Thus the reads that support the alternative
allele should follow a binomial distribution𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐷, 0.5).

In our studywe estimated the average depth for the exome
regions as follows:

Average depth

=
Lane × Reads per lane × Capture efficiency

number of exons
.

(1)

In general the read output for 1 lane on an Illumina HiSeq
2000 sequencer is around 120 million reads. The most pop-
ular exome capture kits including Illumina TruSeq, Agilent
SureSelect, and NimbleGen SeqCap EZ capture almost 100
percent of all known exons (about 30 million base pairs).
Most capture kits claim that they have capture efficiency of
at least 70 percent, but, in practice, it has been shown that
the capture efficiency of all these capture kits are only around
50 percent [32], which implies that if a sample is sequenced
for 120 million reads, only around 60 million reads will be
aligned to exome regions. After filtering for mapping quality,
the number of reads aligned to exome regions will be even
smaller. However, to simplify, we ignored the reads that failed
themapping quality filter.There are about 180,000 exons [33].
Based on (1), for exome sequencing on 1 Illumina HiSeq lane,
the average depth is expected to be roughly 400.
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Table 1: Allele balance for 3 independent datasets.

Dataset Sample Min. 1st Qu. Median Mean 3rd Qu. Max. Mean 95% conf. lo. Mean 95% conf. hi.
1055QC0003 0.091 0.423 0.48 0.48 0.536 0.862 0.476 0.483
1055QC0004 0.1 0.427 0.477 0.48 0.53 0.826 0.477 0.483
1055QC0005 0.046 0.429 0.481 0.482 0.536 0.939 0.479 0.486
1055QC0006 0.1 0.418 0.478 0.481 0.542 0.909 0.477 0.485
1055QC0007 0.156 0.417 0.476 0.475 0.536 0.879 0.472 0.479
1055QC0008 0.148 0.421 0.481 0.482 0.542 0.905 0.479 0.486
1055QC0009 0.148 0.422 0.478 0.48 0.536 0.963 0.476 0.483
1055QC0011 0.1 0.421 0.481 0.48 0.538 0.952 0.477 0.484
1055QC0012 0.095 0.429 0.478 0.48 0.531 1 0.477 0.483
1055QC0013 0.165 0.424 0.482 0.482 0.541 0.9 0.479 0.486

SureSelect 1055QC0014 0.103 0.429 0.481 0.483 0.538 0.818 0.48 0.487
1055QC0016 0.13 0.425 0.48 0.482 0.54 0.909 0.478 0.485
1055QC0017 0.136 0.422 0.481 0.48 0.536 0.9 0.477 0.483
1055QC0018 0.182 0.424 0.48 0.48 0.537 0.987 0.477 0.483
1055QC0020 0.2 0.432 0.483 0.485 0.536 0.815 0.482 0.488
1055QC0021 0.12 0.429 0.481 0.484 0.538 1 0.48 0.487
1055QC0022 0.091 0.424 0.478 0.479 0.533 0.905 0.476 0.482
1055QC0024 0.077 0.422 0.478 0.478 0.535 0.857 0.474 0.481
1055QC0025 0.13 0.429 0.481 0.484 0.54 0.897 0.481 0.488
1055QC0026 0.13 0.42 0.478 0.479 0.539 0.793 0.476 0.482
1055QC0028 0.039 0.419 0.477 0.476 0.531 0.938 0.472 0.479

10009 0.044 0.447 0.5 0.499 0.55 1 0.496 0.501
10244 0.091 0.444 0.5 0.497 0.55 0.909 0.495 0.499

TruSeq 10290 0.065 0.444 0.5 0.497 0.55 0.917 0.495 0.499
20007 0.077 0.447 0.5 0.498 0.55 0.923 0.496 0.5
20017 0.044 0.447 0.5 0.498 0.55 0.921 0.496 0.5
20301 0.077 0.449 0.5 0.499 0.55 0.967 0.497 0.501

ERR004043 0.04 0.376 0.44 0.447 0.511 0.986 0.44 0.453
ERR004047 0.125 0.391 0.447 0.451 0.503 1 0.446 0.457

Array based SRR013908 0.081 0.37 0.475 0.481 0.584 0.977 0.472 0.489
SRR013909 0.071 0.372 0.476 0.484 0.591 0.95 0.476 0.492
SRR015428 0.093 0.389 0.488 0.49 0.586 0.909 0.483 0.498
SRR015429 0.1 0.426 0.496 0.497 0.564 0.913 0.491 0.503

All Mean 0.103 0.421 0.482 0.483 0.543 0.919 0.479 0.487

To measure the accuracy of the allele frequency 𝐹
estimated from pooled sequencing data, we computed the
relative root mean square error (RMSE) as follows:

2

√∑
𝑛

1
(𝐹
𝑖
− 𝐹)
2

/𝑛

𝐹
,

(2)

where 𝑛 is the number of simulations we performed to
estimate the target allele frequency 𝐹. In our simulations, we
set 𝑛 = 10, 000. Unlike the traditional RMSE, we divided it
by the target allele frequency 𝐹 to make the result relative to
the allele frequency we were simulating, so we could compare
RMSE for allele frequencies as small as 0.5% and as large as
50%.

Reference allele preferential bias is a phenomenon during
alignment when there is preference toward the reference
allele. Degner et al. described such bias in RNA-seq data
[34]. To examine whether this bias also exists in DNAseq
data, we measured allele balance (defined as reads that
support the alternative allele divided by total reads) of three
independent DNA sequencing datasets. The three datasets
were sequenced at different facilities (Broad Institute,
HudsonAlpha, Illumina), at different time points, and using
different capture methods (Agilent SureSelect, Illumina
TruSeq, and Array Based Capture). The theoretical allele
balance for heterozygous SNPs should be around 50%. In
real data, we observed that the mean allele balance for all
heterozygous SNPs for all samples is 0.483 (range: 0.447–
0.499) (Table 1). Thus, we modified our previously defined
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Figure 1: Relative RMSE for different pool sizes and MAFs under different standard deviations.

read distribution at heterozygous site 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐷, 0.5)
to 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐷, 𝑃) where 𝑃 follows a normal distribution
𝑁(𝜇
𝑃
, 𝜎
2

𝑝
), where 𝜇

𝑃
and 𝜎2

𝑝
are estimated by the empirical

mean allele balance we observed in real data.
Three simulations were conducted to evaluate the accu-

racy of allele frequency estimation from pooled sequencing
data.The detailed descriptions of the three simulations are as
follows.

Simulation 1. The goal of Simulation 1 was to study the
relationship between different levels of 𝜀 and relative RMSE
under different pool sizes (𝑁

𝑠
= 200, 400, 800, and 1600)

and different MAF (MAF = 0.5%, 1%, %5, 10%, 20%, 30%,
40%, and 50%). Each sample’s DNA contribution 𝑐 + 𝜀

𝑖
to the

pool follows a normal distribution 𝑁(𝑐, 𝜎2). For simulation
purpose, we set an arbitrary value 𝑐 = 10 units; the actual
value of 𝑐 does not affect the outcome of the simulations,
because the simulation merely scales around it. To best

represent the scenario in practice, we used several different
standard deviations values for the distribution of sample
contribution to the pool. For the ideal situation, we set 𝜎2 to
a very small number (10−5); then, we increase 𝜎2 to 1, 2, and
4 (10%, 20%, and 40% of 𝑐) to see the effect of larger error
variance on the accuracy of allele frequency estimation using
pooled sequencing data. Each allele frequency was simulated
10,000 times.

Simulation 2. The goal of Simulation 2 was to study the
relationship between depth and relative RMSE. The average
depth of exome coverage can be estimated using the number
of lanes. Instead of looking directly at average depth in
the exome regions, we looked at average depth per sample
𝜆
𝑝𝑠
= 𝜆
𝐷
/𝑁
𝑠
(i.e., average depth divided by pool size). If the

average depth of exome regions for the pool of 200 people is
600x, then the depth per sample is 3x. In this simulation, we
used 𝜆

𝑝𝑠
= 0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20, pool size
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Figure 2: Relative RMSE for different pool sizes and MAFs under different average per sample depths.

𝑁
𝑠
= 200, 400, 800, and 1600, and MAF = 0.5%, 1%, %5, 10%,

20%, 30%, 40%, and 50%. Each allele frequencywas simulated
10,000 times.

Simulation 3. The goal of Simulation 3 was to determine the
overall performance of a pooled exome sequencing study. In
practice, we cannot measure a SNP 10,000 times and then
compute the average allele frequency as we did in Simulations
1 and 2. We are limited with one measurement only at a given
SNP. It is important that we look at the overall performance
too rather than just at a single SNP. Based on the released
data of the 1000 Genomes Project, we built an empiricalMAF
distribution. This distribution should represent an overall
picture of MAF distribution in the population. A typical
exome study will yield 10,000–100,000 SNPs after filtering,

with the number of SNPs heavily dependent on the number
of samples sequenced in the study. Following the empirical
distribution of theMAF,we randomly drew 10,000 SNPs from
this distribution to simulate an exome sequencing dataset and
computed an overall error rate. The error rate is defined as
|𝐹 −𝐹|/((𝐹 +𝐹)/2). We further repeated this simulation 1000
times and computed the median error rates.

3. Results

Simulation 1. We assume that each sample’s DNA contribu-
tion to the pool follows a normal distribution𝑁(𝑐, 𝜎2). In an
ideal situation, 𝜎2 is small, and if we fix overall depth, the
pool size does notmake a significant difference for the RMSE.
For example, in an ideal situation, for MAF = 0.5, the relative
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Figure 3: 1000 Genome MAF distributions.

Table 2: Statistics for doing 10,000 simulations at different MAFs.

MAF Min. 1st Qu. Median Mean 3rd Qu. Max. Var. Relative RMSE
0.5 0.0000 0.0036 0.0049 0.0050 0.0064 0.0162 0.0000 0.5037
1 0.0000 0.0075 0.0098 0.0100 0.0124 0.0264 0.0000 0.3552
5 0.0256 0.0448 0.0500 0.0500 0.0551 0.0795 0.0001 0.1540
10 0.0615 0.0928 0.0999 0.1000 0.1071 0.1401 0.0001 0.1070
20 0.1444 0.1904 0.2000 0.2001 0.2098 0.2558 0.0002 0.0716
30 0.2449 0.2889 0.2997 0.2998 0.3106 0.3619 0.0003 0.0537
40 0.3397 0.3879 0.3998 0.4000 0.4118 0.4707 0.0003 0.0442
50 0.4348 0.4877 0.5000 0.4998 0.5116 0.5675 0.0003 0.0359

Table 3: Pooled and individual sequencing pricing.

Sequencing per pool 200 400 600 800 1000
2 lanes $3,650 $4,050 $4,450 $4,850 $5,250
4 lanes $6,650 $7,050 $7,450 $7,850 $8,250
6 lanes $9,650 $10,050 $10,450 $10,850 $11,250
8 lanes $12,650 $13,050 $13,450 $13,850 $14,250
10 lanes $15,650 $16,050 $16,450 $16,850 $17,250
12 lanes $18,650 $19,050 $19,450 $19,850 $20,250
16 lanes $24,650 $25,050 $25,450 $25,850 $26,250
Individual prep. $125,000 $250,000 $375,000 $500,000 $625,000
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Figure 4: Median error rates for simulating 1000 exome sequences
using different numbers of lanes. Simulation on 2 lanes shows nearly
30% error, and only around 5% error rate is observed for 16 lanes
simulation.

RMSE for pool size𝑁
𝑠
= 200, 400, 800, and 1600 equals 0.023,

0.024, 0.024, and 0.020, respectively. However, if we increase
𝜎
2, pools with greater size tend to have lower RMSEs. For

example, when 𝜎2 is increased to 4, for MAF = 50%, the
relative RMSEs for pool size 𝑁

𝑠
= 200, 400, 800, and 1600

equals 0.028, 0.0250, 0.023, and 0.022, respectively. Increasing
𝜎
2 clearly also increased relative RMSE for all MAFs and for

all pool sizes. For example, for pool size 𝑁
𝑠
= 200, MAF =

50%, 𝜎2 = 0.00001, 1, 2, and 4, the relative RMSE are 0.020,
0.021, 0.023, and 0.028, respectively. Also lower MAF tended
to have high relative RMSE than high MAF. For example, in
an ideal situation, for pool size𝑁

𝑠
= 200, the relative RMSEs

for MAF = 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, and 50% are
equal to 0.289, 0.202, 0.088, 0.061, 0.041, 0.031, 0.030, and
0.020, respectively. The results of Simulation 1 can be viewed
in Figure 1.

Simulation 2. In this simulation, the goal was to examine the
relationship between average depth per sample 𝜆

𝑝𝑠
and pool

size𝑁
𝑠
. We found that, with the same average depth per sam-

ple 𝜆
𝑝𝑠
, higher pool sizes will generate lower relative RMSEs.

Also, as the MAF increases, the relative RMSE decreases. For
example, forMAF = 50% and average depth per sample 𝜆

𝑝𝑠
=

1, the relative RMSEs for 𝑁
𝑠
= 200, 400, 800, and 1600 are

0.071, 0.050, 0.036, and 0.025, respectively. If we can infinitely
increase pool size or average depth per sample while fixing
the other, the RMSE will reach zero. The result of Simulation
2 can be viewed in Figure 2.

In our study, we performed simulations at each MAF
10,000 times. However, in practice, we do not have the
resources to measure a SNP 10,000 times and then take
the average. In real exome sequencing, each SNP is only
measured one time. Table 2 shows the quantile information
for simulating MAF = 0.5%, 1%, 5%, 10%, 20%, 30%, 40%,
and 50% 10,000 times.Themean andmedian of the estimated
MAF are very close to the targeted MAF value. When MAF
increases, the variance also increases. If we account for

relative RMSE, the simulations still produced more accurate
results for larger MAFs.

Simulation 3. In this simulation, we simulated the scenario
of pooled exome sequencing. Using data from the 1000
Genomes Project as prior information that contains geno-
typing data from 1092 individuals, we built an empirical
distribution of MAF (Figure 3). Based on this empirical
distribution, we simulated the pooled exome sequencing
with pool size 𝑁

𝑠
= 1092 1000 times and computed the

median error rate for each simulation (Figure 4). The results
clearly indicate that higher depth is required to produce an
acceptable error rate (>5%). For standard exome sequencing,
pooled DNA from 1000 subjects will require roughly 16
Illumina HiSeq lanes to produce results with an acceptable
error rate.

Financial Implication. The ultimate goal of pooling is to ease
the financial burden on large association studies. Based on the
most up-to-date pricing information on NGS, we compared
the total cost of conducting association studies using pooling
at different pool sizes with individual sequencing using
Illumina HighSeq 2000 sequencer, which contains 2 flow
cells, and each flow cell contains 16 lanes. Table 3 shows the
price difference between pooling and individual sequencing.
The savings using pooling is more substantial when pool
sample size is large. When using all 16 lanes, the savings for
200 samples is roughly 500% over individual sequencing and,
for 1000 samples, a 2300% saving.

4. Discussion

Our simulation showed that there are several important
factors to consider when designing a pooling study. Those
factors include sample size, targeted MAF, and, most impor-
tantly, the depth.The sample size directly affects the ability to
detect rare SNPs. Larger pool sizewill increase the accuracy of
MAF estimation with the same per sample depth but will not
have much effect with the same overall depth. Similarly, with
the same pool size, increasing depth will decrease relative
RMSE. Our simulation also showed that pooled sequencing
is not ideal for estimating the MAF of rare SNPs. The relative
RMSE is much higher for SNPs with MAF < 1% compared to
SNPs with MAF > 5% (Figure 1).

Sequencing pooled DNA will ease financial burdens and
make large association possible. At the same time, however,
pooling introduces additional errors. Amajority of the errors
are caused by the unequal representation of each sample’s
DNA in the pool. This unequal representation could be
due to human or machine error, which we have considered
in our simulation. There are other factors which can also
cause the unequal representation, such as a sample’s DNA
quality and variation introduced in the PCR/amplification
stage. Unfortunately, we can only minimize such errors and
variation using more sophisticated lab techniques. Even if
every sample is equally represented in the pool, the sequenced
data still do not truly reflect the equality due to sampling
variance. Based on our simulation results, when designing
a pooling study, we recommend the following: larger pool
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size is better, and higher depth is better. More elaborately,
it is better to keep balance between pool size and depth.
We recommend keeping the average depth per sample at 10
minimum if rare SNPs are not of interest; otherwise, average
depth per sample at 20 minimum is highly recommended.
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