
HYPOTHESIS PAPER

Nitric oxide boosters as defensive agents against COVID-19 infection:
an opinion

Jan Mohammad Mira,b and Ram Charitra Mauryab

aDepartment of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, India; bCoordination, Metallopharmaceutical
and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry and Pharmacy, R. D. University, Jabalpur,
M. P., India

Communicated by Ramaswamy H. Sarma

ABSTRACT
In the prevailing covid times, scientific community is busy in developing vaccine against COVID-19.
Under such fascination this article describes the possible role of nitric oxide (NO) releasers in aiding
the immune system of a human body against this dreadful pandemic disease. Despite some prodrug
antiviral compounds are in practice to recover the patients suffering from covid-19, however, co-mor-
bidity deaths are highest among the total deaths happened so far. This concurrence of a number of
diseases in a patient along with this viral infection is indicative of the poor immunity. Literature back-
ground supports the use of NO as immunity boosting agent and hence, the nitric oxide releasing com-
pounds could act as lucrative in this context. Some dietary suggestions of NO-containing food items
have also been introduced in this article. Also, the profound effect of NO in relieving symptomatic
severity of covid-19 has been opined in this work.
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Introduction

Nitric oxide (NO) is considered as a biologically important
free radical that is produced during the metabolic pathway
of L-arginine (Mir et al., 2019). The molecule has been proven
of its physiological role in maintaining vascular tone, neur-
onal functionality, tumor-suppressing ability and more
importantly profound implicative in human immune system
as well as a microbicide (Maurya & Mir, 2014; Mir et al., 2017;
Palmer et al., 1987). Moreover, NO generated naturally is
expressive in so many immune functions, viz, T-cell regula-
tion. Due to the fact that this molecule possesses its physio-
logical impacts almost in every system of a human body,
scientists are busy in developing NO-releasers for the benefi-
cial applicability in case of the requirement wherein its pro-
duction is too low to maintain homeostasis (Hibbs et al.,

1987). In due course so many inorganic and organic NO-
donors have been proposed by the scientific community.
Some of them are even consumed by well defined commer-
cial names generally called as NO-boosters (NO-supplements)
(Mir et al., 2019).

As of now the world is suffering from the deadly viral
pandemic generally known as corona virus-19 (COVID-19). Till
now no treatment is available for this disease. However,
some known viral drugs and social distancing have
decreased the effect and spread of this calamity. Such declin-
ing infection rates and lockdown strategies have shown a
ray of hope. But, these precautionary measures alone are not
sufficient to lessen the increasing peak of the covid-19
affected statistical graph. Even the developed countries like
USA are hopeless in this combat. The increasing trend of this
catastrophe thus cannot be halted completely. For every field
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of scientific research it is hence a first and foremost question
trending in the current era.

The bio-medicinal chemistry is trying all by leaps and
bounds to bring forth a successful vaccine against this viral
menace. As a contributory step, before a successful vaccine
is developed, one of the routine food intake habits could be
modified by the meticulous consumption of some natural
and artificial items having NO-boosting capability.
Advancements made so far in knowing the immunomodult-
ing effects of NO and the role as mitigating the viral patho-
genesis is thought to contribute in the development of
antiviral vaccines. Also, the possible use of nitrate/nitrite
metabolites together with the enzyme iNOS could act as
prognostic viral infection markers (Uehara et al., 2015). In our
conspicuous interest towards NO and NO-like molecules
associated investigation (Mir et al., 2017; 2019; Mir & Maurya,
2018a, 2018b, 2018c, 2018d, 2018e) this article describes
some of the medically proven NO-releasers and some of the
available NO-boosters that could be suggested as heath sup-
plements to tackle the covid-19 effects. Also, their inclusion
in the COVID-19 vaccination has also been suggested with
suitable reasons.

Possible relation between NO and COVID infection

In medicine, concurrence of additional conditions with a pri-
mary health-worsening condition is termed as. Such a status
is usually considered as fatal to defend covid infection
because of poor immunity. Very recently Guan et al reported
that patients having comorbidity yield poorer results for clin-
ically and number of associated deaths is the highest as
compared to other groups (Guan et al., 2020). Therefore it is
suggested that the immune response must be enhanced
among the entire set of populations worldwide to defend
the covid-19 infection. COVID-19 drug development involves
the development of preventative vaccination or therapeutic
drugs that would mitigate the severity of Coronavirus disease
2019 (COVID-19). Very recently, so many research institutes,
drug companies and health organizations put forth 115 vac-
cine candidates and 249 potential therapies for COVID-19
disease in various stages of preclinical or clinical research. By
late April, some 330 clinical trials were in progress worldwide
to evaluate potential therapies against COVID-19.

Possible role of nitric oxide in pathogenesis of
COVID-19: immunomodulation and
antioxidative stress

This is a well known fact that during glycolysis of aerobic
type mitochondrial ATP generation in the presence of O2

involvement of mitochondrial respiratory chain (DiMauro &
Schon, 2003). However, when a tissue gets injured, the low
levels of O2 and glucose are characteristic feature of the
spot, together with an elevated concentration of reductive
metabolic species (Saadi et al., 2002). As a result, these areas
show inflammation and vasodilation maintained oftenly by
NO synthase (specifically iNOsynthase). Exposure to NO
ensures the occurence of the S-nitrosylation/inhibition of

cytochromecoxidase, hence, bioenergetic functioning switch
becomes operational to anaerobic milieu. Therefore, it
becomes clearly stemming the assumption of NO-mediated
immune response (Fiorucci et al., 2004). NO thus exerts a
regulatory impression upon lymphocyte and monocytes
functioning providing a potent signal transduction between
the innate and acquired immunity. Thus, A key regulator of
endothelial function is endothelium-derived nitric oxide (NO)
generated by endothelial NO synthase (eNOS) [28]. Vascular
NO relaxes blood vessels, prevents platelet aggregation and
adhesion, limits oxidation of low density lipoprotein (LDL)
cholesterol, inhibits proliferation of vascular smooth muscle
cells, and decreases the expression of pro-inflammatory
genes that advance atherogenesis.

The positive results shown by NO against SARS-1, raises
hope to expect NO similar active against COVID-19, whether in
treating symptomatic severity or in curtailing corona viral load
(Klingstr€om et al., 2006; Martel et al., 2020). To treat SARS-CoV-
2 it has been that suggested to optimize the nitric oxide level
within a human body. In this disease nitric oxide deficiency eli-
cited by dysfunction in endothelial tissue eventually sup-
presses thrombotic event, restoration of NO may prove highly
beneficial. Based on the NO-mediated positive results for
SARS-1, nitric oxide gas is under clinical phase second to find
its use in the treatment of COVID-19 (Martel et al., 2020).

Four main potent post-infection therapies–favipiravir,
remdesivir, lopinavir and hydroxychloroquine (or chloro-
quine) – have been found in the final stage of human testing
and yet a lot is to be done to win this combat. Among
severe symptoms associated with covid-19 infection include
difficulty in breathing or breathlessness, paining chest and
difficulty in body movements. The enhancement of respira-
tory response and relief from chest pain could be achieved
using NO-releasing compounds therapeutically as has been
initiated to investigate by some research groups (https://in.
mobile.reuters.com/article/amp/idINFWN2D80HB; LSU Health,
2020). It is worthy to mention here that the fact of this mol-
ecule in serving to protect lungs from physiological aging
has been well documented (Boe et al., 2015). Earlier, it was
noted that the due to vasodialtion effect of NO may induce
relaxation of the smooth muscle confined to airway, activates
guanylatecyclase, and consequently provokes bronchodila-
tion effect in. Therefore, the lung physiological severity
caused by COVID-19 infection could be mitigated using NO
at the target. However, the responsiveness of a selected NO-
donor needs to be carefully monitored (Ricciardolo, 2003).

Nitric oxide as antiviral agent with special reference
to corona virus

There are three isoforms of nitric oxide synthase (NOS)
enzyme that is responsible for natural production of NO
inside a human body. These include neural (nNOS), inducible
(iNOS) and endothelial (eNOS) that are widely known. In gen-
eral host immune mechanism, NO generated via iNOS is suf-
ficient to mitigate an infection (Knowles & Moncada, 1994;
MacMicking et al., 1997). Advancements made so far in the
study of its role in immunomodulation and pathogenesis of
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viral infections in particular has led to the repurposing in the
development of vaccines/therapeutics (Uehara et al., 2015).
From previous studies the role of NO in inhibiting protease
activity helps in understanding the mechanism of action of
this molecule as an anti-viral drug (Saura et al., 1999).
Moreover, literature survey reveals that NO halts the replica-
tion of genetic material of various viruses including
Coxsackievirus, Picornaviruses, hantavirus, herpesvirus, rhino-
virus, Japanese encephalitis, vaccinia, retrovirus, etc (Croen,
1993; Kaul et al., 1999; Klingstrom et al., 2006; Zaragoza
et al., 1997; 1998).

In the current times whole world is combating with the
severity caused by corona virus. As far as the identification
of this virus is concerned, it was in 2002, in China, when the
first family member of Coronaviridae was detected and iden-
tified (Akarid et al., 1995; Lin et al., 1997). In due course of
finding the treatment of this dreadful virus, it has been
reported that NO donor S-nitroso-N-acetyl inhibits the virus
progeny and hence halts the respective RNA-replication
(Harris et al., 1995; Resh, 2006). As mentioned above the viral
conquer results in oxidative stress and in the meantime NO
and O2 rapidly forms peroxynitrite to maintain the balance.
This bio-intermediate is also efficient antiviral agent (Tan
et al., 2006) and has been specially found active against
Hantaviruses (Akerstrom et al., 2005). Therefore it becomes
logical here to state the anticorona property in three ways;
by halting the RNA-replication, by deactivating oxidation
stress and performing antiviral action even if NO changes to
nitrite form. The severity caused by corona infection is now
read under two heads, severe acute respiratory syndrome
corona virus disease-1 (SARS-COVID-1) and (SARAS-COVID-2).
The second one is also referred as COVID-19 or nCOVID. In
reference to the activity against pulmonary infections shown
by earlier reports suggest that higher levels of NO-exhalation
exhibits less symptoms of common cold and refer nasally NO
production as defense to invasion by corona through airways
(Akaike & Maeda, 2000; Akerstrom et al., 2005).

Hence, from the positive results shown by NO against
SARS-1 (Jung et al., 2010; Klingstrom et al., 2006), similar

results are expected from NO against covid-19 (Ritz et al.,
2018), whether in treating symptomatic severity or in curtail-
ing corona activity. To treat SARS-CoV-2 it has been that sug-
gested strategic to elevate the nitric oxide airway (Keyaerts
et al., 2004). Since, in this disease remarkably nitric oxide
deficiency elicited by dysfunction in endothelial tissue and
eventually concurrence of suppressed thrombotic events, res-
toration of NO may prove highly beneficial (Akerstrom et al.,
2005). Also, NO-sensitivity of proteases of the virus causing
the Covid-19 has caught considerable attention in fighting
this disease (Martel, et al., 2020). Based on a the discussion
made above in terms of positive results for improving lung
function during SARS-1 outbreak, nitric oxide gas is under
clinical phase second to find its use in the treatment of
Covid-19 (Martel et al., 2020).

Clinical trials of nitric oxide for the treatment of
SARS CoV-2

On June 29, 2020, Kalytera Therapeutics Inc. (TSX-V.KALY,
OTCQB:KALTF, Forum) made an important announcement
that it has entered into a binding Letter of Intent (LOI) to
license R-107 from Salzman Group for treatment of corona-
virus and COVID-19 infection. This prodrug injection is non-
gaseous form nitric oxide and releases nitric oxide into lung
tissues over 48 h (https://stockhouse.com/news/newswire/
2020/07/15/introducing-prodrug-that-s-anti-covid-19). Similarly,
COViNOX another NO-releasing drug is under third phase
of clinical trial (https://www.clinicaltrials.gov/ct2/show/
NCT04421508).

Natural food items as NO-boosters (home-made
concoctions to boost immunity)

In the sudden outbreak of pandemic corona virus disease, it
is necessary to be cautious in maintaining hygiene. In add-
ition, some kitchen based inventions may prove helpful in
boosting immunity power. The liquid intake and naturally
NO-boosting agents may enter a human body by this way.

Figure 1. NO-containing foods.
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These self-made items include gingery drink, lemon grass
tonic, turmeric, honey and garlic preparations. Beets repre-
sent rich source of dietary nitrates, which can get converted
to nitric oxide (Figure 1). Consuming garlic activates enzym-
atic action to produce nitric oxide from the L-arginine
(Maurya & Mir, 2014; Mir et al., 2019). Similarly meat, poultry,
seafood, spinach, cabbage, arugula and citrus fruits enhance
nitric oxide level. Pomegranate is loaded with potent antioxi-
dants that can protect your cells against damage and pre-
serve nitric oxide. Nuts and seeds are high in arginine, a
type of amino acid that is involved in the production of nitric
oxide. Watermelon is one of the best sources of citrulline, an
amino acid that’s converted to arginine and, ultimately to
nitric oxide (www.healthline.com/nutrition/nitric-oxide-foods).

Synthetic NO donors

Despite the fact that NO is an endogenously generated mol-
ecule having free radical nature, linked with diversified
physiological functions, an optimal level of NO concentration
is essential for normal functioning of a human body (Maurya
& Mir, 2014; Mir et al., 2019). However, due to high reactivity
of NO, direct administration of NO-gas cylinders is generally
avoided (Cheng et al., 2019). Under such quest of developing
efficient NO donors capable of storing and releasing NO
reversibly under specific conditions has attained tremendous
fascination (Jin et al., 2018). The synthesis and applications
of such molecular scaffolds e.g. metal nitrosyls, N-diazenium-
diolates, organic nitrites and S-nitrosothiols have been given
special attention towards NO exposure and look out for its
meticulous release (Dong et al., 2015; Troncy et al., 1997).

Organic nitrates (RONO2) represent the oldest class of NO
donors that have been clinically applied. Representative
organic nitrates include glyceryl trinitrate (GTN), pentaerythri-
tyl tetranitrate (PETN), isosorbide dinitrate (ISDN), isosorbide
5-mononitrate (ISMO), and nicorandil (Figure 2). The partially
denitrated metabolites of GTN, glyceryl dinitrates (GDN) and
mononitrates (GMN), are still pharmacologically active but
considerably less potent than GTN.

Organic nitrates due to three-electron reduction forming
NO have long been used vascular relaxant (Cederqvist et al.,
1994; Hinz et al., 1998; Jugdutt, 2004; Leier et al., 1981;
Thatcher & Weldon, 1998; Torfgard & Ahlner, 1994). Among
organic nitrites e.g. isobutyl nitrite (ISBN), butyl nitrite (BN),
tert-butyl nitrite (TBN), isoamyl nitrite (IAMN) and amyl nitrite
(AMN) have been clinically used as vasodilators for a long
time (Patel & Williams, 1990) (Figure 3). Also, the nitrosyl
moiety of nitrites can be readily transferred to a sulfhydryl
group (Kowaluk & Fung, 1991; Meloche & O’Brien, 1993), ren-
dering the significance of S-nitrosothiols in vivo [60] showing
the respective NO release as an enzymatic process (Chung
and Fung, 1990; Ji et al., 1996; Meyer et al., 1994).
Enzymatically, xanthine oxidase (XO) has also been reported
to catalyze the reduction of organic nitrites to NO under
anaerobic conditions (Doel et al., 2000).

Among metal nitrosyls, Sodium nitro prusside (SNP) is
the oldest NO-donor clinically applied for over 70 years to
treat hypertension because of producing vasodilation
effect (Marks et al., 1995). When kept dry and stored away
from light its crystalline form can retain stability at room
temperature for years (Zhelyaskov & Godwin, 1999). This
clearly shows the photosensitivity and oxidation prone

Figure 2. Examples of some NORMS.

Figure 3. Some organic nitrites.
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nature of SNP (Feelisch, 1991). Although the mechanism of
NO release from SNP is not fully understood, it is clear
that NO release requires either irradiation with light or
one-electron reduction and is usually enhanced by thiols
(Scheme 1).

In human body, release of NO from SNP may be triggered
both enzymatically and non-enzymatically, under the pres-
ence of vascular tissue or a reducing catalyst is required
(Bates et al., 1991). Photolytic cleavage of NO in physiological
conditions is not always significant (Butler & Glidewell, 1987).
The use of nonenzymatic reduction procedure (using thiols,
hemoproteins, ascorbate) are abundantly found in most of
the biological tissues help in releasing significant amounts of
NO. A membrane-bound enzyme may be involved in the
generation of NO from SNP in biological tissues, and either
NADH or NADPH appears to be required as the cofactor
(Kowaluk et al., 1992; Mohazzab-H et al., 1992; Rao et al.,
1991). Some concerns regarding the decomposition of SNP
accompanied by cyanide release (a maximum of 5 equiv of
CN- per mole SNP), has lead to cellular toxicity (Arnold et al.,
1984). This has limited the use of SNP for the said purpose.
Also, it has been found that spontaneous NO-release of SNP
may form cytotoxic peroxynitrite which may harm a healthy
tissue (Lamarque & Whittle, 1995; Wink et al., 1996).

To seek for low molecular weight, long-duration stable,
efficient storing capacity and ease of NO-release so molecu-
lar systems have been tested (e.g. N-diazeniumdiolates;
NONOates) (Riccio & Schoenfisch, 2012). Unfortunately, due
to the toxic biological response in mammalian tissues/cells
macromolecular-NO-storage systems have been proposed
(Park et al., 2016; Zhang et al., 2003). To increase NO pay-
loads metal organic frame-have also been used for this pur-
pose (Lowe et al., 2013). Cyclodextrins based NO-releasing
molecular vehicles and other sugar-like biopolymers have
also been fabricated to favor this necessity (Deniz et al.,
2012; Piras et al., 2013).

Concluding remarks

Social distancing (physical distancing) alone can’t help in
halting the spread of covid-19 infection. Though prevention
is better than cure, but human body has to always be ready
to combat infections. At least a dietary routine could be
modified to allow inclusion of those foods which can help in
boosting immune system. The article hence describes the

significant use of NO as immune-modulator and agent to
attain relief from the infection severity including breathless-
ness and chest pain. Due to some distinctive NO-releasing
differences among inorganic and organic species, attention
must be paid towards the design of efficient NO-releas-
ing compounds.
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