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Abstract: Background: Transposons are selfish genetic elements that self-reproduce in host DNA.
They were active during evolutionary history and now occupy almost half of mammalian genomes.
Close insertions of transposons reshaped structure and regulation of many genes considerably.
Co-evolution of transposons and host DNA frequently results in the formation of new regulatory
regions. Previously we published a concept that the proportion of functional features held by
transposons positively correlates with the rate of regulatory evolution of the respective genes.
Methods: We ranked human genes and molecular pathways according to their regulatory evolution
rates based on high throughput genome-wide data on five histone modifications (H3K4me3, H3K9ac,
H3K27ac, H3K27me3, H3K9me3) linked with transposons for five human cell lines. Results: Based
on the total of approximately 1.5 million histone tags, we ranked regulatory evolution rates for
25075 human genes and 3121 molecular pathways and identified groups of molecular processes that
showed signs of either fast or slow regulatory evolution. However, histone tags showed different
regulatory patterns and formed two distinct clusters: promoter/active chromatin tags (H3K4me3,
H3K9ac, H3K27ac) vs. heterochromatin tags (H3K27me3, H3K9me3). Conclusion: In humans,
transposon-linked histone marks evolved in a coordinated way depending on their functional roles.

Keywords: human genome molecular evolution; histone modifications; transposable elements;
retrotransposons; molecular pathway analysis; gene ontology; epigenetics; gene regulation; promoter;
chromatin structure

1. Introduction

Transposons are endogenous mobile components of a genome that can replicate themselves into
new genomic locations [1]. Retroelements (REs) form a specific group of transposons: they proliferate
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through cDNA intermediates generated with reverse transcription of their RNA transcripts [2]. REs are
considered to be the only group of transposons, which was active in mammals [3]. They occupy a
significant part of the genome corresponding to numerous “copy and paste” episodes: over 40% of the
human genome is recognized as originated from REs [4,5]. Due to their abundance, REs also inevitably
spread in functional genomic regions; for example, they are essential in gene regulation for acting as
functional promoters [6] and enhancers [7,8]. As a result, REs could provide new transcription factor
binding sites [9,10]. Moreover, they could be involved in chromatin reshaping by making the chromatin
transcriptionally active (euchromatin) [11] or inactive (heterochromatin) [12]. Being actively involved
in the genome homeostasis, REs evolve under the natural selection as parts of gene regulatory modules.
However, given that every de novo RE insertion is not orthologous to the ancestral state, REs can be
utilized to estimate relative rates of gene regulatory evolution. Recently we have published a concept
that the proportion of functional features held by transposons positively correlates with the rate of
regulatory evolution of the respective genes [13]. Furthermore, this information can be aggregated to
characterize evolutionary rates of molecular pathways and gene ontology terms with a set of specific
quantitative scores [13]. To calculate this score, only exact positions of REs and knowledge of functional
features in the region of interest are required.

In addition to participation in molecular pathways [14,15], individual genes could be aggregated
according to apparent common co-expression networks [16] or involvement in complex gene
signatures [17]. To study both structural and functional features of gene evolution, we recently
proposed analytic pipeline termed RetroSpect. In RetroSpect, the approaches like pathway activation
level calculation [18,19] or quantization of gene ontology (GO) clustering features [20,21] are used to
characterize high-throughput regulatory impacts of the REs [22,23]. RetroSpect was applied to analyze
the impact of RE-linked regulation for all human genes at the level of transcription factor binding sites
(TFBS) [13]. REs are known to be important source of TFBS and cryptic promoters for human cells [24].

RetroSpect is based on a rationale of measuring the proportion of gene-proximate functional
features (e.g., TFBS) hosted by the REs. This proportion is thought to reflect rates of gene regulatory
evolution, thus enabling to identify genes with quickly and slowly evolving regulatory modules [13].
For each gene, 10-kb neighborhood around its transcriptional start site (TSS) was analyzed, as
TSS-proximal regions are thought to be enriched in key regulatory modules such as promoters and
enhancers [25]. Proportions of RE-linked TFBS were calculated based on the published experimental
chromatin immunoprecipitation sequencing (ChIP-Seq) data for different human cell lines. Higher
number of sequencing reads (=hits) here means stronger binding with transcriptional factors for the
same locus, and vice versa [26]. This approach was found effective for data analysis at the levels of
both individual genes and molecular pathways [13].

The major processes enriched by RE-linked regulation are associated with olfaction, color vision,
spermatogenesis and fertilization, some aspects of immune and hormonal responses, intracellular
molecular trafficking, metabolism of amino acids, vitamins and fatty acids metabolism, xenobiotic
metabolism and detoxication. Quite to the contrary, the deficient pathways were involved in protein
synthesis and ribosome biogenesis, RNA transcription and processing, nuclear chromatin organization,
cell cycle, apoptosis, cell contacts, embryo development, most of the signaling pathways, cellular stress
response, oxidative phosphorylation in mitochondria and some other aspects of immunity. Remarkably,
within the top enriched cohort, we found approximately three times higher number of genes known
for noncoding RNAs than in the bottom cohort of the same size.

However, functional features other than human TFBS have not been examined in the same manner.
In this study, we used the RetroSpect pipeline to study other essential regulatory elements—histone
epigenetic marks. We considered five major epigenetic histone modifications (methylation or
acetylation) that are involved in gene regulation—H3K4me3, H3K9ac, H3K27ac, H3K27me3 and
H3K9me3. In particular, the H3K4me3 modification is highly enriched at active promoters near
transcription start sites and considered as transcription activation epigenetic biomarker [27]. Similarly,
H3K9ac and H3K27ac modifications denote active gene transcription [28]. On the contrary, H3K27me3
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and H3K9me3 are heterochromatin-associated histone marks specific for constitutive and facultative
heterochromatin, respectively [29]. The presence of H3K27me3 and H3K9me3, therefore, indicates
repressed transcriptional activity in neighboring genome regions. Thus, the abovementioned five
epigenetic marks form two functional groups: one associated with transcriptional activation (H3K4me3,
H3K9ac and H3K27ac) and one associated with transcriptional suppression (H3K27me3 and H3K9me3).

We ranked regulatory evolution rates of human genes and molecular pathways by using high
throughput data on five histone marks from the ENCODE project [30] for five human cell lines. Based
on H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 histone tags, respectively, we investigated
25,075 human genes and 3121 molecular pathways. As for the previous TFBS analysis, the processes
of “amino acids and polyamines metabolism”, “lipid metabolism”, “detoxication and catabolism of
xenobiotics”, “sensory perception and neurotransmission” and “immunity linked pathways” showed
signs of the fastest regulatory evolution, while the processes “DNA metabolism and chromatin structure
linked pathways”, “nucleic base metabolism” and “translation and protein maturation” demonstrated
the slowest regulatory evolution. However, histone tags showed different regulatory patterns and
formed two distinct clusters: promoters/active chromatin tags (H3K4me3, H3K9ac, H3K27ac) vs.
heterochromatin marks (H3K27me3, H3K9me3). Our findings suggest that in humans, distributions of
transposon-linked histone tags evolved in a coordinated manner according to their functional roles.

2. Materials and Methods

2.1. Quantitative Scores of Genes and Pathways Regulatory Evolution

To evaluate the RE-associated regulatory impact of individual genes, we introduced a quantitative
score (Equation (1))—gene RE-linked enrichment score (GRE score) of an individual gene is the sum
of RE-specific hits (histone modification marks) found in a 10kb-neighborhood of its TSS, that is
normalized by the average content of RE-specific hits for all examined genes. For every gene, GRE
enables us to measure its regulation by RE-linked hits. However, this score is limited in a way that
different genes with the same GRE value could have a substantially different number of total hits (both
RE-linked and not) in their TSS neighborhood, so the GRE score cannot be directly used to compare
genes. Therefore, it is required to have another normalized score that shows how the regulatory region
of a gene is enriched by RE-linked hits with respect to total hits. To this end, the normalized gene
RE-linked enrichment score (NGRE) was proposed. For an individual gene, the NGRE is equal to the
ratio of GRE score to balanced total number of hits (not only RE-linked) for the gene [13].

Similar scores were proposed to evaluate the impact of hits at the level of molecular pathways [13]
termed pathway involvement index (PII) and normalized pathway involvement index (NPII). PII reflects
the total impact of RE-linked hits on the regulation of an individual molecular pathway. The bigger PII
is, the stronger impact of RE-linked hits on the overall regulation of a molecular pathway should be,
and vice versa. However, PII is not informative enough to estimate RE-linked regulation of a pathway
in the context of its total regulation. We, therefore, introduced another score termed NPII (normalized
PII) which is needed to estimate the relative RE-linked impact on the regulation of a whole molecular
pathway. Higher NPII indicates stronger relative impact of RE-linked TFBS on the general regulation
of a molecular pathway, and vice versa [13].

2.1.1. GRE and NGRE Scores

Let us assume that the positions of both RE segments and target histone marks within the
chromosomal region associated with a gene g are known. Then, for any particular gene g, GRE score is
calculated according to the formula (Equation (1)):

GREg =
HESg

1
n
∑ n

i=1HESi
, (1)
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where GREg is GRE score for a gene g; HESg is the number of RE-linked hits for a gene g; i is gene
index, and HESi is the number of RE-linked hits for gene i; n is the total number of genes under
investigation. Normalized gene RE-linked enrichment score (NGRE score) for a gene g is calculated as
follows (Equation (2)):

NGREg =
GREg

GHEg
. (2)

Here the GHE (gene hits enrichment) score characterizes gene-specific hits distribution trends,
expressed by the formula (Equation (3)):

GHEg =
THSg

1
n
∑ n

i=1THSi
, (3)

where THSg is the total number of hits mapped in the 10kbp neighborhood of gene g, i is gene index, n
is the total number of genes.

2.1.2. PII and NPII Scores

Pathway involvement index (PII) is expressed by the formula (Equation (4)):

PIIp =

∑n
i=1 GREi

n
, (4)

where PIIp is PII score for a pathway p; GREi is the GRE score for gene i; n is the total number of genes in
pathway p. The normalized pathway involvement index (NPII) is calculated as follows (Equation (5)):

NPIIp =
PIIp

PGIp
, (5)

where PIIp is PII for pathway p; PGIp is pathway gene-based index for a pathway p introduced to assess
the impact of total hits (not only RE-linked) on the regulation of molecular pathways. PGI for pathway
p is expressed by the formula (Equation (6)):

PGIp =

∑n
i=1 GHEi

n
, (6)

where GHEi is GHE score for gene i; n is the number of genes in pathway p.

2.2. Primary Data

From the UCSC Human Genome Browser [31], we downloaded coordinates of human
protein-coding genes (RefGenes table, genome assembly hg19). For each gene and each of five
human cell lines investigated here (K562, HepG2, GM12878, MCF-7, HeLa-s3), we took all REs
overlapping 10kbp region around transcription start site (5kbp upstream and 5kbp downstream).
Coordinates of histone modifications—H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3—were
extracted from the ENCODE database [32].

The reference human genome assembly 2009 (hg19) was indexed by the Burrows–Wheeler
algorithm using BWA software, version 0.7.10 [33]. Concatenation of fastq files with single-end or
pairwise reads, alignment to the reference genome and filtering were performed by BWA, Samtools
(version 1.0), Picard (version 1.92), Bedtools (version 2.17.0) and Phantompeakqualtools (version 1.1)
software packages. Aligned reads for histone modification marks for every cell line were mapped on
the RE sequences annotated by RepeatMasker (version 3.2.7) and downloaded from the UCSC Browser
(RepeatMasker table) [31].

After the calculation of GRE, NGRE, PII and NPII statistics for each gene/pathway and cell line, we
calculated the average value of each statistic for genes and pathways across all cell lines under analysis.
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2.3. Gene Expression Data

From the ENCODE database [34] we obtained RNA sequencing gene expression profiles for human
cell lines using the following set of filters: “Transcription”, “total RNA-Seq”, “gene quantifications”.
For three out of five cell lines of interest, we found 19 experiments containing gene expression data
in two technical replicates: 11 experiments for K562 cell line, five for HepG2 and three for GM12878.
Accession numbers are shown in Supplementary Table S1.

2.4. Enrichment Analysis for Groups of Differential Genes

We performed gene ontology analysis of genes that were either enriched or deficient in epigenetic
regulatory marks linked with REs (RRE-enriched and RRE-deficient genes, respectively) by applying
DAVID software (version 6.8) [35] using human gene IDs extracted from USCS Genome Browser [31];
RRE stands for “RE-linked regulation”. As the background parameter for the annotation, we took the
entire list of genes in the analysis. Our target functional categories were directed GO terms of biological
functions, molecular processes and cellular components derived from “Functional Annotation Chart”
in DAVID. All the directed terms were extracted with the corresponding enrichment score values.
To merge DAVID annotation terms into more general categories, we developed a semi-automatic
supervised method. The list of sixteen categories was defined in [13] and contained example terms
from each category. To attribute a new term to one of the categories, we found a number of shared
genes between the term and each of the example terms. The largest intersection size allowed us to
determine the preliminary category of the term. When all terms were split into the categories, we
manually checked and fixed misclassification (less than 5% of all cases). As a result, each GO term was
assigned to a single category.

To quantify the enrichment of a category for REs-linked regulation, we considered all GO terms in
the category and calculated the aggregated p-value by Fisher’s method. Obtained p-values reflect the
enrichment level; however, the use of any significance threshold is not correct in this case. Our approach,
like other types of gene set enrichment analysis, has a limitation that the categories are not entirely
independent: some genes could correspond to several GO terms. Therefore, p-values cannot be
adequately corrected for multiple testing. Considering this fact, we analyzed p-values guided by the
empirical rule: the less p-value is, the more enriched the category is.

2.5. Measuring Pathway Enrichment by RE-Linked Hits

Gene architecture data of the molecular pathways were extracted from the following databases:
BioCarta [36] (downloaded on March 2015), KEGG [37] (downloaded on June 2015), NCI (https:
//cactus.nci.nih.gov/ncicadd/about.htm) (downloaded on March 2015), Reactome [38] (downloaded
on March 2015) and Pathway Central (Pathway Central 2019) (downloaded on March 2015 from
http://www.sabiosciences.com/pathwaycentral.php). Data on molecular pathways structure were
downloaded in .xml and .biopax formats from these databases and used in our computational
algorithm [19]. We calculated PII and NPII scores for 3121 pathways for every cell line. To attribute
pathways to sixteen functional categories predefined by [13], we applied the same algorithm as for the
classification of GO terms. After the primary classification, we manually checked and corrected the
categories; each pathway was assigned to a single category.

Enrichment of the categories after the pathway analysis was calculated in the following way.
We calculated the EASE score, which is a modification of Fisher’s exact test [35]. In our case, the
EASE score was calculated according to the following contingency table (Table 1). The EASE method
provides the p-value for each category; however, we considered these values in a ranking-like way,
because categories were unlikely to be completely independent.

https://cactus.nci.nih.gov/ncicadd/about.htm
https://cactus.nci.nih.gov/ncicadd/about.htm
http://www.sabiosciences.com/pathwaycentral.php
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Table 1. Contingency table for the EASE score. X is the number of enriched/deficient pathways in the
category, Y is the number of all enriched/deficient pathways, Z is the number of all pathways in the
category, and K is the number of all pathways analyzed.

Differential Regulation Number of Pathways in Category Total Number of Pathways

Number of Enriched/Deficient
Pathways max (0, X-1) Y

Number of not
Enriched/Deficient Pathways Z-X K-Y

2.6. Combination of Gene- and Pathway-Based Enrichment Scores

To combine the results obtained in two previous pipelines (according to pp. 2.3. and 2.4.), we
applied Fisher’s exact test to aggregate the obtained p-values. We analyzed the results in a qualitative
manner instead of quantitative as it was performed in previous works [9,13] because of the inevitable
drawbacks of enrichment analyses.

3. Results

3.1. Primary Data Analysis

From the ENCODE project database, for five human cell lines, we extracted 200889, 593717, 373112,
302267 and 86197 tags of H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 histone modifications,
respectively, that were mapped 5 kbp upstream and 5 kbp downstream of gene transcription start sites.
Among them, 28,0%, 20,0%, 22,4%, 20,3% and 29,0% respectively, overlapped with unambiguously
mapped human RE sequences. The following five cell lines were examined: K562, GM12878, HepG2,
MCF-7, HeLa-s3 (malignant blood—K562 and GM12878, liver, mammary gland and cervix respectively).
Then, we employed scores (GRE, NGRE, PII and NPII) that were proposed by us previously to evaluate
RE-linked regulation by using transcription factor binding site (TFBS) data [13]. We did not change
the analytical formulas of scores, however, we changed their concepts to deal with epigenetic marks
instead of TFBS.

For every gene, its GRE score could be used as a measure of the enrichment level by the RE-linked
hits. In turn, NGRE score is the normalized GRE on the proportion of total hits (not only RE-linked)
overlapping with the gene neighborhood. High NGRE value means stronger impact of RE-specific
regulation on overall regulation of a particular gene, and vice versa. The GRE and NGRE scores of
25,075 human genes were calculated in this study.

Similarly, PII score reflects enrichment of the molecular pathways by the RE-linked hits, whereas
NPII score was designed to estimate normalized impacts of REs in the regulation of molecular pathways.
Higher NPII suggests stronger RE-linked regulatory impact for an individual molecular pathway and,
consequently, faster evolution of the corresponding pathway regulatory network [13]. The PII and
NPII scores of 3121 molecular pathways were calculated.

After computing GRE, NGRE, PII, NPII statistics of each gene/pathway of every cell line, we
averaged the values of each statistic for genes and pathways across all cell lines in the study to operate
the scores that represent several human tissues simultaneously. All cell line-specific and averaged
calculated GRE, NGRE, PII, NPII scores are in Supplementary Table S2.

The REs-liked histone marks of interest occupied minor fractions of all chromatin marks.
Depending on the cell line, these fractions were 21–31%, 13–29%, 14–33%, 15–26% and 22–35%
for H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 tags, respectively (Supplementary Table S3).
These data are not in line with the previous findings where RE-linked TFBS formed the majority of all
TFBS hits [9]. The highest proportions of RE-linked histone marks were made by the representatives
of SINE group of REs: 17–25%, 10–24%, 11–28%, 8–14% and 7–14% for the modifications H3K4me3,
H3K9ac, H3K27ac, H3K27me3 and H3K9me3, respectively, in different cell lines. For the LINE
group of REs they were 9–14%, 5–13%, 6–16%, 6–13% and 11–19%, respectively. Finally, for the LTR
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retrotransposons and endogenous retroviruses (LR/ERVs) the proportions were 3–4%, 2–4%, 2–6%,
3–6% and 7–13%, respectively. However, it should be noted that the number of histone modification
tags mapped on all retroelement classes is not equal to sum of tag numbers separately mapped on
LINEs SINEs and LR/ERVs because one tag could overlap with several individual REs [9]. Previously,
Estecio et al. and coauthors found that increased content of B1 SINE elements in rodent gene promoters
was connected with the repressing histone marks [39]. In this study we found no linkage between
human gene-proximate SINE contents and H3K27me3 or H3K9me3 histone modifications.

3.2. Correlation between Histone Tags Based on GRE/NGRE and PII/NPII Scores

First, we analyzed how profiles of histone tags vary within cell lines. For this purpose, we
obtained 25 profiles from the ENCODE database (5 tags for 5 cell lines), calculated correlations for each
pair of profiles and applied the biclustering on the square symmetric matrix of correlations (Figure 1).
For each histone tag, we found that obtained profiles were highly congruent across cell lines, and the
tissue-specific component had only a minor impact on the profiles. Therefore, in further analysis, we
averaged values of GRE, NGRE, PII, and NPII scores across five cell lines of interest.

In addition, we observed that the histone marks formed two clear-cut groups with strongly
correlated gene distribution profiles for their members (Figure 1). One group contained promoter
and active/open chromatin marks (H3K4me3, H3K9ac, H3K27ac), whereas another group contained
inactive (constitutive and facultative heterochromatin, respectively) marks H3K9me3 and H3K27me3.
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H3K9me3) in five human cell lines (K562, GM12878, HepG2, MCF-7, HeLa-s3).
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The different functionalities of those two groups were clearly illustrated by correlations of their
histone profiles with the gene expression data obtained for the same cell lines (Figure 2). To this end,
we extracted available RNA sequencing profiles from the ENCODE project repository. Totally, six
profiles were available for cell line GM12878, ten for cell line HepG2 and twenty-two for cell line K562.
For the MCF-7 and HeLa-s3 cell lines, the were no RNA sequencing data available. In this study,
we did not consider microarray hybridization data because RNA sequencing is thought to provide
more accurate data being currently the gold standard approach in high throughput transcriptomic
research [40,41]. We observed a clear trend that the profiles for active/open chromatin marks positively
correlated with the gene expression. In contrast, the inactive (constitutive/facultative) heterochromatin
marks showed negative correlations with the expression profiles (Figure 2). This confirmed that the
different histone modification tags presented in the ENCODE project database were related to their
expected molecular functions.Cells 2019, 8, x FOR PEER REVIEW 9 of 17 
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Figure 2. Correlations of histone profiles with the RNA sequencing gene expression profiles available
in ENCODE database.

We then analyzed GRE, NGRE, PII and NPII metrics for the different histone modifications.
We visualized the scatterplots for each pair of histone marks and rediscovered two clear-cut groups
that display strongly correlated scores (Figure 3). As previously, histone modifications became
divided into two groups: the active/open chromatin marks (H3K4me3, H3K9ac, H3K27ac) and the
constitutive/facultative heterochromatin marks (H3K9me3, H3K27me3).
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Figure 3. Scatterplots of (a) (normalized gene RE-linked enrichment score (NGRE) against NGRE)
and (b) (normalized pathway involvement index (NPII) against NPII) for five histone tags in Homo
sapiens. Each dot represents a single gene. Correlation values are denoted with c and showed within
each subplot; all values were statistically significant (p-value < 0.001). Green squares highlight highly
correlated histone tags (c > 0.75).

3.3. Genes and Molecular Pathways Enriched or Deficient in RE-Linked Regulation

Then, the dependencies in pairs GRE/NGRE and PII/NPII were analyzed to identify genes and
pathways, respectively, that have their regulation enriched or deficient by RE-linked histone tags
(RRE-enriched and RRE-deficient genes/pathways). For that purpose, 25075 human genes and 3121
pathways in analysis were examined respectively on scatter plots with X axis showing GRE score for
genes or PII for pathways and Y axis showing NGRE score for genes and NPII for pathways. These
scatterplot allow us to identify genes/pathways that have either high or low RRE impact (Figure 4).
Within each scatterplot we fitted a one-parameter linear regression (y = ax) and took the outlier
points: 5% of points above the trend line and 5% of points below the trend line (5% of total number of
points) by using the Euclidean distance to the regression line. Bottom and top outliers we denoted as
RRE-enriched or RRE-deficient, respectively (Figure 4).
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Cells 2019, 8, 1034 10 of 16

3.4. Gene Ontology (GO) Annotation of Top RRE-Enriched and Deficient Genes

We performed Gene Ontology (GO) annotation using DAVID software for ten groups of genes (top
and bottom genes for five human histone tags) and obtained p-values of EASE enrichment score for
each of 826 GO direct terms. Then, we aggregated GO terms into sixteen broader functional categories
formulated according to our previous article [13]. For this purpose, we combined p-values for terms
corresponding a particular category by Fisher’s method. The heatmap representation of the obtained
aggregated p-values for all functional categories is shown in Figure 5.
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Figure 5. The p-values heatmap for association with regulatory marks linked with REs
(RRE) up- or downregulation for each category for each histone tag. Up/down means
enrichment/deficiency, respectively.

The two previously identified groups of histone marks corresponding to active or inactive
chromatin were notably distinguishable among the data for functional categories. Analysis of p-values
revealed the common enriched categories within each group. For example, for the group of “active
chromatin” histone modifications, the categories “lipid metabolism”, “electron transfer chain reactions”,
“catabolism of xenobiotics” show RRE-upregulation (high number of RRE-enriched genes). In the same
group, categories “cytoskeleton organization and cell adhesion linked pathways”, “DNA metabolism
and chromatin structure linked pathways”, “nucleic base metabolism”, “translation and protein
maturation” and “RNA synthesis” show RRE-downregulation (high number of RRE-deficient genes).
The categories “mitochondria linked pathways” and “infection” show ambiguous trends and no
significant up- or downregulation could be detected for six remaining categories.

In the “inactive chromatin” group, categories “RNA synthesis”, “translation and protein
maturation”, “nucleic base metabolism”, “intracellular signaling”, “mitochondria linked pathways”,
“electron transfer Chain Reactions”, “DNA metabolism and chromatin structure linked pathways”,
“cell cycle regulation and apoptosis” and “amino acids and polyamines metabolism” were enriched for
the RRE-enriched genes. Other categories showed either ambiguous trends or no significant up- or
downregulation Figure 5).
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Remarkably, we also found a sort of anti-phase manner in enrichment between the two groups of
histone tags (Figure 5). For example, categories “infection”, “DNA metabolism and chromatin structure
linked pathways”, “translation and protein maturation”, “nucleic base metabolism”, “mitochondria
linked pathways”, and “RNA synthesis” were enriched among the RRE-enriched genes in group 2
but at the same time among the RRE-deficient genes of group 1. In contrast, the categories “electron
transfer chain reactions”, “infection”, “catabolism of xenobiotics” and “cytoskeleton organization and
cell adhesion linked pathways” were enriched among RRE-enriched genes of both functional groups
of histone modifications.

3.5. Top RRE-Enriched and Deficient Molecular Pathways

RRE-enriched and -deficient molecular pathways were aggregated into the same sixteen categories
for all types of histone modifications investigated. As before, the two functional groups of modifications
showed specific and clearly distinct enrichment trends (Figure 6).

However, five categories showed similar enrichment trends in both groups: “carbohydrates
metabolism”, “electron transfer chain reactions”, “catabolism of xenobiotics”, “cell cycle regulation and
apoptosis” and “cytoskeleton organization and cell adhesion”. In contrast, there were six oppositely
regulated categories: “perception and neurotransmission”, “RNA synthesis”, “translation and protein
maturation”, “lipid metabolism”, “immunity linked pathways”, “DNA metabolism and chromatin
structure linked pathways”. For the remaining five categories, the trends were ambiguous or vague for
the two compared groups (Figure 6).Cells 2019, 8, x FOR PEER REVIEW 12 of 17 
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3.6. Combined Analysis of Gene and Pathway Level Trends

For the majority of the functional categories investigated the gene- and pathway-based analytic
pipelines gave yielded results. To combine both types of analyses (gene GRE/NGRE statistics and
pathway PII/NPII statistics), we applied Fisher’s method to the obtained p-values of gene/pathway
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enrichment in the categories (Figures 5 and 6) and visualized the resulting p-values in the same manner
(Figure 7). The significance threshold was not applicable for this comparison due to the high complexity
of the multi-step statistical analysis used here. We focused on the trends that could be observed for
the different histone groups (Figure 5). The two previous groups of histone tags consistently showed
largely different coordinated RRE profiles.
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We found two out of 16 molecular categories enriched by RE regulation in the first group associated
with the active/open chromatin while not affected in the second group linked with condensed/inactive
chromatin. Specifically, these were “lipid metabolism” and “carbohydrates metabolism” categories.
The category “cytoskeleton organization and cell adhesion” was enriched in the first group but showed
a contradictory trend in the second group. Three categories were enriched in both groups of histone
tags: “electron transfer chain reactions”, “catabolism of xenobiotics”, “aminoacids and polyamines
metabolism”. Two categories were enriched in the first group but deficient in the second: “perception
and neurotransmission” and “immunity linked pathways”. Four categories were deficient in the first
group but enriched in the second group: “RNA synthesis”, “translation and protein maturation”,
“DNA metabolism and chromatin structure linked pathways” and “cell cycle regulation and apoptosis”.
Two categories showed baseline RRE in the first group but were enriched in the second group:
“Infection” and “intracellular signaling”. One category (mitochondria linked pathways) was oppositely
regulated in the first group and upregulated in the second group. Finally, one category showed unclear
trends in both groups: “nucleic base metabolism”.

As a result, our data showed three similarly and six oppositely regulated categories between the
two groups, thus suggesting significant differences between RRE of active and inactive chromatin
marks. Notably, we found three categories that were RRE enriched in both groups, but not a single
category that would be deficient in both groups. Overall, these results are consistent with our previous
findings made on TFBS data that the above sixteen functional categories are strongly regulated by
REs [9].
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4. Discussion

In this study, we examined high throughput RE-linked features of gene regulation by histone
modifications. One of the major functions of epigenetic regulation of gene expression is thought to
be the control of transposable elements, most frequently their repression [42]. Here we performed a
systematic analysis of the reciprocal influence of transposable elements on function and evolution of
human epigenetic mechanisms. In many previous reports, influence of transposable elements on the
development of epigenetic regulatory networks has been documented. For example, as learned from
the analysis of evolution of duplicated genes in human DNA, the key factor influencing the regulatory
epigenetic landscape is the presence of transposable elements [43].

In this study, we analyzed quantitative characteristics of gene regulation associated with RE-linked
histone marks. Another class of transposable elements, DNA transposons, constitute significantly
smaller fraction than REs of only up to 3% of the human genome and were most likely not active after
mammalian radiation [4]. However, they also impact regulation of gene expression. For example,
the human genome contains several thousand copies of the HsMar1 element TIRs that influence the
expression of neighboring genes through epigenetic regulation [44–46]. Moreover, these elements also
contain a functional silencer influencing expression of human gene located nearby [47]. However,
the analytic value of DNA transposons in RetroSpect pipeline for human genome is limited as they
are not numerous and most of known human genes lack their inserts near TSS. This makes relative
measures of regulatory enrichment problematic for both individual genes and molecular pathways.
We, therefore, focused on the RE-linked regulation of gene expression, as REs are more abundant and
mostly represent more recent inserts than DNA transposons. However, in applications of RetroSpect
pipeline to non-mammalian species, DNA transposons may become useful tags in case of their high
content and recent insertional activities in the genomes of interest.

We used molecular data obtained from ENCODE project for five human cell lines; 1,556,182
histone tags of all types were investigated in total. Five types of histone marks of open/active or
condensed/inactive chromatin were studied: H3K4me3, H3K9ac, H3K27ac and H3K27me3, H3K9me3,
respectively. The gene-based characteristics were further aggregated into quantitative scores for the
molecular pathways. This allowed us to identify top differential genes and molecular pathways
enriched of deficient in regulation by RE-associated histone tags.

We worked with the human cell lines instead of normal tissues due to public availability of
high-throughput profiles for target histone marks and RNA sequencing data for the former. The five
cell lines selected for our analysis represented different tissues of human body. However, we found
that the histone tags highly correlated between the different cell lines, thus suggesting only minor
impact of a tissue-specific component on the data. However, availability of novel epigenetic datasets
corresponding to normal human tissues would be extremely desirable for further re-analysis of data
with RetroSpect pipeline.

For each histone mark at the gene-based way, the analyses yielded two sets of genes (RRE-enriched
and deficient) which were functionally annotated with GO direct terms. We developed the semi-
automatic annotation algorithm and obtained the list of 826 GO terms attributed further to sixteen
functional categories. The same procedure was applied to molecular pathway analysis, and 3121
pathways were attributed to the same sixteen categories.

These data were used to interrogate RRE enrichment or deficiency in the sixteen functional
categories previously identified as strongly differential in RE regulation according to transcription
factor binding sites data [13]. Interestingly, two functionally different groups of histone marks showed
markedly different RRE patterns of the above sixteen functional categories. This result confirms the
coordinated behavior of histone modifications associated with gene expression variation [48] and
specifies this state that RE-linked histone modifications are correlated within “active” and “repressive”
groups of marks.

The first group representatives (H3K4me3, H3K9ac, H3K27ac) showed RRE patterns highly
congruent with previous observations of TFBS data, e.g., they were enriched in categories of
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“amino acids and polyamines metabolism”, “lipid metabolism”, “detoxication and catabolism of
xenobiotics”, “sensory perception and neurotransmission” and “immunity linked pathways”; at the
same time, they were deficient in “DNA metabolism and chromatin structure linked pathways”, “DNA
metabolism and chromatin structure linked pathways”, “nucleic base metabolism” and “translation
and protein maturation”.

The second group of histone marks showed clearly more distinct RRE trends with the previous
TFBS data. Therefore, we hypothesize that the RE-linked histone marks with the same meaning
(activation or inactivation of chromatin) possibly have their evolution coordinated, although the
marks of different functionality probably display the opposite evolutionary trends in many functional
categories. However, two functional categories that were enriched in both groups of histones here
were also RRE-enriched according to previous TFBS data investigations [9,13]: “electron transfer chain
reactions”, “catabolism of xenobiotics” and “aminoacids and polyamines metabolism”.

Our data suggest that histone modifications demonstrate more complex trends of regulation
by REs than TFBS. Therefore, further investigation of functional genomic marks and their direct
comparisons are needed to uncover the high-throughput impact of REs on human gene regulation.

Supplementary Materials: Supplementary Tables S1–S3 are available online at http://www.mdpi.com/2073-4409/
8/9/1034/s1. All scripts and supplementary data are available at [49].
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