
Molecules 2015, 20, 10095-10109; doi:10.3390/molecules200610095 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Article 

Synthesis and Biological Evaluation of 2-Picolylamide-Based 
Diselenides with Non-Bonded Interactions 

Jamal Rafique 1,†, Sumbal Saba 1,†, Rômulo Faria Santos Canto 1, Tiago Elias Allievi Frizon 1, 

Waseem Hassan 2,3, Emily Pansera Waczuk 2, Maryam Jan 3, Davi Fernando Back 4,  

João Batista Teixeira Da Rocha 2 and Antonio Luiz Braga 1,* 

1 Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianopolis 88040-900, 

SC, Brazil; E-Mails: jamal.chm@gmail.com (J.R.); sumbal6s@gmail.com (S.S.); 

rfscanto@gmail.com (R.F.S.C.); tiagofrizon@gmail.com (T.E.A.F.) 
2 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, UFSM, 

Santa Maria 97105-900, RS, Brazil; E-Mails: waseem_anw@yahoo.com (W.H.); 

memypw@yahoo.com.br (E.P.W.); jbtrocha@yahoo.com.br (J.B.T.D.R.) 
3 Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, KPK, Pakistan;  

E-Mail: myemail_id11@yahoo.com 
4 Departamento de Química, Laboratório de Materiais Inorgânicos, Universidade Federal de Santa Maria, 

UFSM, Santa Maria 97115-900, RS, Brazil; E-Mail: daviback@gmail.com 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: braga.antonio@ufsc.br;  

Tel./Fax: +55-48-3721-6427. 

Academic Editor: Thomas G. Back 

Received: 30 April 2015 / Accepted: 27 May 2015 / Published: 1 June 2015 

 

Abstract: In this paper, we report the synthesis and biological evaluation of  

picolylamide-based diselenides with the aim of developing a new series of diselenides with 

O···Se non-bonded interactions. The synthesis of diselenides was performed by a simple and 

efficient synthetic route. All the products were obtained in good yields and their structures 

were determined by 1H-NMR, 13C-NMR and HRMS. All these new compounds showed 

promising activities when tested in different antioxidant assays. These amides exhibited 

strong thiol peroxidase-like (TPx) activity. In fact one of the compounds showed 4.66 times 

higher potential than the classical standard i.e., diphenyl diselenide. The same compound 

significantly inhibited iron (Fe)-induced thiobarbituric acid reactive species (TBARS) 

production in rat’s brain homogenate. In addition, the X-ray structure of the most active 
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compound showed non-bonded interaction between the selenium and the oxygen atom that 

are in close proximity and may be responsible for the increased antioxidant activity. The 

present study provides evidence about the possible biochemical influence of nonbonding 

interactions on organochalcogens potency. 

Keywords: diselenides; 2-picolylamide; TPx; TBARS 

 

1. Introduction 

Organochalcogen compounds have been explored extensively in many research articles [1,2],  

reviews [3,4] and books [5–7] for their synthetic versatility. Among them, selenium-containing 

compounds have been successfully employed in certain reactions [8] as catalysts [9], ionic liquids [10], 

and intermediates in total synthesis [3–7,11]. In this context, the formation of C-Se bonds has contributed 

to the access to a wide range of biologically active molecules [12–14] and functional materials [15]. 

Synthetic organoselenium compounds have gained special interest since the 1970s, after the identification 

of various selenoproteins [4,5,13]. These proteins are involved in different physiological processes in 

mammals, such as antioxidant defense, thyroid hormone production and immune responses [16]. The 

presence of the selenium atom in such proteins plays a key role in the mode of action, which cannot be 

performed by sulfur (its closest relative in the chalcogen family) [17]. Due to these findings, a number 

of new selenium-based pharmaceutical agents are under development for therapeutic use as anticancer, 

antioxidant, anti-inflammatory and antidepressant drugs, among other applications [18]. Therefore, in 

pharmaceutical companies and academic laboratories the design and synthesis of biologically relevant 

small molecules containing selenium constitutes an important research topic. 

The literature has shown that in many compounds the selenium atom shows interesting interactions 

with various heteroatoms like N, O and even S, which lead to possible hypervalent selenium species.  

This may lead to either intermolecular [19,20] or intramolecular interactions [21,22]. X-ray 

crystallography [22–24], 77Se NMR [23–25] and modern computational methods [26,27] have been used 

to explore and provide insights into these possible nonbonding interactions. There are many examples 

available where organoselenium compounds, e.g., 2–3 (Figure 1) [28,29] with proximal interaction 

showed significant biological activities in comparison to ebselen (1; a mimic of GPx that also reacts with 

peroxynitrite) [5,12].  
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Figure 1. Ebselen (1) and organoselenium compounds 2–4 with a heteroatom in close proximity. 

In this context, our group has recently synthesized diselenides with heteroatoms in close proximity to 

the selenium atom with interesting GPx-like activity [30,31]. In fact, we have provided conclusive and 
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baseline data that the presence of proximal heteroatom drastically affect GPx-like activity which 

furthermore enhances both in vitro and in vivo antioxidant activity with negligible toxicity [32–34]. 

Similarly, 2-picolylamine has been used in the synthesis of many biologically active compounds.  

For example, there are many reports where picolylamine derivatives were used to form metal complexes 

as models that mimic both the structure and reactivity of metal ion sites in complex biological systems, 

showing that picolylamine possess a broad spectrum of biological activities [35–38]. 

As part of our wider research program aimed at designing and developing biologically active new 

organoselenium compounds [15,32–34], herein we report a series of 2-picolylamide-based diselenides 

with proximal non-bonded interactions. The focus of the present paper is to address and explore the 

synthetic avenues and biosignificance of diselenides with amide groups in close proximity i.e., 2.711 Å. 

Indeed, pure in vitro enzyme mimetic activity of glutathione peroxidase (GPx) and inhibition of  

iron (Fe II)-induced lipid peroxidation will be assessed in rat’s brain tissue homogenate. 

2. Results and Discussion 

2.1. Chemistry  

We started our studies from the preparation of carboxylic acid diselenide derivatives that were to be 

used as intermediates to prepare the target compounds. For the synthesis of aliphatic acid diselenides 

7a–c, a previously reported method was modified [39,40] starting from the reaction of appropriate 

bromocarboxylic acids 6a–c with Na2Se2 (generated in situ) as outlined in Scheme 1. The reaction 

mixture was purified just by solvent extraction, which after vacuum evaporation afforded the pure desired 

products 7 in good to excellent yields. In the following step, a number of coupling agents were screened 

to couple carboxylic acid diselenides 7 with 2-picolylamine to form the amide linkage. It was found that 

DCC and catalytic amount of DMAP constituted the best conditions, resulting in the desired amide 5 in 

good yields as illustrated in Scheme 1. It is important to mention that when other coupling reagents, such 

as DIC/HOBt, EDC or BOP were used, the reactions were either not successful or resulted in a complex 

mixture of byproducts and the starting materials. 
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Scheme 1. Synthesis of aliphatic diselenide derivatives of 2-picolylamide 5a–c. 

The aromatic derivative of amide 5d was prepared from anthranilic acid (8, Scheme 2).  

Compound 8 was first converted to the bis(2-carboxyphenyl) diselenide 9 through the diazonium salt by 

treating it with disodium diselenide (generated in situ) which on purification by solvent extraction 

afforded 9 in 69% yield [41]. Subsequently, the diselenide 9 was coupled with 2-picolylamine by the 

method described previously in Scheme 1.  
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Scheme 2. Synthesis of the aromatic 2-picolylamide diselenide derivative 5d. 

By applying the strategy shown in Schemes 1 and 2, 2-picolylamine was easily joined with 

organoselenium compounds and the biological activities of these diselenides 5a–d were then explored. 

Furthermore, modification of the distance between amide and selenium through variation of the chain 

length and the conformation as open or restricted for the interaction between these groups provides some 

evidence of the influence of the Se-heteroatom interaction between selenium and the amide group on the 

antioxidant activity of the synthesized molecules.  

2.2. X-ray Crystallography 

Aromatic diselenide 5d was obtained as solid product, which was crystalized and analysed by the 

XRD technique. The XRD analysis of 5d (Figure 2a) shows that the structural parameters of the 

diselenide are similar to those found in others ligands [42,43]. The Se1-Se2 bond distance [2.3300(3) Å] 

and the Se-C(Ph) bond distance [1.931(2) and 1.934(2) Å, respective to the Se1-C1 and Se2-C14] are in 

good agreement with the distances found in other diselenides [44,45]. 

(a) (b) 

Figure 2. (a) Molecular structure of 5d with 40% thermal ellipsoids (using DIAMOND 

software); (b) Molecular and hydrogen interaction assembly of 5d. Symmetry operations 

used to generate equivalent atoms: (#) x, y, −1 + z. 

On the other hand, the Se-O bond distance [2.711(2) and 2.735(2) Å, respective to Se1···O1 and 

Se2···O2] is longer than the sum of the covalent radii. However, compared to reports in the literature 

(O···Se 2.793 and 2.852 Å) the distances are in compliance [46], suggesting an intramolecular 

nonbonding interaction between them. In addition to the intramolecular Se···O interactions, some 

intermolecular interactions between selenium and hydrogen atoms were also found in the crystal lattice. 
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The stark deviation from the interaction of Se2-O2 can be attributed to a weak intermolecular hydrogen 

interaction between the Se and H (Figure 2b) from the C5 carbon (allowing the visualization of 

supramolecular assemblies along the two-dimensional plane bc.), C5-H5···Se1# [H5···Se1# = 3.082(1) Å]. 

The variation that occurs between the distances of Se1-O1 and Se2-O2 atoms provided by hydrogen 

interactions suggests that on the solid state, there is a difference in reactivity between the selenium atoms. 

Symmetry transformations was used to generate equivalent atoms: (#) x, y, −1 + z. 

2.3. Biological Evaluation 

Reactive species (RS) play a significant role in normal physiological progressions like, immune 

function, various signaling cascades and cellular processes (e.g., proliferation, growth, differentiation, 

apoptosis, migration, cytoskeletal regulation and contraction) etc.[47–49]. At the same time, RS causes 

severe damage and injuries to biomolecules like proteins, lipids, lipoproteins and DNA [47–49].  

As previously discussed, the nonbonding selenium interaction with heteroatoms plays a pivotal role in 

biological activities. The aim of the present study was to investigate the antioxidant properties of novel 

chalcogenides. Two different in vitro antioxidant assays were performed. 

2.3.1. Thiol Peroxidase-Like (TPx) Activity 

The catalytic activities of synthesized diselenides 5a–d were examined and the results are summarized 

in Table 1. Diphenyl diselenide (DPDS), a well-known GPx-mimic, was used as a positive control.  

The concentrations of new compounds used were 15, 25, 75 and 100 µM. The control or basal GPx-like 

activity was carried out in the absence of selenium catalysts and the rate of thiophenol oxidation  

was negligible. Interestingly all compounds exhibited significantly higher catalytic activity. 

Table 1. Thiol peroxidase like-activity (Δ/Minutes × 1000) of 2-picolylamide-based diselenides 5. 

Compound 
Concentration (µM) 

15 25 75 100 

5a 1.16 3.88 27.60 34.00 
5b 0.01 0.01 1.72 3.40 
5c 9.71 14.97 24.03 31.91 
5d 20.74 31.34 41.66 46.48 

DPDS    9.96 

It is apparent from Table 1 that aromatic diselenide 5d has considerably higher TPx activity (entry 4) 

than compounds 5a–c (entries 1–3) and DPDS (entry 5). By a closer inspection of the diselenides 

structures, and specifically 5d, it is apparent that an adjacent heteroatom, i.e., oxygen, in close proximity 

of the selenium may possibly generate small nonbonding interactions (between selenium and oxygen). 

In fact, the experimental data obtained from X-Ray (XRD) analysis of 5d (Figure 1) confirmed that 

Se···O distance is 2.711 and 2.735 Å, for Se1···O1 and Se2···O2, respectively. Based on interatomic 

distances (between Se and O1 and O2), we can speculate that Se-O1 may be the initial prime target of 

the first thiol (PhSH) attacking the Se-Se bond to yield selenyl sulfide. 

Using the TPx-like mechanism of the classical standard i.e., DPDS, we can speculate that the Se···O 

interaction in 5d may promote the conversion of selenyl sulfide to selenol/selenolate. The ease of 
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formation of selenolate ion is a fundamental and significant step. Furthermore, The H2O2 can oxidize 

selenolate ion to produce selenenic acid and can regenerate the parent molecule i.e., 5d, upon reaction 

with PhSH. It is worthy to note that the presence of adjacent nitrogen (N) in 5d, may facilitate the attack 

of incoming thiol (PhSH) on diselenide. The catalytic role of the nitrogen in deprotonation of thiol 

(PhSH) and consequently a high concentration of thiolate cannot be neglected in this regard [32,50]. 

In the same context, the literature has demonstrated that the presence of amines in close proximity 

may possibly interact with selenium and may contribute towards selenolate stabilization and ultimately 

higher potential [51]. We have recently reported the concise influence of nonbonding nitrogen 

interaction on the biochemical efficacies of chalcogenides [32,50]. However, it is interesting to note that 

employing butoxycarbonyl (BOC group), which usually blocks the interactions in synthetic routes, 

significantly reduced the TPx-like potential of chalcogenides [32]. In fact, the addition of BOC to  

amino-acid derived diselenides increased the toxic potential apparent from considerably increased ALT 

activity, serum creatinine and triglyceride levels after in vivo treatment in mice [34]. Although not very 

relevant to selenium molecules, but only to depict the diverse scenarios, we have obtained persuasive 

evidence that nonbonding interactions can also significantly interact with sulfur (disulfides) [32]. 

Our results are in strong agreement to above, which may be employed to explain the enhanced TPx 

potential of 5d as compared with other analogues 5a–c and the prototypal diselenide DPDS. The TPx-like 

activity of 5a–c also provides concrete evidence that the length of the carbon chain is important with 

respect to the interaction between the selenium and the heteroatom (oxygen) in close proximity. 

Aromatization of this side chain restricts the possible conformations and thus favors the interaction. 

Based on experimental TPx activity, XRD analysis and relevant literature [32,34,50,51] we can assume 

the important catalytic influence of nonbonding interactions. 

2.3.2. Inhibition of Thiobarbituric Acid Reactive Substances (TBARS) Production in Brain Homogenates 

Lipid peroxidation is an important mechanism involved in cellular toxicity. The occurrence of lipid 

peroxidation specifies the potential disruption of biomembrane integrity and therefore is an important 

biomarker of oxidative stress. Consequently, the protective effect against lipid peroxidation has an 

importance for designing new clinically effective antioxidants. TBARS are formed by the reaction of 

byproducts of lipid peroxidation, mainly malondialdehyde with thiobarbituric acid (TBA). Thus, the 

stable colored product of TBA with malondialdehyde can be used to quantify lipid peroxidation in 

biological samples [32,33]. Brain homogenates (S1) can be used as a source of biomembranes and our 

group has been using this model for some time as an index of lipid peroxidation [32]. During this study 

Fe(II) was used as an inducer of brain lipid peroxidation as it caused a considerable increase in the 

TBARS production. 

It is worthy to note that Tomoda and Iwaoka method was followed for the determination of TPx-like 

potential under irrelevant physiological conditions such as using organic solvent (methanol or ethanol) 

and nonbiological thiols (benzenethiol or thiophenol). At the same time, H2O2 is used which is a  

non-reactive oxygen metabolite in the absence of metal ions compared to the hydroxyl radical.  

Whereas TBARS analysis is performed in complex biological homogenates containing different thiols, 

metal ions (including iron in different oxidation state), enzymes that can reduce selenium containing 

molecules (for instance, thioredoxin reductase) lipids, proteins and nucleic acids [52]. Thus, it is rather 
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difficult to do direct comparisons between the GPx- or TPx-like activity and the anti-lipid peroxidation 

properties of diselenides. 

TBARS assay was performed for the synthesized compounds and the results are outlined in Figure 3. 

Compounds 5c and 5d significantly inhibited TBARS production as compared with 5a–b. The TBARS 

inhibition potential of 5d can be attributed to its high TPx-like potential (Table 1). However, compound 5a, 

which showed TPx-like activity did not protect lipid peroxidation, and rather 5c showed interesting 

protective efficacy in TBARS assay. 

 

Figure 3. Effect of 2-picolylamide based diselenides 5a–d on Fe (II) induced TBARS 

formation in low-speed supernatant (S1) from brain homogenate. Fe (II) sulfate at 20 µM 

was used as pro-oxidant. TBARS are expressed as nmol of MDA/g of tissue. Data are 

presented as mean ± S.E.M. (n = 5). 

3. Experimental Section 

3.1. General Methods and Materials 

1H- and 13C-NMR spectra were obtained at 200/50 MHz on a Bruker AC-200 NMR spectrometer or 

at 400/100 MHz on a Varian AS-400 NMR spectrometer. Spectra were recorded in CDCl3 solutions. 

Chemical shifts are reported in ppm, referenced to the solvent peak of CDCl3 or tetramethylsilane (TMS) 

as the external reference. Data are reported as follows: Chemical shift (δ), multiplicity, coupling constant 

(J) in Hertz and integrated intensity. Abbreviations to denote the multiplicity of a particular signal are: 

s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet) and m (multiplet). The NMR 

spectra of compounds 5a–d are shown in the Supplementary Material. High-resolution mass spectra 

were recorded on a Bruker micrOTOF-Q II ESI mass spectrometer equipped with an automatic syringe 

pump for sample injection. Infrared spectra were recorded on a Bruker Optics Alpha benchtop FT-IR 

spectrometer and are reported in frequency of absorption (cm−1). The melting points were determined in 

a Microquimica MQRPF-301 digital model equipment with a heating plate. Column chromatography 

was performed using Silica Gel (230–400 mesh). Thin layer chromatography (TLC) was performed using 

Merck Silica Gel GF254, 0.25 mm thickness. For visualization, TLC plates were either placed under 
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ultraviolet light, or stained with iodine vapor and acidic vanillin. Most reactions were monitored by TLC 

for disappearance of starting material. All commercially available starting materials were used without 

further purification. The solvents were distilled and dried according to standard procedures.  

Single crystal X-ray diffraction patterns of 5d were collected with a Bruker APEX II CCD area-detector 

diffractometer and graphite-monochromatized Mo–Kα radiation. The structure was solved by direct 

methods using SHELXS [53]. Subsequent Fourier-difference map analyses yielded the positions of the 

non-hydrogen atoms. Refinements were carried out with the SHELXL package [53]. All refinements 

were made by full-matrix least-squares on F2 with anisotropic displacement parameters for all  

non-hydrogen atoms. Hydrogen atoms were included in the refinement in calculated positions but  

the atoms (of hydrogens) that are commenting performing special bond were located in the Fourier map. 

Drawings were done using DIAMOND for Windows [54]. 

3.1.1. General Procedure for the Synthesis of Diselenide 7 

The synthesis was carried out at ambient temperature under inert atmosphere and vigorous stirring. 

Elemental selenium (200 mesh, 2 g, 0.025 mol) was placed in a two necked round-bottomed flask 

followed by addition of commercial 80% EtOH (70 mL). NaBH4 (1.9 g, 0.05 mol) was then slowly 

added to the solution, until complete dissolution of selenium and formation of colorless suspension with 

white-gray solid. Subsequently, DMF (50 mL) was added to the solution and the reaction mixture stirred 

until the color turned to red-brown followed by addition of commercial 80% EtOH (25 mL). The solution 

was stirred vigorously until termination of gas evolution and then selenium powder (200 mesh, 2 g, 

0.025 mol) was added to the solution and stirred until complete dissolution and formation of clear  

dark-red solution. The appropriate bromocarboxylic acids 6 (0.05 mol) was slowly added in small 

portions to the solution, changing the red color of the solution to yellow. After 4 h the reaction was 

quenched by addition of water (150 mL) and the reaction mixture was extracted with diethyl ether (100 mL) 

three times. The combined organic phases were washed with water (250 mL) for three times, with brine 

(100 mL), and was dried over MgSO4. The solvent was removed under reduced pressure using rotary 

evaporator and the crude diselenides 7a–c were used without further purification. Diselenide 7a: Light 

yellow solid, 70% yield, mp 101–104 °C (lit. [55] mp 104.5–105.5 °C); 7b: Yellow solid, 92% yield, mp 

132–135 °C (lit. [56] mp 134.5–135.5 °C); 7c: Yellow solid, 90% yield, mp 86–87 °C (lit. [57] mp 88 °C). 

3.1.2. Procedure for the Synthesis of Diselenide 9 

Sodium nitrite (6.9 g, 0.1 mmol,) in water (28 mL) was added dropwise to a stirred solution of 

anthranilic acid 9 (0.856 g, 6.24 mmol) in 37% hydrochloric acid (20 mL) and water (100 mL) cooled 

in an ice bath (0–5 °C). The solution of the resulting diazonium salt was stirred for 20 min. 

In another flask a mixture of Se powder (16 g, 0.2 mmol) and KOH pellets (24 g, 0.43 mmol) was 

heated in a round-bottomed flask to 300–360 °C for 2–3 h. The mixture was cooled and distilled water 

(250 mL) was added. This solution was added dropwise to the about solution of diazonium salt while 

maintaining the temperature at 0–5 °C which was subsequently, allowed to gain room temperature and 

left for stirring overnight. The reactions mixture was filtered over Celite. The red solution was acidified 

with 10% hydrochloric acid forming the precipitate which was collected, resuspended in methanol and 
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refluxed. The suspension was filtered off, and the filtrate was evaporated in vacuo yielding the target 

acid 9 in 69% yield. Diselenide 9: Yellow solid, mp 297–300 °C (lit. [41] mp 296–297 °C). 

3.1.3. General Procedure for the Synthesis of 2-Picolyamide Derivatives of Diselenides 5a–d 

The synthesis was carried out at 0 °C under an inert atmosphere under vigorous stirring. The 

appropriate diselenide (0.005 mol) in dry CH2Cl2 (5 mL) was placed in a two neck flask followed by 

addition of a catalytic amount of DMAP (0.366 g, 0.3 mol %). The reaction mixture was stirred for  

5–7 min at 0 °C. Next DCC (2.1 g, 0.01 mol, slight excess) was then added to the reaction mixture and 

further stirred for 15 min at 0 °C. 2-Picolylamine (1.30 mL, 0.010 mol) was added to the reaction mixture 

and the reaction is left for overnight at ambient temperature. The formation of white precipitate in the 

reaction was due to dicyclohexyl urea. The reaction mixture was filtered off and then after drying over 

MgSO4, the solvent was evaporated in vacuo and the crude product was purified by flash 

chromatography (ethyl acetate:hexane). 

2,2′-Diselanediylbis(N-(pyridin-2-ylmethyl)acetamide) (5a). Obtained as a yellow viscous liquid in 70% 

yield; 1H-NMR (400 MHz, CDCl3) δ: 3.73 (s, 2 H), 4.53 (d, J = 5.4 Hz, 2 H), 7.17 (dd, J = 7.5, 4.9 Hz, 

1 H), 7.30 (d, J = 7.9 Hz, 1 H), 7.66–7.61 (m, 1 H), 8.28 (broad s, 1 H), 8.50–8.47 (m, 1 H); 13C-NMR 

(100 MHz, CDCl3): 33.0, 45.7, 123.1, 123.2, 137.7, 149.5, 157.6, 171.0; IR (KBr); 3253, 3057, 2926, 

2823, 1645, 1560, 1474, 1303, 1215, 758, 528 cm−1; ESI-HRMS m/z: Calcd. for C16H19N4O2Se2 [M + H]+ 

458.9836, found 458.9835. 

3,3′-Diselanediylbis(N-(pyridin-2-ylmethyl)propanamide)(5b). Obtained as a yellow viscous liquid in 74% 

yield; 1H-NMR (200 MHz, CDCl3) δ: 2.69 (t, J = 7.0 Hz, 2 H), 3.08 (t, J = 7.0 Hz, 2 H), 4.49 (d,  

J = 5.1 Hz, 2 H), 7.16 (dd, J = 6.9, 5.2 Hz, 1 H), 7.27 (d, J = 7.7 Hz, 1 H), 7.63 (td, J = 7.7, 1.7 Hz, 2 H), 

8.44 (d, J = 5.1 Hz, 1 H); 13C-NMR (50 MHz, CDCl3): 24.3, 37.2, 44.5, 122.4, 122.5, 137.1, 148.7, 156.7, 

171.6; IR (KBr); 3291, 3065, 2926, 2823, 1650, 1550, 1435, 1350, 1246, 756, 501 cm−1; ESI-HRMS m/z: 

Calcd. for C18H23N4O2Se2 [M + H]+ 487.0149, found 487.0146. 

4,4′-Diselanediylbis(N-(pyridin-2-ylmethyl)butanamide)(5c). Obtained as a yellow viscous liquid in 73% 

yield; 1H-NMR (400 MHz, CDCl3) δ: 2.14–2.05 (m, 2 H), 2.39 (t, J = 7.3 Hz, 2 H) 2.92 (t, J = 7.2 Hz, 2 H), 

4.51 (d, J = 5.0 Hz, 2 H), 7.17 (dd, J = 7.3, 5.2 Hz, 2 H), 7.24 (d, J = 7.8 Hz, 1 H), 7.64 (td, J = 15.3, 1.7 

Hz, 1 H), 8.50 (d, J = 5.0 Hz, 1 H); 13C-NMR (100 MHz, CDCl3): 26.5, 28.7, 35.6, 44.4, 122.1, 122.3, 

136.8, 148.9, 156.5, 172.2.; IR (KBr); 3283, 3056, 2926, 1650, 1548, 1435, 1352, 1229, 1176, 756, 511 

cm−1; ESI-HRMS m/z: Calcd. for C20H27N4O2Se2 [M + H]+ 515.0463, found 515.0460. 

2,2′-Diselanediylbis(N-(pyridin-2-ylmethyl)benzamide)(5d). Obtained as a yellow solid in 78% yield; 

m.p. 138–140 °C; 1H-NMR (400 MHz, DMSO-d6) δ: 4.63 (d, J = 5.8 Hz, 2H), 7.30 (dd, J = 7.0, 5.8 Hz, 

1 H), 7.44–7.35 (m, 3 H), 7.72 (d, J = 7.7 Hz, 1 H), 7.80 (td, J = 7.7, 1.7 Hz, 1 H), 7.95 (d, J = 7.5 Hz, 1 H), 

8.55 (d, J = 4.7 Hz ,1 H), 9.41 (broad s, 1 H); 13C-NMR (100 MHz, DMSO-d6): 44.5, 120.8, 121.9, 125.9, 

127.8, 129.6, 131.6, 131.9, 132.2, 136.7, 148.5, 158.0, 167.2.; IR (KBr); 3324, 3055, 2926, 2851, 1625, 

1560, 1474, 1433, 1242, 734, 546 cm−1; ESI-HRMS m/z: Calcd. for C26H23N4O2Se2 [M + H]+ 583.0151, 

found 583.0154. 
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3.2. General Methods and Materials 

3.2.1. Glutathione-Peroxidase-Like Activity Assay 

The catalytic activity of the nitrogen-containing diselenides as a GPx model enzyme was evaluated 

according to the Tomoda and Iwaoka method [58]. The selenium agent (final concentration: 0.1 mM), 

thiophenol, PhSH (final concentration 2 mM) at 25(±3) °C were mixed. After 120 s, the catalytic GPx 

model reaction (H2O2 + 2PhSH → 2H2O + PhSSPh) was initiated by the addition of H2O2 (final 

concentration: 5 mM). The reduction of H2O2 was monitored through the UV absorption increase  

at 305 nm, due to diphenyl disulfide formation. 

3.2.2. Animals 

Adult male Wistar rats (250–350 g) from our own breeding colony (Animal House-holding, UFSM, 

Santa Maria-RS, Brazil) were maintained in room with controlled temperature (22–25 °C), on a 12 h 

light/dark cycle, with water and food ad libitum. Animals were used according to the guidelines of the 

Committee on Care and Use of Experimental Animal Resources from Federal University of Santa Maria 

(23081.002435/2007-16). 

3.2.3. Thiobarbituric Acid Reactive Substances (TBARS) Assay 

Lipid peroxidation was determined by measuring TBARS as described by Ohkawa and coworkers [59] 

in S1 of brain. Aliquots of S1 (200 μL) were mixed to incubating medium containing Tris-HCl (0.01 mM) 

pH 7.4, the compounds at different concentrations. Iron (II) as pro-oxidant was added as positive  

control for lipid peroxidation. The mixture was incubated at 37 °C for 60 min. The basal or  

pro-oxidant-induced TBARS production was stopped by adding 0.5 mL of acetic acid buffer (pH 3.5), 

and lipid peroxidation products were measured by the addition of 0.5 mL of TBA 0.6%. Tubes were then 

incubated in boiling water for 60 min and their contents were subjected to spectrophotometric analysis. 

The amount of TBARS produced was measured at 532 nm, using MDA as an external standard. TBARS 

levels were expressed as nmol MDA (malondialdehyde)/g of tissue. 

4. Conclusions 

In conclusion, we have described the synthesis in good yields of new 2-picolylamide-based diselenide 

derivatives using flexible methodologies. All diselenides were evaluated for their antioxidant capacity 

to shed light on the SAR on this series of compounds. All these new compounds showed good 

antioxidant activities when tested in different antioxidant capacity assays. Significantly higher  

GPx-mimic activity and lipid peroxidation inhibition potential was observed for the synthesized 

compounds as compared with diphenyl diselenide. In addition, in the present study, crystal structure of 

the most active compound i.e., 5d, showed strong nonbonding interaction between the selenium atom 

and the amide oxygen. 
  



Molecules 2015, 20 10105 

 

 

Supplementary Materials 

Additional material available from Cambridge Crystallographic Data Center as Deposition No. 

CCDC 1061963 comprises H-atom coordinates, thermal parameters and remaining bond lengths and 

angles. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, 

or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;  

E-Mail: deposit@ccdc.cam.ac.uk. 1H-NMR, 13C-NMR, IR and HRMS spectra of 5a–d can be accessed 

at http://www.mdpi.com/1420-3049/20/06/10095/s1. 
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