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Abstract

The signal from organelle to nucleus, namely retrograde regulation of nuclear gene expression, was largely unknown. Due
to the nuclear-cytoplasmic incompatibility in cytoplasmic male-sterile (CMS) plants, we employed CMS Brassica juncea to
investigate the retrograde regulation of nuclear gene expression in this study. We studied how reduced BjRCE1 gene
expression caused by the nuclear-cytoplasmic incompatibility altered the auxin response in CMS of B. juncea. We isolated
the BjRCE1 gene that was located in the nucleus from B. juncea. Over-expression of BjRCE1 enhanced auxin response in
transgenic Arabidopsis. The expression of BjRCE1 was significantly reduced in CMS compared with its maintainer fertile (MF)
line of B. juncea. There were fewer lateral roots in CMS than MF under normal and treatment of indole-3-acetic acid (IAA)
conditions. Expression patterns of several auxin-related genes together with their phenotypes indicated a reduced auxin
response in CMS compared to MF. The phenotypes of auxin response and auxin-related gene expression pattern could be
mimicked by inhibiting mitochondrial function in MF. Taken together, we proposed reduced expression of BjRCE1 gene
modulated by nuclear-cytoplasmic incompatibility alters auxin response in CMS B. juncea. This may be an important
mechanism of retrograde regulation of nuclear gene expression in plants.
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Introduction

In plant cells, mitochondria and chloroplast are semi-autono-

mous organelles that encode some genetic information, with the

majority being derived and imported from the nucleus. Thus,

there is wide inter-organellar communication between mitochon-

dria and the nucleus. Over past years, there has been increasing

attention paid to studies of signals from the nucleus to organelles,

termed ‘anterograde regulation’ due to the predominant role of

the nucleus in the cell, which has mainly focused on pentatrico-

peptide repeat (PPR) proteins that regulate RNA editing in

mitochondria and chloroplast and the male fertile restorer (Rf)

gene in CMS lines [1,2,3]. In contrast, organelles are also engaged

in organelle-to-nucleus signals, termed ‘retrograde regulation’ that

tune fork in nuclear gene expression, and are involved in responses

to multiple stresses, and in growth and development [4,5,6].

Mitochondrial retrograde regulation (MRR) of nuclear gene

expression was first investigated in yeast [7] and has been well

described in yeasts and mammals (reviewed by [8]). Among the

MRR pathways, the RTG (retrograde) pathway has been mostly

studied in yeast, of which nuclear target gene (CIT2) has been

identified, as well as key proteins of signal transduction, e.g. Rtg1,

Rtg2 and Rtg3 [8]. However, MRR of nuclear gene expression is

poorly understood in plants. Several reviews have predicted similar

and conserved MRR pathways for both yeast and mammals

[8,9,10,11,12]. In many cases, mutations in mitochondria cause

embryo lethality due to the mitochondrial function of providing

most of the cell’s energy. In plant, plastid retrograde regulation

(PRR) was relatively well described, in which the GUN1 gene

integrated the multiple indicators in plastid and led to ABI4-

mediated the repression of nuclear gene expression [6].

The CMS system is caused by mitochondrial mutation with

abundant simultaneous variant traits in plants. To date, CMS has

been observed in .150 plant species and widely used in heterosis

[13,14]. In most cases, it is known to be triggered by mitochondria,

usually due to novel open reading frames (orfs) resulting from

rearrangements of mitochondrial genomes, meanwhile, for many

CMS systems developed from distant hybridization and back-

crossing also showed the nuclear-cytoplasmic incompatibility,

which suggested not only mitochondria but also chloroplast were

involved in the communication between organelles and nucleus

[1,2,3]. Therefore, the CMS system is an ideal model to study

retrograde regulation of nuclear gene expression in plants. The

CMS system has been used to demonstrate that numerous

candidate nuclear target genes are associated with the regulation

of floral organ and pollen development [15,16,17,18].
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Auxin plays a critical role in many processes of the plant life

cycle, including embryogenesis, lateral root development, vascular

differentiation, apical dominance, tropic responses and flower

development (reviewed by [19]. It has long been known that auxin

stimulates the transcription of primary auxin-responsive genes,

which include three gene families: AUX/IAA, GH3 and small

auxin-up RNA (SAUR) families [20]. Auxin is known to regulate

gene expression through degradation of AUX/IAA proteins,

which are degraded through the action of an ubiquitin protein

called SCFTIR1, and auxin promotes the interaction between

AUX/IAA proteins and SCFTIR1 [21]. In Arabidopsis, the

ubiquitin-proteasome pathway has been shown to be involved in

auxin response, based on the characterization of the auxin

resistant mutants axr1 and tir1 [21,22,23]. Proteins that are

destined to be destroyed are tagged with a polyubiquitin chain by

a cascade reaction involving three enzymes, known as the

ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme

(E2) and ubiquitin protein ligase (E3). Genetic evidence suggests

that modification of AtCUL1 by an ubiquitin-related protein,

RUB1 (related to ubiquitin 1), is essential for normal auxin

response. The Arabidopsis RUB E2 is termed RCE (RUB-

conjugating enzyme) and two RCE genes, RCE1 and RCE2, were

identified in the Arabidopsis genome [22]. The activity of the core

auxin signal receptor complex SCF requires AXR1/ECR1- and

RCE1-dependent modification of AtCUL1 [24].

In our previous study, the expression of the RCE1 gene was

observed to be differently expressed between MF and CMS of

Brassica juncea by oligoarray analysis [18]. In the present study we

found that over-expression of BjRCE1 enhanced auxin response in

Arabidopsis. We observed reduced BjRCE1 expression and auxin

response in CMS significantly; this phenotype could be mimicked

by specifically inhibiting mitochondrial function. We suggested

that decreased expression of BjRCE1 might impact on the activity

of CUL1 of the SCF complex and reduce auxin response in CMS.

Materials and Methods

Plant Materials and Treatment
MF and CMS lines of B. juncea were developed and described in

details in our laboratory [25]. The CMS B. juncea was developed by

distant hybridization between B. rapa as CMS cytoplasm donor and

fertile B. juncea, followed by repeated backcrossing with fertile

B. juncea as recurrent parent. After backcrossing of 13 generations

with fertile B. juncea, we got the stable CMS B. juncea. Meanwhile,

fertile B. juncea was concomitantly self-crossing as its corresponding

maintainer line. The progenies of the advanced backcrossed BC13

generation and its corresponding maintainer line were used as the

sources of sterile and fertile cytoplasms, respectively. CMS and MF

seeds were suspended in 0.15% (w/v) agrose and then sown onto

plant MS medium. For treatment, the MS medium was supple-

mented with 100, 500 mM IAA separately, and 0.1 mM antimycin

A (AA) (Sigma Chemical, St Louis, MO, USA) as required. Wild

type (Col) and transgenic Arabidopsis over-expressed the BjRCE1

gene were also suspended in 0.15% (w/v) agarose and then sown

onto plant 1/2 MS medium. For treatment, the 1/2 MS medium

was supplemented with 100 mM IAA.

Phenotypic Analysis of Root Development
Seedlings of CMS and MF were grown for 4 d, and seedlings of

wild type and transgenic Arabidopsis were grown for 8 d at 28uC

Figure 1. The characterization of RCE1 gene from Brassica juncea. A, Genomic structure of RCE1 gene from Brassica juncea. B, Conserved
domain and ubiquitin interaction sites of RCE1 gene from Brassica juncea. C, Alignment of RCE1 gene from Brassica juncea and its orthologous from
Arabidopsis. D, Sub-cellular localization of RCE1 gene from Brassica juncea. Scale bar = 10 mm. E, Phylogenetic tree of RCE1, RCE1 amino acid
sequences are from NCBI database.
doi:10.1371/journal.pone.0038821.g001
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with 16/8 h day/night in a growth chamber. Then the root

development parameters were measured by using a root scanning

system (STD1600, Epson, Japan) and analysis software (Win-

Rhizo, Regent Instruments, Canada).

Isolation of BjRCE1 Gene from B. juncea
The RCE1 gene from B. juncea was homologically isolated by

using reverse transcription-polymerase chain reaction (RT-PCR)

combined with rapid-amplification of cDNA ends method. A

cDNA fragment of RCE1 was cloned with primers RCE1SP1 and

RCE1SP2 by using RT-PCR. The primers were designed based

on a sequence of RCE1 from Arabidopsis (At4G36800 and

At2G18600). After sequencing of this fragment, a set of anchor

primers, RCE1SP3 and RCE1SP4, were designed to clone the 39-

terminal of this cDNA combined with the common primers (B25

and B26). After cloning of cDNA of RCE1, we sequenced the

genomic structure of RCE1 in B. juncea. All primers are listed in

Table S1.

Construction of GFP Fusion of BjRCE1 Gene and Transit
Expression in Arabidopsis
The BjRCE1 coding region was amplified using specific primers

flanked by Gateway recombination cassettes (Invitrogen, Califor-

nia, USA). The primers used are listed in Table S1. PCR products

were cloned into pDONR221 according to the manufacturer’s

instructions. Cloning into the final GFP vectors (pK7FWG2) was

conducted by LR reaction (Invitrogen). The mt-RFP plasmid

containing the pre-sequence of Arabidopsis thaliana ATPase delta-

prime subunit and DsRed2 was provided by Dr. S. Arimura

(Laboratory of Plant Molecular Genetics, University of Tokyo)

[26].

Biolistic co-transformation of the GFP and RFP fusion vectors

was performed on Arabidopsis leaves. In brief, GFP and RFP

plasmids (5 mg each) were co-precipitated onto gold particles and

transformed using a PDS-100/He biolistic transformation system

(Bio-Rad, www.bio-rad.com). Healthy Arabidopsis leaves were

placed on MS medium and bombarded. Leaves were then

incubated for 48 h at 22uC before microscopy using a Nikon

fluorescence microscope system.

Over-expression of BjRCE1 Gene in Transgenic
Arabidopsis
The amplification of BjRCE1 coding sequences by Gateway

recombination cassettes (Invitrogen) were cloned into pDONR221

according to the manufacturer’s instructions. Cloning into the final

binary vectors (pK7WG2) was conducted by LR reaction

(Invitrogen). Then, the pK7WG2 construction was transferred

into Agrobacterium tumefaciens strain GV3101 and transformed into

Arabidopsis [27]. Transgenic Arabidopsis over-expressedBjRCE1 was

screened by adding 20 mg/L kanamycin in 1/2 MS mediumfor

two generations and PCR checking of the existence of alien

BjRCE1gene. Then we checked the expression of BjRCE1in wild

type and transgenic Arabidopsis by specific primers of BjRCE1 gene

using qPCR method.

RNA Extraction, Reverse Transcription and Real-time
Quantitative PCR
Total RNA was extracted from seedlings using an RNeasy Plant

Mini Kit (Qiagen, Valencia, CA, USA) and b-mercaptoethanol

(Sigma) following the manufacturer’s protocol. During extraction,

total RNA was exhaustively treated with RNase-Free Dnase

(Qiagen, Germany). RNA concentration and quality were de-

termined with a biophotometer (Eppendorf, Hamburg, Germany)

and gel analysis. 1 mgtotal RNAs were transcribed to synthesize the

cDNA first chain using a Reverse Transcriptase M-MLV Kit

(Takara, Japan). Real-time PCR reactions were performed

according to a previously established method [28]. Real-Time

PCR reactions were performed using 2.5 ml of each cDNA sample,

6.5 ml of the Fast start universal SYBR Green Master (Roche

Germany), and 2 mM of each primer, in a total volume of 20 ml.
The ABI StepOneTM PCR System (Applied Biosystems, CA,

USA) was used to detect amplification products. RT-PCR

condition was as follows: 20 seconds at 95uC, followed by 40

cycles of 3 seconds at 95uC and 30 seconds at 60uC. All reactions
were run in triplicate on each 48-well plate and independent

experiments were repeated at least three times. The relative

quantification of the target gene was determined using the DDCT
method. The Ct (threshold cycle) values of the target genes were

normalized to the reference gene: DCT=Cttarget gene–Ctreference

gene and compared with a calibrator (wild type): DDCT=DCttest
Sample–DCtwild-type sample. Relative expression RQ was calculated

using the formula RQ=22DDCT. We used five gradient concen-

tration cDNA (26dilute) as templates, made standard curve for

each primer, and make sure each standard curve amplification

efficiency = 902110%, R2= 0.99820.999. Primers used are listed

in Table S2.

Results

Characterization of BjRCE1 Gene of B. juncea
An homological cloning method was employed to isolate RCE1

from B. juncea. Finally, we got a 558-bp-sized orf, which was

Figure 2. The characterization of over-expression of BjRCE1 gene in Arabidopsis. A, Phenotype of oe-RCE1 of Arabidopsis. B, Expression level
of BjRCE1 in oe-RCE1 Arabidopsis. C, Statistic analysis of length of primary root. D, Statistic analysis of number of lateral root. E, Expression of AtPIN2
gene. F, Expression of AtARF1 gene. G, Expression of AtCullin gene. For genes expression, actin gene was used as an internal control. Error bars,
mean6SD (three independent biological replications).
doi:10.1371/journal.pone.0038821.g002

Figure 3. The transcriptional expression of BjRCE1 gene in MF,
CMS of Brassica juncea. For BjRCE1 gene expression, 25S gene was
used as an internal control. Error bars, mean6SD (three independent
biological replications).
doi:10.1371/journal.pone.0038821.g003
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assumed to encode 185 amino acids, including five exons and four

introns according to comparison of cDNA and genomic sequenc-

ing of RCE1 (Figure 1A). Bioinformatic analysis indicated the

presence of a UBCc superfamily domain in BjRCE1 gene,

suggesting that its function was related to ubiquitin (Figure 1B).

Alignment by Clustal W revealed that putative amino acids of

RCE1 from B. juncea had 94 and 83% similarity with that from

AtRCE1 (AT4G36800) and AtRCE1 (AT2G36800) (Figure 1C).

A phylogenetic tree was constructed, based on the deduced amino

acid sequences, to inspect the genetic relationships among the

genes from B. juncea and other members of the RCE1 family. The

RCE1 from B. juncea had close relationship with AtRCE1

(AT4G36800) from Arabidopsis (Figure 1E). The RCE1 ortholog

from B. juncea was named BjRCE1 (NCBI No. FJ189480).

Moreover, BjRCE1 was targeted to the nucleus as shown by the

GFP fusion protein fluorescence (Figure 1D).

Over-expression of BjRCE1 Gene Enhanced Auxin
Response in Arabidopsis
In Arabidopsis, the related-to-ubiquitin (RUB) modification of

CUL1 is required for normal function of the SCFTIR1 complex

and the RCE1 protein functioned as a RUB-conjugated enzyme in

vivo. A mutation in RCE1 reduced auxin response and affected root

development (Dharmasiri et al., 2003). In the present study, the

over-expressed BjRCE1 in Arabidopsis (oe-BjRCE1) resulted in

longer primary roots and more lateral roots under normal growth

conditions, and shorter primary roots and less lateral roots under

IAA treatment (Figure 2A–D). The expressions of several auxin-

related genes - auxin efflux carrier (PIN2), auxin response factor

(ARF1) and subunit of SCF complex (Cullin) genes - were induced

in oe-BjRCE1 Arabidopsis under normal and IAA treatment

conditions (Figure 2E–G).

Reduced BjRCE1 Gene Expression and Auxin Response in
CMS
Previously, the expression of RCE1 was found to be differently

expressed between CMS and MF using oligoarray analysis (Yang

et al., 2010). After the cloning of RCE1 from B. juncea, the

expression of BjRCE1 was investigated in MF and CMS by using

qRCR method. There was reduced BjRCE1 expression in CMS

compared to MF (Figure 3). The number of lateral roots was

significantly decreased in CMS compared to MF under normal

growth conditions (Figure 4A and B). After IAA treatment, the

number of lateral roots increased in both CMS and MF; however,

the number of lateral roots was still less in CMS than in MF

(Figure 4A and B). Primary roots were of similar lengths for CMS

and MF under normal and 100 mM IAA treatments; however,

primary roots were longer in CMS than in MF under 500 mM
IAA treatment (Figure 4C).

Figure 4. The phenotypic analysis of root from MF and CMS of Brassica juncea. A, Root phenotype of MF, CMS and treated with 0.1 mmol/L
and 0.5 mmol/L IAA. B, Statistic analysis of lateral root number. C, Statistic analysis of primary root length. Mean6SD values from 20 seedlings.
doi:10.1371/journal.pone.0038821.g004
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To determine whether mitochondrial function could alter the

auxin response, we studied the phenotype in MF treated with

a specific mitochondrial inhibitor (AA). The number of lateral

roots of MF treated with AA was clearly reduced compared to MF

(Figure S2-A, B). Treatment with IAA and AA in MF led to an

increased number of lateral roots; however, there were less lateral

roots in MF treated with AA than without AA (Figure S2-A, B).

The length of primary roots was also decreased in MF when

treated with AA; however, primary root length was even shorter in

MF treated with AA following 100 and 500 mM IAA treatments

(Figure S2-C). Furthermore, the expression of BjRCE1 in MF

treated with AA was obviously reduced compared to MF plants

(Figure S1).

Expression Patterns of Auxin-related Genes in MF, CMS
We studied the expressions of auxin-related genes including

auxin efflux carrier (PIN2 and PIN3), auxin-responsive GH3 family

protein (GH3), efflux carrier of polar auxin transport (PAT), ARF-

like small GTPase (GTP) and subunit of SCF complex (Cullin) in

MF, CMS and MF/CMS treated with IAA of B. juncea. The

expressions of PIN2, PIN3, PAT and Cullin genes were decreased in

CMS, and IAA treatment induced expressions of these genes in

MF and CMS (Figure 5-A, B, D, F). The expressions of GH3 and

GTP genes were increased in CMS, and IAA treatment induced

expressions of these genes in MF and CMS (Figure 5-C, E). The

expression levels of all investigated genes but Cullin gene were

higher in MF treated with 100 mM IAA compared to500 mM
IAA. The expression levels of all investigated genes were higher in

CMS treated with 500 mM IAA compared to 100 mM IAA

(Figure 5). We also checked the expressions of these genes in MF

treated with IAA and AA of B. juncea to study these genes

expressions when mitochondrial functions were inhibited. The

expressions of PIN2, PIN3, PAT and Cullin genes were decreased in

MF treated with AA as CMS (Figure S3-A, B, D, F). The

expressions of GH3 and GTP genes were increased in MF treated

with AA as CMS (Figure S3-C, E). And only 500 mM IAA

treatment induced expressions of these genes in MF treated with

AA (Figure S3).

Discussion

The coordination of organellar functions requires dynamic

adjustment of gene expression by retrograde regulation, in which

organellar stimuli modulate nuclear-encoded genes [8,9]. Retro-

grade regulation is essential as the nucleus encodes the majority of

organellar proteins and therefore initially controls most aspects of

organellar biogenesis and function. Due to the multitude of

organellar functions, a variety of interlinked retrograde pathways

can be expected, however, whether the expected signals could be

integrated into common pathway is still not clear.

Important progress has been made towards understanding PRR

in plants, in which the GUN1 gene integrated the multiple

indicators in plastid and led to ABI4-mediated the repression of

Figure 5. Transcriptional expression patterns of auxin-related genes in MF, CMS and MF/CMS treated with IAA in . For
genes expression, 25 S gene was used as an internal control. Error bars, mean6SD (three independent biological replications).
doi:10.1371/journal.pone.0038821.g005
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nuclear gene expression [6]. However, only little is known about

the MRR in plants [9]. The general process of MRR is conserved

among yeast, mammals and plants; however, the mechanisms of

signal transduction pathways and key signal molecules are

probably diverse [8]. Up to now, at least three kinds of MRR

pathways and mechanisms have been described in yeast [8,29].

Although the MRR pathway has not been well documented in

plants, compelling evidence suggests that there are multiple types

of mitochondrial signaling pathways in plants [30,31,32,33]. These

included the observation that citrate treatment (which is assumed

to affect mitochondrial function) induced alternative oxidase

(AOX) gene expression but did not cause reactive oxygen species

(ROS) increases in cultured tobacco and soybean cells [30,34]. In

soybean cells, this induction was blocked by a protein kinase

inhibitor, but was induced by AA [30]. In Arabidopsis, candidate

MRR mutants were screened and identified in response to distinct

mitochondrial perturbations of inhibitions of the tricarboxylic

acidcycle and mitochondrial electron transport chain by using the

promoter of the AOX1a gene as a mitochondrial marker [33].

Inhibition of mitochondrial ATP synthase caused increased

respiration and induced AOX1a expression in Arabidopsis, which

suggested different MRR signaling pathways respectively for AA-

and mtROS-induced MRR [35]. In maize CMS with mutations in

different mitochondrial genes encode distinct AOX genes, and

similar responses were seen with inhibitors of respiratory

complexes [31]. Candidate nuclear target genes regulated by

mitochondria caused the failure of pollen development and CMS

phenotypes in several CMS systems [16,17,36]. MRR can also

occur during heat stress, strongly inducing heat-shock-protein gene

expression, whereas AA and monofluoroacetate (MFA) do not

induce expression of these genes [37,38].

We employed CMS of B. juncea to explore candidate retrograde

regulation targets and pathways caused by the nuclear-cytoplasmic

incompatibility. Previously, we identified candidate nuclear target

genes that were probably regulated by the nuclear-cytoplasmic

incompatibility through comparisons of gene expression in CMS

and MF using oligoarray analysis [18]. In the present study, we

demonstrated that expression of BjRCE1, one candidate retro-

grade regulating gene, was down-regulated in CMS. Interestingly,

the expression pattern of BjRCE1 was mimicked in MF when we

specifically inhibited the mitochondrial function using AA. Indeed,

the expression of BjRCE1 was really regulated by mitochondrial

dysfunction in CMS and MF treated with AA.

We also investigated that several other nuclear genes were

subject to the nuclear-cytoplasmic incompatibility in CMS

B. juncea, of which the CTR1-like gene altered ethylene response

in CMS [28] and the mtHSC70 gene affected temperature

responses in CMS (our unpublished data). Bioinformatic analysis

of CTR1-like and mtHSC70 showed ATP-binding domains

within these proteins (data not shown). Meanwhile, RCE1 protein,

as ubiquitin E2, functioned in an ATP-dependent process [39,40].

In CMS B. juncea, the activity of mitochondrial ATP synthesis and

ATP content were significantly decreased compared to MF [41].

ATP regulation of the expression of ATP-binding genes has been

described in several cases: including ATP-binding cassette (ABC)

transporter (Rea, 2007), heat shock protein [42,43] and general

regulator factor [43]. We concluded that mitochondria may

modulate such a type of nuclear gene expression in an ATP-

dependent manner, which might be one mechanism of retrograde

regulation of nuclear gene expression in plants.

In Arabidopsis, RCE1 is required for RUB (related-to-ubiquitin)

modification of the Cullin subunit of the SCF complex function as

RUB-E2. The Arabidopsisrce1 mutant is deficient in auxin and

jasmonate responses [44]. In the present study, we confirmed the

relationship betweenBjRCE1 and auxin response in Arabidopsis over-

expressedBjRCE1. Because of decreased expression of BjRCE1 in

CMS andMF treated with AA, the auxin response was subsequently

reduced in terms of root development and auxin-related gene

expression. We also observed altered jasmonate response in CMS

(data not shown). Importantly, the phenotype of the reduced auxin

response was mimicked in MF when we specifically inhibited

mitochondrial function using AA. This indicated mitochondria

modulated auxin response via BjRCE1 in CMS B. juncea. Recent

studies have reported that the ABI4, encoding a member of the

DREB subfamily A-3 of the ERF/AP2 transcription factor and

which was ever identified as a target gene of chloroplast retrograde

regulation, also played an important role in mediatingMRR signals

to induce the expression of AOX1a in Arabidopsis [45]. This means

thatmitochondria can retrogrademodulate ABA response viaABI4.

In a previous study, we studied retrograde regulation of ethylene

response via the CTR-like gene in CMS B. juncea [28]. If this is so, we

can modulate mitochondrial function to regulate the corresponding

nuclear gene expression and biological traits, and then utilize this in

crop breeding strategies.

In conclusion, our results established a link between retrograde

regulation of BjRCE1 expression and the auxin signal pathway

regulating root development in CMS B. juncea. The results led us to

propose that decreased expression of BjRCE1may impact on CUL1

of the SCF complex and reduce auxin response in CMS (Figure 6).

How BjRCE1 or the ubiquitin cascade pathway can sense signals

from organelle remains to be investigated in further studies.

Supporting Information

Figure S1 The transcriptional expression of BjRCE1 gene in

MF, CMS and MF/CMS treated with AA in Brassica juncea. For

BjRCE1 gene expression, 25 S gene was used as an internal

control. Error bars, mean 6 SD (three independent biological

replications).

(TIF)

Figure S2 The phenotypic analysis of root from MF and MF

treated with AA and IAA inBrassica juncea. A, Root phenotype of

Figure 6. A proposed model of mitochondrial modulation of
auxin response that regulates root development via BjREC1
gene.
doi:10.1371/journal.pone.0038821.g006
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MF, and treated with 0.1 mmol/L, 0.5 mmol/L IAA and

0.5 mmol/L AA. B, Statistic analysis of lateral root number. C,

Statistic analysis of primary root length. Mean 6 SE values from

20 seedlings.

(TIF)

Figure S3 Transcriptional expression patterns of auxin-related

genes in MF and MF treated with AA and IAA in Brassica juncea.

For genes expression, 25 S gene was used as an internal control.

Error bars, mean 6 SD (three independent biological replica-

tions).

(TIF)

Table S1 Primers of cloning and localization of BjRCE1 gene

were listed as followings.

(DOC)

Table S2 Q-PCR primers used in this study were listed as

followings.

(DOCX)
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