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Abstract
PLA2G6 is the causative gene for a group of autosomal recessive neurodegenerative disorders known as PLA2G6-associated 
neurodegeneration (PLAN). We present a case with early-onset parkinsonism, ataxia, cognitive decline, cerebellar atrophy, 
and brain iron accumulation. Sequencing of PLA2G6 coding regions identified only a heterozygous nonsense variant, but 
mRNA analysis revealed the presence of an aberrant transcript isoform due to a novel deep intronic variant (c.2035-274G > A) 
leading to activation of an intronic pseudo-exon. These results expand the genotypic spectrum of PLAN, showing the para-
mount importance of detecting possible pathogenic variants in deep intronic regions in undiagnosed patients.
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Introduction

PLA2G6-associated neurodegeneration (PLAN) is a het-
erogeneous group of rare autosomal recessive neurodegen-
erative disorders caused by mutations in the PLA2G6 gene 
[1]. This gene encodes for iPLA2β, a group VIA calcium-
independent A2 phospholipase, involved in phospholipids 
metabolism essential for maintaining cell membrane integ-
rity. Depending on age of onset and clinical features, PLAN 
can be classified in three subtypes, including infantile neu-
roaxonal dystrophy (INAD), atypical neuroaxonal dystro-
phy (ANAD), and PARK14 autosomal recessive early-onset 

Parkinson’s disease (EOPD). INAD and ANAD typically 
occurred in childhood, often associated with cerebellar 
cortical atrophy and iron deposition in the brain, a condi-
tion known as neurodegeneration with brain accumulation 
type II (NBIA2) [2]. Contrariwise, EOPD onset is in early 
adulthood, typically associated with dystonia, rapid cogni-
tive decline, psychosis, dysarthria, and pyramidal tract signs 
[3]. However, it has been increasingly reported that PLAN 
can manifest with intermediate phenotypes partially match-
ing those classically associated with this disorder, thus pre-
venting the identification of a precise genotype–phenotype 
correlation [4–6].

In general, genetic disorders causative mutations have 
been prevalently identified in exons and in RNA donor 
or acceptor splice sites. However, despite next generation 
sequencing (NGS) has revolutionized genetic testing, a con-
siderable proportion of patients with a clinical diagnosis for 
a recessive condition have only one heterozygous mutation, 
suggesting the presence of not detected deep intronic vari-
ations. Intronic point mutations can activate pseudo-exons, 
such as intronic sequences flanked by apparently good-to-
consensus acceptor and donor-site signals that are never 
recognized by the splicing machinery [7].

Here, we report the first case of PLAN caused by a com-
bination of nonsense and deep intronic variants in PLA2G6 
gene.
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Materials and methods

This study was approved by the Ethics Committee of the 
Besta Institute with an informed, written consent. For 
sequencing of PLA2G6 transcript, PCR products were 
processed with Nextera XT DNA sample kit (Illumina) 
[8]. Real-time quantitative PCR (qPCR) was performed in 
a CFX-96 system (Bio-Rad) using iTaq Universal SYBR 
Green Supermix (Bio-Rad), with a primer pair specific for 
PLA2G6; the ACTB gene was used as reference. In silico 
predictors were used to assess the effect of variants on 
splicing (SpliceAI, HSF, NetGene2, NNSplice, varSEAK, 
MaxEntScan) [9]. The c.2035-274G > A variant was sub-
mitted to the Leiden Open Variation Database (DB-ID: 
PLA2G6_000182).

Results

Clinical reports

The patient is a 43-year-old lady born to non-consanguin-
eous parents and with no family history of neurological 
diseases. Her symptoms started at age 32 years with gait 
ataxia and scanned speech, and, since age 36, a progressive 

asymmetric parkinsonian syndrome, with rigidity, hypokine-
sia, resting and postural tremor predominantly on the right, 
and cognitive decline. Response to L-Dopa was poor. She 
later developed behavioral abnormalities—irritability and 
occasional aggressiveness—treated with quetiapine. She 
progressively lost walking ability and developed dysphagia 
and severe akinesia.

At 43  years, examination revealed severe cognitive 
decline in memory, linguistic, frontal-executive, and visual-
spatial skills; pursuit saccadization, vertical upward gaze 
palsy, marked hypomimia, almost absence of spontaneous 
speech, which was scanned and monotonous, dysphagia, 
and drooling; severely hypokinetic gait, with double sup-
port; marked axial and limb rigidity, with trochlea sign, and 
generalized akinesia; oromandibular and bilateral upper limb 
resting tremor; increased deep tendon reflexes; and bilateral 
Babinski sign.

Brain MRI showed T2 GRE hypointensity of the 
pallida, substantia nigra and head of the left caudate 
nucleus, cerebellar atrophy, T2 hyperintensity of cere-
bellar cortex and dentate nuclei, and clava hypertrophy, 
and diffuse cerebral atrophy with hyperintensity of the 
hippocampi (Fig. 1).

EEG showed some slow abnormalities in the temporal 
regions, more pronounced on the left side, photosensitivity, 

Fig. 1   Neuroradiological findings. Brain MRI performed at age 34 
(a–d) and age 43 (a1–d1, e, and f) showing typical PLAN neurora-
diological findings, except for not atrophic optic chiasm. a, a1 Axial 
T2 GRE images reveal, already in the first exam (a), globus pallidus 
hypointensity due to iron deposition (arrows); last examination (a1) 
demonstrates also iron in the head of the caudate nuclei (asterisk). 
b, b1, c, c1 Coronal T2-wi demonstrate normal optic chiasm volume 
and progressive diffuse cerebral atrophy (b and b1), associated with 

mild dentate nucleus hyperintensity (arrowheads in c, c1, and e) and 
progressive cerebellar atrophy characterized by widening of cerebel-
lar folia. d, d1 Coronal FLAIR images show an unusual atrophy and 
hyperintensity of both hippocampi in the last exam compared to the 
first. e Coronal and axial FLAIR image demonstrate cerebellar cor-
tical hyperintensity (curved arrows). f Midline sagittal T1-wi shows 
cerebellar vermian atrophy and clava hypertrophy (arrow)
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Fig. 2   Molecular studies. a Schematic representation of the PLA2G6 
gene (upper) and protein (lower), and location of variants identified 
in this study. Protein consists of seven ankyrin repeats (numbered 
circles), a proline-rich motif (P), a glycine-rich nucleotide binding 
motif (G), a lipase motif (PNPLA), and a binding site for calmodu-
lin (Calmod). Numbers shown below are the amino acid positions. 
b Amplicons spanning exons 14–15 of the patient (P) and a healthy 
control (C) show a different‐sized PCR product in the patient sam-
ple. c Sanger sequencing of PLA2G6 cDNA shows inclusion of a 
118-nucleotide intronic sequence between exons 14 and 15 (boxed) 
in patient. d Sanger sequencing of the PLA2G6 gene show compound 
heterozygous variants. The c.109C > T variant is inherited from 

the father, the c.2035-274G > A variant is from the mother. e Sche-
matic of PLA2G6 exons 14–15 showing the c.2035-274G > A vari-
ant, which substitutes a less favored G (WT) at the + 4 position for 
a highly favored A (MUT), strengthens a naturally occurring cryptic 
donor splice site to activate spliceosomal inclusion of the intron 14 
pseudo-exon (boxed region). f Schematic representation of PLA2G6 
gene and protein resulting from pseudo-exon inclusion. g Sashimi 
plots of PLA2G6 cDNA sequencing data show the presence of intron 
14 pseudo-exon in patient, representing about 43% of total tran-
script. h Relative PLA2G6 mRNA expression in control (C1, C2) and 
patient (P) fibroblasts. Mean of three independent experiments ± SD 
is shown. ***p < 0.001 (Student’s t test)
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and photomyoclonic response, without clinical evidence of 
seizures. There was latency prolongation of the central com-
ponents of somatosensory evoked potentials.

Molecular investigations

Sequencing of PLA2G6 coding and flanking intron 
sequences revealed heterozygosity for the nonsense vari-
ant c.109C > T in exon 2 of the NM_003560.4 transcript 
(Fig. 2a), which introduces a premature stop codon at posi-
tion 37 of the iPLA2β protein (p.Arg37*). This variant is 
reported as pathogenic in ClinVar database (accession: 
RCV000023318.6) and already associated with PLAN [10, 
11]. However, we could find neither a second variant in 
the coding regions or adjacent introns nor the presence of 
exon deletion or duplication in PLA2G6 by MLPA analy-
sis. Therefore, we isolated RNA from patient’s fibroblasts 
and retrotranscribed it into cDNA to search for a second 
variant. Using intron-spanning primers pairs, we ampli-
fied an abnormal band of higher molecular weight in the 
patient that was not detected in controls (Fig. 2b). Sequenc-
ing of patient’s PLA2G6 transcript revealed the inclusion 
of a 118 nt region belonging to intron 14 (Fig. 2c). Then, 
we performed Sanger sequencing to explore the noncod-
ing regions flanking the included sequence and identified 
a heterozygous deep intronic variant at position chr22.
hg19:38,509,935 (c.2035-274G > A) (Fig. 2d, e), which was 
absent in the Genome Aggregation Database (gnomAD). 
In silico algorithms predicted the c.2035-274G > A variant 
generates a pseudo-exon activation, gaining a novel splic-
ing donor site 118 nt downstream of a preexisting cryptic 
acceptor site (Fig. 2e, Table 1). The pseudo-exon inclusion 
causes a frameshift mutation (p.Gly679Thrfs*810), leading 
the complete loss of calmodulin domain (Fig. 2f). Sequenc-
ing of parents’ genomic DNA confirmed that c.109C > T 
and c.2035-274G > A variants were transmitted from father 
and mother, respectively (Fig. 2d). By NGS, we found that 
the isoform with the pseudo-exon inclusion represents about 
43% of patient’s total PLA2G6 transcript (Fig. 2g). Likewise, 
the nonsense c.109C > T variant is present in about 55% of 

mRNA (not shown). Moreover, qPCR performed on cDNA 
from patient and age-matched control fibroblasts showed a 
reduction of about 80% in the expression level of PLA2G6 
transcript (Fig. 2h), suggesting that both variants lead to 
nonsense-mediated mRNA decay.

Discussion

It has been estimated that approximately half of the patients 
affected by rare genetic diseases remains without a defi-
nite molecular diagnosis, about 10% of which is due to 
pathogenic variants located deep within introns [7]. Here, 
we reported for the first time a deep intronic mutation in 
the PLA2G6 gene, causing the creation of a new donor 
splice site leading to a pseudo-exon inclusion by activat-
ing a preexisting cryptic acceptor splice site. This case, in 
which only one coding variant was detected at first, high-
lights that the existence of putative dominant variants in 
PLA2G6 should be reexamined [12]. Moreover, different 
studies reported that a consistent fraction of cases, ranging 
from 8 to 45%, were heterozygous for a single PLA2G6 
mutant allele, missing the second mutation [10, 13–15]. Our 
patient’s presentation is consistent with the rare phenotype 
observed in young adults, with atypical findings such as the 
T2 GRE hypointensity in the left caudate nucleus head and 
T2 hyperintensity in both hippocampi. Residual PLA2G6 
activity may explain later symptom onset. To the best of 
our knowledge, the molecular mechanism here identified 
has never been described in genetic forms of Parkinson’s 
disease. Furthermore, this case underlines the importance 
of cDNA analysis for detection of mutations in the intronic 
sequence of candidate genes in instances where exon 
sequencing and MLPA fail to provide a conclusive diagno-
sis. Although whole genome sequencing is entering faster 
and faster in the clinical diagnostic, RNA analysis offers 
a valid alternative for selected cases, although it may pre-
sent limitations linked to sample availability, tissue-specific 
gene expression, or mutations inducing complete nonsense-
mediated mRNA decay.

Table 1   Splicing predictions 
of c.2035-274G > A variant 
by multiple bioinformatic 
prediction tools

n.a. not available

Prediction tool Acceptor gain site Donor gain site

Wild-type score Mutant score Wild-type score Mutant score

SpliceAI n.a 0.67 n.a 0.64
HSF 85.21 85.21 79.82 90.1
NetGene2 0.22 0.22 - 0.64
NNSplice 0.66 0.66 - 0.61
varSEAK n.a n.a -48.06  + 29.04
MaxEntScan 7.49 7.49 1.95 5.97
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