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Abstract

Brassica juncea L. is a significant member of the Brassicaceae family, also known as Indian

mustard. Water is a limiting factor in the successful production of this crop. Here, we tested

the effect of water shortage in B. juncea plants supplemented with or without the application

of silicon and arbuscular mycorrhizal fungi in total 8 different treatments compared under

open filed conditions using a randomised complete block design (RCBD). The treatments

under control conditions were control (C, T1); C+Silicon (Si, T2); C+My (Mycorrhiza; T3);

and C+Si+My (T4). In contrast, treatments under stress conditions were S (Stress; T5); S

+Si (T6); S+My (T7) and S+Si+My (T8), respectively. In total, we evaluated 16 traits, includ-

ing plant response to stress by evaluating peroxidase (POD), superoxide dismutase (SOD),

and catalase (CAT) activity. The fresh weight (g) increased only 7.47 percent with mycor-

rhiza (C+My) and 22.39 percent with silicon (C+Si) but increased 291.08 percent with both

mycorrhiza and silicon (C+Si+My). Using mycorrhiza (S+My) or silicon (S+Si) alone pro-

duced a significant increase of 53.16 percent and 55.84 percent in fresh weight, respec-

tively, while using both mycorrhiza and silicon (S+Si+My) together produced a dramatic

increase of 380.71 percent under stress conditions. Superoxidase dismutase concentration

(Ug−1 FW) was found to be increased by 29.48 percent, 6.71 percent, and 22.63 percent

after applying C+My, C+Si and C+Si+My, but treatment under stress revealed some con-

trasting trends, with an increase of 11.21 percent and 19.77 percent for S+My, S+Si+My,

but a decrease of 13.15 percent for S+Si. Finally, in the presence of stress, carotenoid con-

tent (mg/g FW) increased by 58.06 percent, 54.83 percent, 183.87 percent with C+My, and

23.81 percent with S+My and S+Si+My, but decreased by 22.22 percent with S+Si. Silicon

application proved to be more effective than AMF treatment with Rhizophagus irregularis,

and the best results were obtained with the combination of Si and AMF. This work will help

to suggest the measures to overcome the water stress in B. juncea.
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Introduction

Brassica juncea (Czern) L. is an important member of the family Brassicaceae; it is also known

as an ’Indian mustard (AABB, 2n = 36) [1, 2]. This is a common species of amphidiploids

from a cross between B. rapa (AA, 2n = 20) and B. nigra (BB, 2n = 16) [3]. It is extensively cul-

tivated in India, Canada, Australia, China and Russia [4, 5]. The economic importance

attempts were made to raise their economic and agro-important characteristics such as oil

quality, oil purity, seed scale, shattered pods and pathogen resistance. However, only a few

papers covered the effects of water stress on important stages of B. juncea and how to eliminate

it. However, B. juncea’s water footprint is very small compared to most other Indian crops [6,

7]. Still, the emergence and sustainability of seedlings were severely hampered by severe water

stress [8]. High temperatures and water tension during pod development are often considered

to mitigate seed setting [9].

A major environmental factor limiting plant growth and crop quality is soil water availabil-

ity [10, 11]. Water deficiency is due to surface water depletion (drought) or its absorption issue

(physiological drought) [12]. Water is in the soil solution in this case. Still, plants cannot use it

since there are certain physiological considerations such as elevated levels of salt (salinity), sur-

plus water (floods) and low temperatures [13, 14]. Therefore, all of these factors influence

water stress and changes in cell waters. Water potential decreases, and plant cell turgor

decreases [15]. This interrupts most vital processes and reduces rates of production. Water def-

icit affects photosynthesis, absorption and transmission of essential nutrients and causes over-

production of ROS–species of reactive oxygen (O2-, 1O2, OH, H2O2) [16, 17]. These very

reactive molecules cause extreme metabolic disorders and degradation of the membrane [18].

Silicon has been developed to reinforce cell walls and provide mechanical support to monocots

and pteridophytes (under-understanding of dicots) by enhancing suberisation [19, 20].

Silicon (Si) application enhances the growth and increases plant tolerance to various abiotic

stresses [19, 21, 22]. Soil content of Si can vary considerably between 1.0 and 45 percent dry

weight [23]. While all plants have Si, Si levels differ substantially among species, ranging from

0.1 to 10% of the dry weight above ground [24, 25]. Monocots plants usually consume Si

actively, whereas most dicots plants absorb Si passively [26, 27]. While Si is not an effective

ingredient for higher plants, exogenous Si application has positively affected plant growth

under abiotic stress [27, 28]. However, the advantages of Si are negligible or sometimes non-

existent except for stresses of some sort. Silicon treatment has been studied under water stress

in some Si accumulators, like rice, maize, wheat and sorghum [29–31]. When Si is added, pho-

tosynthesis and associated carboxylase activities are increased under field drought conditions,

as observed in wheat [32, 33]. In maize, Si addition can increase K and Ca levels, which indi-

cates Si’s essential role in plant mineral balance [34].

Glomus spp. spores such as G. mosseae and G. intraradices are the main root colonizers in

saline soils [35, 36]. AM colonization enhances plant resistance to salinity, improves plant pro-

ductivity, increases nutrient absorption [37], maintains ion equilibrium and facilitates water

uptake [38]. Therefore, it would be important to study AM symbiosis’s action in increasing the

consumption of Si host plants and their cumulative position in salt tolerance. The hemicellu-

lose of cell-walled connected with Si improved structural flexibility, evidently advantageous in

water deficits [39, 40]. Furthermore, plant biological silicification, involving apoplastic poly-

merization of silicic acid, helps to form a silica barrier [41], which may reduce biotic and abi-

otic stress, prevent pathogenic contamination and penetration into plants potential toxicants

such as aluminium (Al), manganese (Mn), cadmium (Cd), zinc (Zn) and sodium (Na) [42–

44]. In root endodermis and exodermis, Silicon has helped in forming the Casparian band [20,
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45]. Lignin and suberin based genes transcription were also activated [46]. These components

can shape Na+ transport barriers in roots correlated with increased rice salt tolerance [47].

In this direction, Si’s effects on transpiration vary with organisms and environmental fac-

tors. While Si inoculation increased transpiration in rice under both drought and salt-stressed

conditions, it decreased the unstressed transpiration of rice [48]. The findings were similar in

drought-stressed wheat and sorghum, while Si decreased transpiration in dry maize, and no

effects were recorded on cucumber [20].

Such heterogeneity indicates divergent techniques among different plants, matching water

absorption rates and water loss at the leaf stage. These methods and Si responses need further

study and discovery. However, pathways that influence aquaporin’s speech and function

through the Si diet have yet to be resolved [49]. In addition to affecting hydraulic conductance

and water transit by modulating aquaporin expression/activity, Si may impact water transport

by modifying cell osmotic potential with enhanced osmolyte accumulation (e.g., proline, solu-

ble sugars, inorganic ions, etc.) [50]. Therefore, the present study was carried out to study the

role of Si application and mycorrhizal fungi for B. juncea plants cultivated with and without

water stress.

Material and methods

Experimental layout

Field experimentation was carried out at Agriculture Research Farm, located at a latitude of

29˚95ˈNorth and longitude of 76˚82ˈ from October to March of 2016–2017 at the temperature

of 30±4˚C (day) and 20±5˚C (night). The plot was ploughed to make uniform topography

using sandy-clayey loam soil employing a randomized complete block design with three repli-

cates. Two irrigation regimes, including control (irrigation two times, one at 50% flowering

stage and another one at 50% siliquae formation time), and total stress (no irrigation), were

followed. B. juncea cultivar (RH-749) fertilized with recommended fertilizer dose of NPK for

the treatment with silicon. Water stress was developed by withholding irrigation during the

vital development stage (siliquae and flower initiation phases). The seeds were obtained from

the oilseed section of CCS Hisar Agricultural University, Haryana. Physio-biochemical analy-

sis of the experimental soil showed that it contained; sand 80.32%, silt 6.11%, clay 13.18%,

organic matter 0.79%, total nitrogen (N) 110.15kg/ha, phosphorous (P) 7.59 kg/ha, K 439.61

kg/ha, and S 106.49 kg/ha. The pH of the soil was slightly basic at 7.9.

Silicon and arbuscular mycorrhizal fungi treatment

The salicylic acid solution was sprayed at a concentration of 150 ppm at the emergence, flower-

ing, and siliqua stage of the B. juncea plants. Whereas Rhizophagus irregularis at a CFU count

of 100 spores/g was procured from (M/S Shri Ram Solvent Extractions Pvt. Ltd., India). After

mass multiplication, 100 g per plant is mixed with the field soil before transplanting.

There were eight treatments, i.e., 4 under regular irrigation and 4 under water stress. The

treatments under control conditions were control (C, T1); C+Silicon (Si, T2); C+My (Mycor-

rhiza; T3); and C+Si+My (T4). Whereas treatments under stress conditions were, S (Stress;

T5); S+Si (T6); S+My (T7) and S+Si+My (T8), respectively.

Plant characterization

The root to shoot length was measured on a meter scale, whereas whole plant height was esti-

mated in cm at the blooming stage (day 63). The roots were then separated from the shoot,

blotted, and subsequently weighed to record their fresh weight (FW) and then placed in an
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oven at 80˚C overnight and weighed again to record the respective dry weight (DW). The leaf

area was determined by utilizing a portable leaf area meter (Systronics 211, Ahmedabad,

India), as per the manufacturer’s instructions. Plants were harvested and taken for sampling

from each plot. Leaves were removed from the stem, and fresh weight was noted (FW). Then

they were oven-dried at 70˚C overnight for weighing dry weight (DW). This is done to evalu-

ate Leaf Water Content using [(FW–DW)/FW] ×100.

The amount of chlorophyll present was determined by taking two wavelengths, i.e., 620 and

940 nm, with a CL-01 Chlorophyll Content Meter (Hansateh, Norfolk, UK). Whereas the

method used to determine the membrane stability index (MSI) is defined elsewhere [19].

Using the sodium chloride reference standard, the osmotic potential was determined from the

3rd fully expanded leaf. Electrolyte leakage was measured by Dionisio-Sese and Tobita [51].

Furthermore, we evaluated the plant response to stress by evaluating peroxidase (POD), super-

oxide dismutase (SOD), and catalase (CAT) activity based on our previously defined protocol

[52].

Data analysis

The data was collected from five plants that were comparable in appearance from each treat-

ment, with the exception of the border plants. Each treatment’s mean values were submitted to

an analysis of variance (ANOVA) in order to identify differences among the treatments.

Futher, the statistical significance of differences between treatment means was determined

using Duncan’s multiple range test (DMRT) for comparison of variance separated with (least

significant difference) (LSD) as a post hoc test. All the statistical analysis were performed using

JASP computer program (version 0.14.1.0). Whereas, the estimation of Pearson´s correlations

coefficients was performed using the R platform (R Core Team 2015).

Results

Variation for characters

Variations in different traits of Brassica juncea were investigated after treatment with silicon

and Mycorrhizal Inoculation under water stress and recorded in Table 1. The fresh weight was

found to increase by only 7.47% and 22.39%, respectively, when treated with mycorrhiza (C

+My) and silicon (C+Si) but increased drastically by 291.08% after treatment with both silicon

and mycorrhiza (C+Si+My) (Table 1). The treatments were found to be more effective under

conditions of stress which produced a significant increase of 53.16% and 55.84% in fresh

Table 1. Variation among the different treatments for morphological traits of Brassica juncea when treated with silicon and mycorrhizal inoculation of under

water stress in the influence of silicon and mycorrhizal inoculation.

Treatments Fresh weight (g) Dry matter (g) Root length (cm) Leaf area (cm2) Plant height (cm)

C 22.33±1.53c 4.32±0.07d 16.67±0.65c 93.33±1.53cd 96.67±1.50c

C+My 24.00±1.00c 5,94±0.30c 19.30±1.00b 117.21±3.30b 104.67±1.48b

C+Si 27.33±0.85c 5.65±0.38c 17.17±0.96c 112.34±5.71b 105.67±1.71b

C+Si+My 87.33±4.51a 12.73±0.57a 21.71±1.02a 125.20±2.04a 112.03±1.95a

S 15.67±2.08d 2.96±0.08e 14.52±1.20d 71.33±0.58e 65.67±2.52f

S+My 24.00±2.00c 4.52±0.41d 16.67±1.35c 88.12±3.54d 73.67±2.52e

S+Si 24.42±1.06c 5.94±0.38c 19.32±1.45b 117.00±3.04b 104.67±1.76b

S+Si+My 75.33±5.77b 10.70±0.52b 18.67±0.65b 99.33±6.51c 89.67±1.83d

�Means within the groups are significantly different based on Duncan´s mean range test.

https://doi.org/10.1371/journal.pone.0261569.t001
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weight when treated separately with mycorrhiza (S+My) and silicon (S+Si), respectively, and a

dramatic increase of 380.71% when treated with both silicon and mycorrhiza (S+Si+My)

(Table 1). Similarly, the dry matter content increased by 37.5%, 30.78%, and 194.67% with C

+My, C+Si, and C+Si+My, respectively, and by 52.7%, 100.67%, and 261.48% with S+My, S

+Si, and S+Si+My respectively (Table 1). Further, the root length exhibited a maximum

increase of 30.23% with C+Si+My, followed by 15.77% with C+My, and 2.99% with C+Si.

However, under conditions of stress, the treatment with silicon (S+Si) produced a maximum

increase of 33.05% in the root length, followed by treatment with S+Si+My (28.58%) and S

+My (14.8%) (Table 1).

In the case of leaf area, it was observed that silicon and mycorrhizal inoculation increased

by 25.58%, 20.36%, and 34.14% with C+My, C+Si, and C+Si+My, respectively, while it

recorded an increase of 23.54%, 64.02%, and 39.25% with S+My, S+Si, and S+Si+My respec-

tively (Table 1). With regard to plant height, the increments recorded under normal condi-

tions were 8.27%, 9.31%, and 15.89% with C+My, C+Si, and C+Si+My, respectively. In

contrast, the corresponding values observed under water stress conditions were 12.18%,

59.38%, and 36.54% with S+My, S+Si, and S+Si+My, respectively (Table 1).

However, the percentage of relative water content did not change significantly; it decreased

by 2.72% when treated with C+My but increased by 2.51% and 3.67% with C+Si and C+Si

+My, respectively (Table 2). Further, it increased by 2.1%, 8.92%, and 8.43% after treatment

with S+My, S+Si, and S+Si+My, respectively. Likewise, the percentage of membrane stability

index increased nominally by 0.02%, 3.06%, and 6.27% under the influence of C+My, C+Si,

and C+Si+My respectively, and by 2.6%, 10.37%, and 7.14% with S+My, S+Si, and S+Si+My

respectively (Table 2). Although the electrolytic content increased by 1.51% after treatment

with C+My, it decreased by 1.7% and 3.65% when treated with C+Si and C+Si+My, respec-

tively (Table 2). Further, the maximum reduction in electrolytic content was observed with S

+Si (13.45%), followed by S+Si+My (3.97%) and S+My (2.29%). In addition, the concentration

of Superoxidase dismutase was found to be enhanced by 29.48%, 6.71%, and 22.63% after the

application of C+My, C+Si, and C+Si+My, respectively, but treatment under stressed condi-

tions revealed some contrasting trends, increase of 11.21% and 19.77% with S+My and S+Si

+My respectively, and decrease of 13.15% with S+Si (Table 2).

Similarly, the concentration of peroxidase increased by 75.08%, 14.5%, and 30.39% with C

+My, C+Si, and C+Si+My respectively, however, under stressed conditions, it increased by

28.93% and 39.56% with S+My and S+Si+My but decreased by 4.67% with S+Si (Table 2). Fur-

ther, the ascorbate content, due to the introduction of silicon and mycorrhiza, increased by

Table 2. Variation among the different treatments for different stress tolerance indicator traits of Brassica juncea when treated with silicon along with mycorrhizal

inoculation of under water stress in the influence of silicon and mycorrhizal inoculation.

Treatments Relative water

content (%)

Membrane stability

index (%)

Electrolytic

content (%)

Superoxidase dismutase

(Ug−1 FW)

Peroxidase (Ug−1

FW)

Ascorbate (Ug−1

FW)

Catalase (Ug−1

FW)

C 81.38±0.15b 66.89±1.28c 24.58±1.06e 14.89±2.27e 9.31±5.80d 5.14±2.13c 3.88±1.66e

C+My 78.66±1.50c 66.91±1.20c 26.09±0.57d 19.28±3.07d 16.30±3.60bc 9.43±1.70bc 7.08±1.63cd

C+Si 83.89±1.27a 69.95±0.77b 22.88±0.65f 15.89±2.64e 10.66±5.86d 5.96±1.57c 4.57±1.30de

C+Si+My 85.05±1.34a 73.16±1.04a 20.93±0.75g 18.26±3.43d 12.14±3.91cd 7.27±2.31c 5.66±1.65de

S 69.74±0.46e 56,54±1.76f 39.54±0.81a 22.2±4.04c 17.11±5.84b 9.83±1.22bc 9.15±1.13bc

S+My 71.84±0.52d 59.14±1.50e 37.25±0.87b 24.69±3.51b 22.06±3.28a 14.33±4.32ab 11.86±0.70b

S+Si 78.66±1.54c 66.91±1.21c 26.09±0.57d 19.28±3.07d 16.31±3.60bc 9.43±1.75bc 7.08±1.72cd

S+Si+My 78.17±0.48c 63.68±1.45d 35.57±0.70c 26.59±2.91a 23.88±3.16a 15.83±5.02a 15.35±2.18a

�Means within the groups are significantly different based on Duncan´s mean range test.

https://doi.org/10.1371/journal.pone.0261569.t002
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83.46%, 15.95%, and 41.44% with C+My, C+Si, and C+Si+My respectively, while it increased

by 45.77% with S+My and 61.03% with S+Si+My, but decreased nominally by 4.07% with S+Si

(Table 2). The catalase content recorded increments of 82.47%, 17.78%, and 45.87% when

treated with C+My, C+Si, and C+Si+My respectively, however, when observed under water

stress, it exhibited an increase of 29.61% after treatment with S+My and 67.76% with S+My

+Si, but a decrease of 22.62% with S+Si (Table 2).

Finally, the total chlorophyll content (chlorophyll a and chlorophyll b) produced no

remarkable variations. However, the carotenoid content indicated a considerable increase

when introduced with both silicon and mycorrhiza (Table 3). The total chlorophyll content

was reduced by 9.67% when treated with C+My, while enhanced by 3.81% and 8.90% with C

+Si and C+Si+My respectively, however, when investigated under stress, it was found to

increase by 12.82%, 30.03%, and 16.48% with S+My, S+Si, and S+Si+My respectively

(Table 3). The carotenoid content increased by 58.06%, 54.83%, and 183.87% with C+My, C

+Si, and C+Si+My respectively, while under conditions of stress, it increased by 23.81%, and

147.62% with S+My, and S+Si+My respectively, but decreased by 22.22% with S+Si (Table 3).

Correlations

There were 136 correlations in total, but only 77 were found to be significant. Out of these sig-

nificant correlations, 11 correlations were absolute (>0.9) (Fig 1). Dry matter was positively

correlated with fresh weight (0.977), root length (0.792), leaf area (0.62), plant height (0.569),

relative water content (0.682), membrane stability index (0.69), catalase concentration (0.49),

chlorophyll a (0.513), chlorophyll b (0.469), total chlorophyll content (0.501), carotenoid con-

tent (0.832) (Fig 1). Further, the root length showed positive correlation with fresh weight

(0.682), leaf area (0.877), plant height (0.8), relative water content (0.684), membrane stability

index (0.841), superoxidase dismutase (0.453), chlorophyll a (0.655), chlorophyll b (0.577),

total chlorophyll content (0.632), carotenoid (0.473).

The plant height was found to be positively correlated with relative water content (0.844),

membrane stability index (0.931), chlorophyll a (0.759), chlorophyll b (0.625), and total chlo-

rophyll content (0.721) (Fig 1). Further, osmotic potential exhibited a significant correlation

with different traits, although in negative direction, dry matter (-0.452), root length (-0.707),

leaf area (-0.864), plant height (-0.945), relative water content (-0.843), membrane stability

index (-0.933), chlorophyll a (-0.883), chlorophyll b (-0.777), and total chlorophyll content

(-0.856), except for electrolytic content (0.981) where it showed positive correlation (Fig 1).

Besides, the concentration of superoxidase dismutase marked direct correlation with fresh

Table 3. Variation among the different treatments for leaf pigments of Brassica juncea when treated with silicon along with mycorrhizal inoculation of under water

stress in the influence of silicon and mycorrhizal inoculation.

Treatments Chlorophyll a (mg/g FW) Chlorophyll b (mg/g FW) Total chlorophyll (mg/g FW) Carotenoids (mg/g FW)

C 2.91±0.14b 1.03±0.09a 3.93±0.23b 0.31±0.08e

C+My 2.67±0.06c 0.88±0.02b 3.55±0.07c 0.49±0.02de

C+Si 3.02±0.20ab 1.05±0.10a 4.08±0.30ab 0.48±0.03de

C+Si+My 3.17±0.15a 1.11±0.13a 4.28±0.30a 0.88±0.02b

S 2.08±0.18e 0.65±0.10c 2.73±0.06e 0.63±0.05cd

S+My 2.29±0.03d 0.79±0.03b 3.08±0.07d 0.78±0.03bc

S+Si 2.67±0.06c 0.88±0.02b 3.55±0.06c 0.49±0.12de

S+Si+My 2.38±0.07d 0.80±0.03b 3.18±0.12c 1.56±0.04a

�Means within the groups are significantly different based on Duncan´s mean range test.

https://doi.org/10.1371/journal.pone.0261569.t003
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weight (0.418), peroxidase (0.56), ascorbate (0.697), catalase (0.836), and carotenoid (0.599)

(Fig 1).

However, the peroxidase concentration showed a significant correlation only with catalase

(0.619), in addition to superoxidase dismutase. In case of ascorbate concentration, it was

observed that there were considerable positive correlations with catalase (0.752) and caroten-

oid (0.557). At the same time, catalase concentration was also correlated with fresh weight

(0.519) and carotenoid content (0.796), besides other traits mentioned above (Fig 1). Finally,

Fig 1. Correlations among the sixteen traits studied for B. juncea plants cultivated under water stress in the influence of silicon and mycorrhizal

inoculation.

https://doi.org/10.1371/journal.pone.0261569.g001
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the fresh weight, in addition to the traits discussed above, marked correlations with total chlo-

rophyll content (0.44) and carotenoid content (0.877) also, both in a positive direction (Fig 1).

Discussion

In arbuscular mycorrhizal fungi colonized plants, AMF symbiosis increased biomass and

other morphological traits of B. juncea [53]. Arbuscular mycorrhizal fungi contributed to the

overall better performance of the plants. The biomass production and pigment concentrations

decreased under the stress conditions. Silicon and arbuscular mycorrhizal fungi treatment

have elevated the symptoms of water stress and improved the quality of leaf water and photo-

synthesis, which have led to increased biomass growth. Silicon and arbuscular mycorrhizal

fungi have been applied to increase the net photosynthesis rate by increasing stomach behav-

ior. This growth can be attributed to better net CO2 assimilation and appropriate distribution

of photosynthates that can stimulate root production in such circumstances [54, 55]. In the B.

juncea plants, the combination of organic osmolytes, which contribute to osmotic gradients in

the atmosphere, has been observed as a typical response to water stress.

However, osmo-adjustment did not mediate AMF and Si’s alleviatory effect and organic

osmolyte levels decreased in +AMF and +Si plants [56, 57]. These results show that the Si-

mediated increase in leaf water use was not due to a rise in water-stressed strawberry factories’

osmotic motive power. There was an increase in leaf’s relative water content (RWC) by

increased water absorption capacity, which, in essence, prevented stomach closure and

retained an excellent photosynthetic ability to support growth and the supply of dry matter

[58, 59]. Rising volumes of antioxidant enzymes are usually expected to mitigate the stress.

Arbuscular mycorrhizal fungi and silicon’s stress reduction solution may also be less expensive

to increase water absorption than osmo-modification strategies. This discovery compares with

our previous observation on tobacco plants that has revealed a Si-medium shift in plant water

status by adding organic osmolytes, including soluble sugars, free amino acids and proline [60,

61].

Comparing arbuscular mycorrhizal fungi and silicon treatments to strawberry leaves

revealed a specific strategy for changing the roots’ arbuscular mycorrhizal fungi and silicon

water economies [62]. In tomatoes, the root osmotic potential was not altered in Si-treated

plants [63]. In cucumbers, the role of osmotic motive force in Si-mediated water uptake was

genotype-dependent [64]. These results collectively suggested optimizing water quality and

capacity for osmotic stress-dependent Si-treated plants based on plant species, organisms and

genotypes.

In plant-mycorrhizal interactions, nutrients are retained, and plant development is

enhanced. Arbuscular mycorrhizal fungi hyphal networks and glomalin secretion help soil

absorb water and nutrients [65–67]. Moreover, arbuscular mycorrhizal fungi can develop

drought-adaptive strategies utilizing radical extra-hyphae and affect plant processes such as

photosynthesis, root conductivity and root architecture [68, 69]. Arbuscular mycorrhizal fungi

-mediated response is a multi-faceted process of drought-responsive gene expression and acti-

vation [70]. These metabolic compounds reduce the osmotic ability and hence leaf water

capacity in plants subjected to drought. Arbuscular mycorrhizal fungi plants overcome oxida-

tive stress triggered by a deficiency of water by promoting antioxidant compounds to scavenge

ROS and facilitate enzyme antioxidant activities [71, 72]. Arbuscular mycorrhizal fungi root

colonization enhances root formation, hydraulic properties and root design, resulting in a

highly efficient root system for water nutrients absorption [73]. In a previous report, G. mos-
seae and G. deserticola demonstrated improved infectivity when AMF spores were treated by
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storages in various soil water capacities [74, 75], implying that their consistency in root coloni-

zation could have good impacts.

Arbuscular mycorrhizal fungi has shown correct water intakes and improves plant nutri-

tion by hyphal elongation in a drought stress analysis. Besides, enhanced water status will con-

tribute to increased root and hydraulic conductivity. Arbuscular mycorrhizal fungi

perseverance to regenerate a linked network after facing a water deficit stress, particularly

anastomosis to the disrupted mycelium [76, 77].

Silicon, notably water deficits, has shown positive results on agriculture to mitigate plant-

inherent abiotic tensions. This is because of its polymerization in the cell walls of roots, stems

and leaves after absorption and accumulation, which creates a double layer of silica [78, 79].

Thus, an enzyme similar to plant protection mechanisms improves the cell walls’ strength and

steepness, decreases perspiration, and increases peroxidase activity. Under field conditions, Si

facilitated greater dehydration tolerance and turgor loss by preserving the water content in

cells and increasing photosynthesis production [80, 81]. The mechanism of abiotic stress toler-

ance in Si influenced several researchers investigated plants. Silicon’s usage increases plant

resistance to water deficits. Spatial benefits to dry plants may be attributed, in part, to its posi-

tive impact on the water state and photosynthesis of plants. It has been verified that Si also

affects inorganic phosphorus leaf concentration [33, 82]. Proline is an amino acid that avoids

the drought and tension in plants due to salinity [83], retains osmotic changes [84], metabo-

lises antioxidants [85], modulates reactive oxygen species [86], and preserves the cell mem-

brane’s stability [87]. Mauad, Crusciol [88], Raza, Haider [89], however, finding that a proline

concentration is increased in wheat leaves, triggering symptoms alongside the plant and not as

a source of resistance to water stress incorporating silicon decreases proline accumulation. A

lower degree of chlorophyll or unchanged water stress for other animals was recorded depend-

ing on the water deficit and severity.

Similarly, the reduction in proline concentrations induced by AMF suggests that AMF col-

onization mitigated water stress. The impaired production of amino acid proteins was detected

under leaf water stress and measured by a concomitant accumulation of free AA with a

reduced protein concentration. The protein storage allows the plant to sustain the water level

of leaves [90], mitigate the harmful effects of active and reactive oxygen species in severe and

long-term drought [91], and preserve leaves’ water status. In the leaves and roots, water stress

releases antioxidant enzymes. However, this activation was insufficient to protect plants

against ROS, which is well manifested in increasing concentrations of MDA in water-stressed.

The application of AMF and Si to the plants has also increased the antioxidant defense

enzyme’s operation (particularly of SOD) [92, 93]. In stressed plants, however, there is no

direct biochemical connection between Si and antioxidant capacity. Biochemical improvement

of antioxidant resistance pathways was considered a desirable physical result of cell membrane

Si-deposition [32, 94]. Some researchers contend that the implication of Si in plant metabolism

is caused by Si-induced improvements in antioxidant enzyme activity and amounts of non-

enzymatic antioxidant substances in plants subjected to abiotic stress [42, 95].

Conclusions

Brassica juncea L., often known as Indian mustard, is a well-known member of the Brassica-

ceae family of plants. The availability of water is a significant constraint on the cultivation of

this crop. We examined the effects of water shortage on B. juncea plants with and without sili-

con and arbuscular mycorrhizal fungus in 8 different treatments in an open field environment

(RCBD). The plant reaction to stress was measured using peroxidase, superoxide dismutase,

and catalase activities. The best outcomes were obtained from combining Si and AMF under
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normal as well as under stress conditions. With this information a new water saving technol-

ogy for B. juncea may be developed.
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