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Abstract

S-palmitoylation, the covalent attachment of 16-carbon palmitic acids to a cysteine resi-

due via a thioester linkage, is an important reversible lipid modification that plays a regula-

tory role in a variety of physiological and biological processes. As the number of

experimentally identified S-palmitoylated peptides increases, it is imperative to investi-

gate substrate motifs to facilitate the study of protein S-palmitoylation. Based on 710 non-

homologous S-palmitoylation sites obtained from published databases and the literature,

we carried out a bioinformatics investigation of S-palmitoylation sites based on amino

acid composition. Two Sample Logo indicates that positively charged and polar amino

acids surrounding S-palmitoylated sites may be associated with the substrate site speci-

ficity of protein S-palmitoylation. Additionally, maximal dependence decomposition

(MDD) was applied to explore the motif signatures of S-palmitoylation sites by categoriz-

ing a large-scale dataset into subgroups with statistically significant conservation of

amino acids. Single features such as amino acid composition (AAC), amino acid pair com-

position (AAPC), position specific scoring matrix (PSSM), position weight matrix (PWM),

amino acid substitution matrix (BLOSUM62), and accessible surface area (ASA) were

considered, along with the effectiveness of incorporating MDD-identified substrate motifs

into a two-layered prediction model. Evaluation by five-fold cross-validation showed that a

hybrid of AAC and PSSM performs best at discriminating between S-palmitoylation and

non-S-palmitoylation sites, according to the support vector machine (SVM). The two-lay-

ered SVM model integrating MDD-identified substrate motifs performed well, with a sensi-

tivity of 0.79, specificity of 0.80, accuracy of 0.80, and Matthews Correlation Coefficient

(MCC) value of 0.45. Using an independent testing dataset (613 S-palmitoylated and

5412 non-S-palmitoylated sites) obtained from the literature, we demonstrated that the

two-layered SVM model could outperform other prediction tools, yielding a balanced sen-

sitivity and specificity of 0.690 and 0.694, respectively. This two-layered SVM model has
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been implemented as a web-based system (MDD-Palm), which is now freely available at

http://csb.cse.yzu.edu.tw/MDDPalm/.

Introduction

S-palmitoylation (also known as S-acylation) is an important reversible lipid modification of

proteins that involves the covalent attachment of 16-carbon palmitic acid to a cysteine residue

via thioester linkage [1–5]. S-palmitoylation plays a significant role in regulating protein traf-

ficking and protein-protein interaction by modifying the target cysteine residues on proteins

[6–8]. Protein S-palmitoylation is also associated with a variety of physiological and biological

processes including neuronal development, signal transduction, apoptosis, mitosis, etc. [6–9].

Additionally, protein S-palmitoylation plays a regulatory role in various diseases including

Huntington’s disease [10], type 1 diabetes with ZDHHC17 [11], and amyloidosis, alopecia,

and osteoporosis with ZDHHC13 [12]. Although mass spectrometry (MS)-based proteomics

can be used to identify an increasing number of S-palmitoylated peptides [1,3,13,14], the

experimental identification of large-scale S-palmitoylated proteomes is still time-consuming

and labor-intensive. Moreover, owing to the labile nature and low abundance of in vivo S-pal-

mitoylation sites, their detailed characteristics and mechanisms need to be clarified. However,

previous studies have reported that there are no consensus motifs for S-palmitoylation sub-

strate sites [2–4,15]. Therefore, designing an effective method to explore the potential substrate

motifs of protein S-palmitoylation sites is an urgent demand in bioinformatics.

Owing to the biological importance of protein S-palmitoylation, several tools for predicting

protein S-palmitoylation sites have been created in recent years. CSS-Palm, which was devel-

oped by Zhou et al. [16,17], is the first S-palmitoylation site predictor to use a clustering and

scoring strategy based on the BLOSUM62 matrix. The prediction performance of CSS-Palm is

encouraging, with highly positive jackknife validation results (sensitivity 82.16% and specific-

ity 83.17% for cut-off score 2.6). CSS-Palm 4.0 reportedly offers a significant improvement in

performance as compared to the previous version. NBA-Palm, which was designed by Xue

et al. [18], uses the Naive Bayes algorithm to predict palmitoylation sites. Another predictor,

CKSAAP-Palm, was created by Wang et al. [19] based on the Composition of K-Spaced

Amino Acid Pairs (CKSAAP). In addition, Hu et al. [20] developed IFS-Palm, which achieved

significant improvement in predicting S-palmitoylation sites. Shi et al. [21] proposed the

WAP-Palm prediction tool based on a multiple feature extraction method. Recently, a new

prediction tool, PalmPred, was reported by Kumari et al. [22] to yield an accuracy of 91.98%

and a Matthews Correlation Coefficient (MCC) of 0.71%.

The present study focuses on the identification of S-palmitoylation sites with potential sub-

strate motifs. Based on the in silico characterization of substrate sites, sequence-based features

including amino acid composition (AAC), amino acid pair composition (AAPC), position spe-

cific scoring matrix (PSSM), position weight matrix (PWM), amino acid substitution matrix

(BLOSUM62), and accessible surface area (ASA) were selected to discriminate between S-pal-

mitoylation sites and non-S-palmitoylation sites. Additionally, we applied maximal depen-

dence decomposition (MDD) [23] to explore promising consensus motifs for S-palmitoylation

sites. MDD can moderate large-scale S-palmitoylation data into subgroups according to the

maximal dependencies of amino acid composition surrounding the substrate sites of S-palmi-

toylation. Consequently, a support vector machine (SVM) was utilized to build a predictive

model for each subgroup containing MDD-identified substrate motifs. Furthermore, an
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independent testing dataset, which was truly blind to the training dataset, was extracted from

the experimental data of published literature in order to demonstrate the effectiveness of the

proposed models in the evaluation of five-fold cross-validation. To facilitate the study of pro-

tein S-palmitoylation, MDD-identified substrate motifs were employed to implement a web-

based tool called MDD-Palm (http://csb.cse.yzu.edu.tw/MDDPalm/) for identifying S-palmi-

toylation sites and their corresponding motifs.

Material and methods

Construction of training and testing datasets

The experimentally verified S-palmitoylation sites were collected from dbPTM 3.0 [24,25],

which contains 498, 107, 43, and 109 S-palmitoylation sites in human, mouse, rat and other

species, respectively. In addition, based on a literature survey of the PubMed database, a total

of 856 S-palmitoylation sites were manually extracted from two research articles: Yang et al.

[26] identified 427 human proteins with 790 S-palmitoylation sites and Forrester et al. [27]

identified 66 S-palmitoylation sites on 51 human proteins. This study was intended at explor-

ing potential substrate motifs based on the amino acids surrounding the S-palmitoylated cyste-

ines. Thus, a window length of 2n + 1 was utilized to extract sequence fragments centered at

the experimentally verified S-palmitoylation sites; it contained n upstream and n downstream

flanking amino acids. Sequence fragments with a window length of 2n + 1 amino acids cen-

tered at the S-palmitoylated cysteine residue were regarded as the positive training dataset.

Sequence fragments centered at the cysteine residue without the annotation of S-palmitoyla-

tion were regarded as the negative training dataset. Based on a window size of 21 (n = 10), the

training dataset comprised 1294 positive data and 11,646 negative data.

In an attempt to avoid overestimating predictive performance, the CD-HIT program [28]

was employed to remove homologous sequence fragments from the positive and negative data-

sets. CD-HIT is an effective tool for clustering protein sequences based on a specified sequence

similarity value. One sequence was chosen to represent each cluster. Owing to the incomplete

information about experimentally validated S-palmitoylation sites, based on the analysis of

sequence fragments, a negative sequence might sometimes appear identical to a positive

sequence, potentially causing false positive or false negative predictions. Therefore, CD-HIT

was applied again by running cd-hit-2d across the positive and negative training data with

100% sequence identity [29]. If a sequence in the negative set was the same as a sequence in the

positive set, only the sequence in the positive set was reserved, and the sequence in the negative

set was discarded. After filtering out homologous fragments with 50% sequence identity (by

running cd-hit and psi-cd-hit) as shown in Table 1, the combined non-homologous training

dataset comprised 710 positive sequences and 5676 negative sequences.

Based on the binary classification of S-palmitoylation and non-S-palmitoylation sites, the

positive and negative datasets were used to build up a predictive model. Five-fold cross-vali-

dation was then applied to evaluate how well it distinguished between positive and negative

datasets. With the optimization of parameters in the predictive model, however, the predic-

tive performance might be overestimated because of over-fitting of the training dataset [29].

To assess the actual predictive performance of the proposed models, a blind independent test

set was generated. The dataset for independent testing was generated by manually extracting

S-palmitoylated peptides from Gould’s research [30] based on site-specific proteomic map-

ping of cysteine modification. Similar to the training dataset, based on a window size of 21

(n = 10), the independent testing dataset contained 613 positive and 5412 negative sequences

(Table 1).

Characterization and identification of protein S-palmitoylation sites with substrate motifs

PLOS ONE | https://doi.org/10.1371/journal.pone.0179529 June 29, 2017 3 / 19

http://csb.cse.yzu.edu.tw/MDDPalm/
https://doi.org/10.1371/journal.pone.0179529


Investigation and encoding of training features

This study emphasized the investigation of sequence-based features such as amino acid com-

position (AAC), amino acid pair composition (AAPC), position specific scoring matrix

(PSSM), position weight matrix (PWM), amino acid substitution matrix (BLOSUM62), and

accessible surface area (ASA). To create an SVM prediction model, fragment sequences must

be transformed into numeric vectors according to various features. Orthogonal binary coding

is one of the most popular methods of converting amino acids into numeric vectors known as

20D binary code [31]. The number of feature vectors was (2n + 1) × 20 to represent the flank-

ing amino acids surrounding the S-palmitoylation sites. The training dataset contains k vectors

{xi, i = 1, 2 . . ., k} which are corresponding to the k sequence fragments along with a specified

window length. To classify the positive and negative data, a label was applied to each vector to

mark the class of its corresponding protein. For composition of amino acids around the S-pal-

mitoylation sites, the vector xi had 21 elements for AAC and 441 elements for AAPC. Some

rare amino acids and non-existing “X” residues were used to represent less than 21-mer frag-

ment sequences at an N- or C-terminus [32].

The amino acid substitution matrix (BLOSUM62) was built on the alignments of amino

acid sequences with no more than 62% identity between two peptide sequences. Fragmented

sequences with a window length of 21 amino acids can be encoded as numeric vectors based

on the substitution scores of 20 amino acids in BLOSUM62. With reference to the SulfoSite

method [33], the PWM was determined using non-homologous training data. The PWM

describes the frequency of occurrence of amino acids surrounding the S-palmitoylation sites,

and was utilized in encoding the fragment sequences. Each residue of a training dataset was

represented by a matrix of m × w elements, where w is a window size equal to 21, and m repre-

sents 21 elements including 20 types of amino acids and one non-existent signal “X”.

Position Specific Scoring Matrix (PSSM) is an effective sequence feature that has been

widely used for the prediction of subcellular localization, protein secondary structures, and

protein function sites [34–37]. In this work, PSSM profiles were generated by a PSI-BLAST

[38] search against a non-redundant database of S-palmitoylated sequences. The score values

of the PSSM profile represent the multiple sequence alignments of proteins that may have

structures similar to different amino acid compositions. Extracting from the PSSM profile, the

matrix of (2n + 1) × 20 elements had rows centered on the substrate site, where 2n + 1 repre-

sents the window size and 20 is the number of position-specific scores for each type of amino

Table 1. Data resource and statistics of training and independent testing dataset.

Dataset Resource Species Number of S-palmitoylation

sites

(Positive data)

Number of non-S-palmitoylation

sites

(Negative data)

Training data dbPTM 3.0 Human 498 4,671

Mouse 107 1,822

Rat 43 603

Others 109 1,279

Forrester MT et al.

(PMID: 21044946)

Human 66 1,036

Yang W et al.

(PMID: 19801377)

Human 790 8,533

Combined non-homologous

dataset

All 710 5,676

Independent testing

data

Gould et al.

(PMID: 26165157)

Mouse 613 5,412

https://doi.org/10.1371/journal.pone.0179529.t001
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acid. Next, the (2n + 1) × 20 matrix was transformed into a 20 × 20 matrix by summing up the

rows that were associated with the same amino acid type. Then, each element in 20 × 20 matrix

was divided by window length 2n + 1 and normalized using the following formula: 1

1þe� x [39].

The structural features of ASA were investigated based on the accessibility of a side-chain of

amino acids on the surface of a protein that experienced post-translational modification [40].

RVP-Net [41] was used to calculate the ASA value from the protein sequence because of the

lack of most S-palmitoylated protein tertiary structures in PDB [42]. RVP-Net can predict the

real ASA of a residue based on information about the neighborhood using a neural network.

The value of ASA was the percentage of solvent-accessible area of each amino acid on the pro-

tein. The full-length protein sequences were used as input data for RVP-Net to compute the

ASA value of all of the residues. The ASA values of amino acids around the S-palmitoylation

sites were then extracted and normalized to the range 0–1. In addition to the investigation of

single features, hybrid features were formed by combining the best feature with other single

features. Based on the cross-validation performance of each feature, the single feature with the

best performance was incorporated along with other single features to enhance predictive

power. S1 Fig describes the conceptual flowchart for combining the PSSM and BLOSUM62

features for each sequence fragment. Before construction of the SVM classifier, all numeric

data needed to be scaled into values ranging from −1 to +1 to improve prediction

effectiveness.

Detection of substrate motifs by maximal dependence decomposition

Previous studies [1,15] have reported that S-palmitoylation can be catalyzed by palmitoyltrans-

ferases (PATs), which are composed of 23 PAT enzymes defined by the presence of an aspar-

tate-histidine-histidine-cysteine (DHHC) motif. Although DHHC enzymes display substrate

specificity, a substrate can be palmitoylated by one or more enzymes; e.g., huntingtin can be

palmitoylated by DHHC17 and DHHC13 [43] and SNAP-25 by DHHC2, DHHC3, DHHC5,

DHHC15, and DHHC17 [10]. As the number of experimentally identified S-palmitoylation

peptides has increased, the investigation of substrate motifs to facilitate the study of protein S-

palmitoylation is becoming imperative. Although a number of tools for predicting S-palmitoy-

lation sites have been developed, their ability to identify S-palmitoylated sites and their corre-

sponding substrate motifs is limited. Thus, the aim of this study was to explore motif

signatures of protein S-palmitoylation based on the amino acids surrounding substrate sites.

Maximal dependence decomposition (MDD) [44] was utilized to cluster all fragment

sequences into subgroups in order to detect the statistically conserved motifs among large-

scale sequence data. The clustering method was performed using MDDLogo [23], which dem-

onstrated the effectiveness of dividing a group of protein sequences into smaller subgroups

before the computational identification of PTM sites [31,45–55].

As presented in S2 Fig, MDDLogo applies the chi-square test χ2(Ai, Aj) to iteratively evalu-

ate the dependence of the occurrence of amino acids in two positions, Ai and Aj, which are

neighboring to the substrate site. Based on the biochemical properties of amino acids, the 20

amino acids were categorized into 5 groups: the polar, acidic, basic, hydrophobic, and aro-

matic groups (S1 Table). A contingency table describes the frequency of existence of twenty

amino acids in positions Ai and Aj. The chi-square test was defined as:

w2ðAi;AjÞ ¼
X5

m¼1

X5

n¼1

ðXmn � EmnÞ
2

Emn
ð1Þ

where Xmn is the number of sequences that had amino acids of group m in position Ai and

amino acids of group n in position Aj, for each pair (Ai, Aj) with i 6¼ j. Emn was measured
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as
XmR�XCn

X , where XmR = Xm1 + . . .+ Xm5, XCn = X1n + . . .+ X5n and X represents the total number

of sequences. If a strong dependence was discovered (described as a X2 value greater than 34.3,

proportional to a cutoff level of P = 0.01 with 16 degrees of freedom) between two positions, it

followed the description of Burge and Karlin [44]. After the recursive chi-square test,

MDDLogo divides a group of aligned sequences into subsets that capture the most significant

dependencies of positions on each other. When applying MDDLogo, a parameter, i.e., the

maximum cluster size, should be set. If the size of a subgroup is less than the specified value of

maximum cluster size, the subgroup will not be divided any further. MDDLogo will be termi-

nated when all the subgroup sizes are less than the specified value of maximum cluster size

[23].

Construction of predictive model

In this study, we employed a support vector machine to build predictive models for discrimi-

nating S-palmitoylation sites and non-S-palmitoylation sites in a training dataset. Based on a

binary classification, a kernel function transformed the input samples into a higher dimen-

sional space and then found a hyper-plane to discriminate between the two classes with maxi-

mal margin and minimal error. This study employed a public SVM library (LIBSVM) [56] to

implement the predictive model for distinguishing S-palmitoylation sites from non- S-palmi-

toylation sites. The radial basis function (RBF):

KðSi; SjÞ ¼ expð� gkSi � Sjk
2
Þ ð2Þ

was adopted as the kernel function for learning in the SVM classifier. Two supporting factors

that enhance performance are gamma and cost. The RBF kernel is determined by the gamma

parameter, while the cost parameter controls the hyper-plane softness.

In this study, each feature was used to generate a predictive model based on the LIBSVM

library; then, the best feature was selected as the training feature to construct a predictive

model for each MDDLogo-clustered subgroup. As shown in Fig 1, LIBSVM was employed

to generate a first-layered SVM model for each MDDLogo-identified substrate motif. The

negative data for each MDDLogo-clustered subgroup were selected from the negative train-

ing dataset (5676 non-S-palmitoylated sequences) in a ratio of approximately 1:8 (which

approximates the ratio of the number of positive data to the number of negative data,

710:5676). In first layer, each SVM model outputs a probability estimate ranging from 0 to 1

for each prediction. Thus, the probability estimates from each SVM classifier trained

according to a specific motif were adopted to form an input vector for the second-layered

SVM classifier.

Evaluation of predictive performance

To determine the best model, five-fold cross-validation was carried out for models trained

with each different feature in order to evaluate their predictive performances. The training

data were divided into five approximately equal subgroups. The ratio of test and training sets

was 1:4, and the cross-validation process was run five times. The five validation results were

then combined to generate a single estimation. Cross-validation evaluation improves the reli-

ability of evaluation, because it considers all original data, in both the training and testing data

sets, in general, and tests each subset only once [57]. To gauge the effective predictive perfor-

mance of training model, the following measures were used: sensitivity (Sn), specificity (Sp),
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accuracy (Acc) and Matthews Correlation Coefficient (MCC):

Sn ¼
TP

TPþ FN
ð3Þ

Sp ¼
TN

TN þ FP
ð4Þ

Acc ¼
TPþ TN

TPþ FN þ TN þ FP
ð5Þ

MCC ¼
ðTP� TNÞ � ðFN � FPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTN þ FPÞ � ðTPþ FPÞ � ðTN þ FNÞ

p ð6Þ

where TP, TN, FP and FN represent the numbers of true positives, true negatives, false posi-

tives and false negatives, respectively. Sensitivity is the percentage of correct predictions from

positive data (S-palmitoylated cysteines), while specificity represents that from negative data

(non- S-palmitoylated cysteines). Accuracy reflects the overall proportion of correctly pre-

dicted positive data and negative data. For binary classifications, accuracy is sometimes not

useful when the two classes are of very different sizes [32]. Therefore, the MCC is typically

Fig 1. The conceptual diagram of constructing two-layered SVMs based on MDDLogo-identified substrate motifs.

https://doi.org/10.1371/journal.pone.0179529.g001
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considered as a balanced measure, even if the two classes are of very different sizes [58]. The

MCC value ranges from −1 to +1, while the values of other three measures range from 0 to 1.

A coefficient value of +1 represents a perfect prediction, while the values 0 and −1 represent

random and opposite predictions, respectively. A higher positive MCC value indicates a better

prediction for correctly classifying positive and negative data. Moreover, the ROC (Receiver

Operating Characteristic) curves of various models are measured for the comparison of their

predictive performances and stabilities. Finally, after selecting the best predictive model with

the highest MCC in this study, an independent test was carried out on the final model with the

best performance in cross-validation evaluation.

Results and discussion

Investigation of amino acid composition surrounding S-palmitoylation

sites

The frequency of occurrence of 20 amino acids surrounding S-palmitoylation sites was investi-

gated based on 710 fragment sequences with 21-mer window length to explore the potential

consensus motifs. Fig 2A indicates that at S-palmitoylation sites, lysine (K) residue occurs at a

higher frequency, while cysteine (C), glutamic acid (E) and histidine (H) residues have a lower

frequency of occurrence. Additionally, WebLogo [59] was utilized to compute the position-

specific amino acid composition for S-palmitoylation (Fig 2B). However, it is difficult to com-

pare the amino acid composition of S-palmitoylation and non-S-palmitoylation sites at a spe-

cific position. Thus, Two Sample Logo [60] was used to detect differences in position-specific

symbol compositions between the S-palmitoylated and non-S-palmitoylated datasets. Cysteine

was placed in the middle of the fragment sequences, and positions of the flanking amino acids

ranged from −10 to +10. The comparison of 710 S-palmitoylated sites and 5676 non-S-palmi-

toylated sites in Fig 2C indicates that the positively charged amino acids, such as lysine (K) res-

idues, had the highest ratios at positions +4, +7, and +10 (with P< 0.01). It also shows a slight

abundance of polar amino acids such as glycine (G), cysteine (C), and serine (S) at positions

-4, -1, +1, +2, and +9. Position −1 was a special case, exhibiting the highest proportion of the

polar group of residues; namely glycine (G) and cysteine (C). By contrast, the negatively

charged E residue was depleted at positions −7, +1, and +2. This analysis shows that the dis-

tance among amino acid characteristics in a sequence plays a vital role in distinguishing

between S-palmitoylated and non-S-palmitoylated sites.

Selection of the best feature based on five-fold cross-validation

To determine the best feature for discriminating between S-palmitoylation sites and non-S-

palmitoylation sites, SVM models were built using various features, including AA, AAC,

AAPC, PWM, PSSM, BLOSUM62, and ASA. Each predictive model was evaluated based on

four measures—sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews correlation

coefficient (MCC)—using five-fold cross-validation. As shown in Table 2, the SVM model

trained with AAC had the highest MCC value at 0.29, and relatively high sensitivity, specificity,

and accuracy at 0.68, 0.69, and 0.69, respectively. The SVM model trained using AAPC with a

441-dimensional vector yielded a comparable performance, with a sensitivity of 0.67, specific-

ity of 0.68, accuracy of 0.68, and MCC value of 0.26. The SVM model, trained using PSSM

with a 420-dimensional vector, also performed as effectively as the AAPC model. On the other

hand, the accessible surface area (ASA) was found to be the worst feature for the prediction of

S-palmitoylation sites, with a sensitivity of 0.56, specificity of 0.57, accuracy of 0.57, and MCC

of 0.09. Along with the performance evaluation of single features, the AAC feature with the
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best performance was combined with other features in order to obtain better predictive power.

As provided in Table 2, features B62, AAPC, and PSSM were found to combine well with AAC

in terms of the improvement of predictive performance. Overall, the SVM model based on a

hybrid of AAC and PSSM features provided the best predictive performance in Sn, Sp, Acc,

and MCC at 0.72, 0.73, 0.73, and 0.38, respectively. Therefore, the hybrid feature of AAC and

PSSM was selected as the best feature for the construction of predictive models.

Based on the evaluation of five-fold cross-validation, Fig 3 presents the comparison of ROC

curves between the predictive models trained using various features; additionally, the values of

AUC (Area Under the Curve of ROC) are provided in Table 2, which also indicated that the

SVM model trained using a hybrid of AAC and PSSM features could obtain the best prediction

outcome with an AUC value of 0.78. In order to examine the predictive robustness of the

selected SVM model, the four-, six-, eight-, and ten-fold cross validation results also have been

provided in S2, S3, S4 and S5 Tables, respectively. Furthermore, the comparison of ROC

curves based on four-, six-, eight- and ten-fold cross validation are presented in S3, S4, S5 and

S6 Figs, respectively. According to a variety of evaluation criteria, the SVM model trained

Fig 2. Amino acids composition of the S-palmitoylation sites. (A) Comparison of amino acids

composition between positive data (710 S-palmitoylation sites) and negative data (5,676 non-S-palmitoylation

sites). (B) Position-specific amino acids composition surrounding the S-palmitoylation sites based on

frequency plot of WebLogo. (C) The compositional biases of amino acids around S-palmitoylation sites (upper

panel) compared to the non-S-palmitoylation sites (lower panel) based on TwoSampleLogo (p-value < 0.01).

https://doi.org/10.1371/journal.pone.0179529.g002
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using a hybrid of AAC and PSSM features could perform an overall best performance among

various predictive models.

MDD-identified motif signatures for S-palmitoylation sites

In this investigation, MDDLogo was utilized to explore the motif signatures by dividing the

positive training dataset (710 sites) into five subgroups. Each subgroup represents a potential

Table 2. Five-fold cross validation results on single SVM model trained with various features. Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mat-

thews Correlation Coefficient; AUC, area under the curve of ROC.

Training features Sn Sp Acc MCC AUC

20D Binary code (AA) 0.60 0.62 0.62 0.16 0.61

BLOSUM62 (B62) 0.62 0.63 0.63 0.18 0.62

Amino Acid Composition (AAC) 0.68 0.69 0.69 0.29 0.70

Amino Acid Pair Composition (AAPC) 0.67 0.68 0.68 0.26 0.68

Accessible Surface Area (ASA) 0.56 0.57 0.57 0.09 0.58

Position Weight Matrix (PWM) 0.65 0.66 0.66 0.22 0.66

Position-specific scoring matrix (PSSM) 0.67 0.68 0.68 0.26 0.68

AAC + AA 0.68 0.69 0.69 0.29 0.70

AAC + B62 0.67 0.70 0.70 0.31 0.73

AAC + AAPC 0.71 0.71 0.71 0.34 0.76

AAC + ASA 0.66 0.68 0.68 0.24 0.67

AAC + PWM 0.70 0.70 0.70 0.32 0.75

AAC + PSSM 0.72 0.73 0.73 0.38 0.78

https://doi.org/10.1371/journal.pone.0179529.t002

Fig 3. ROC curves of the single SVM models trained using various features based on five-fold cross-

validation.

https://doi.org/10.1371/journal.pone.0179529.g003
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substrate specificity that contains statistically significant dependencies of amino acid composi-

tion in specific positions. Fig 4 provides a tree-like visualization of MDDLogo-clustered sub-

groups with statistically significant motifs for 710 non-homologous S-palmitoylation sites. On

the left subtree, one motif (subgroup Palm1) out of all the MDDLogo-clustered subgroups was

detected based on the occurrence of basic amino acids (K, R, and H) at position +10, with

maximal dependence value. At the same time, the remaining dataset (598 sites) was further

examined for the maximal dependence of occurrence of amino acids at other positions. Sub-

group Palm2 (104 sites) had a similar motif of basic amino acids at position +4. This result was

consistent with a previous study [9]: palmitoylated cysteine is surrounded by basic or hydro-

phobic amino acids. Additionally, subgroups Palm3 (183 sites) and Palm4 (107 sites) had polar

amino acids at positions -1 and +1, respectively. Finally, the remaining 204 positive sequences

resulted in the fifth subgroup (Palm5), which contained a slight conservation of amino acids at

positions -1 and +1.

Effectiveness of incorporating MDD-identified motifs into the

identification of S-palmitoylation sites

In order to evaluate the predictive power of MDDLogo-identified substrate motifs in discrimi-

nating between S-palmitoylation sites and non-S-palmitoylation sites, LIBSVM was utilized to

generate a predictive model for each subgroup based on the best hybrid feature, AAC com-

bined with PSSM. Based on the evaluation of five-fold cross-validation, Fig 5 provides the

comparison of ROC curves between the SVM models trained using all dataset and MDDLogo-

Fig 4. Tree-like view of MDDLogo-identified motif signatures on 710 non-homologous S-

palmitoylated sequences.

https://doi.org/10.1371/journal.pone.0179529.g004
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clustered subgroups. In addition, Table 3 provides the predictive sensitivity, specificity, accu-

racy, and MCC for each subgroup, based on their five-fold cross-validation performances. The

values of ROC are also given in Table 3. It shows that subgroup Palm3 with G/S/T/C/Q/N

motif at position -1 had the highest performance for sensitivity, specificity, accuracy, MCC,

and AUC values at 0.83, 0.84, 0.84, 0.53, and 0.89, respectively. Subgroup Palm1 had predictive

powers of sensitivity, specificity, accuracy, MCC, and AUC of 0.82, 0.83, 0.83, 0.50, and 0.87,

respectively, which is comparable to those of subgroup Palm3. Subgroup Palm5 with a slightly

conserved motif generally showed relatively low performance, with a sensitivity of 0.73, speci-

ficity of 0.73, accuracy of 0.73, MCC of 0.39, and AUC value of 0.79. Overall, the five sub-

groups, containing the conserved motif of amino acids at specific positions, yielded promising

accuracy as well as balanced sensitivity and specificity. In order to incorporate the five motifs

into the identification of S-palmitoylation sites with substrate specificity, the five SVM models

trained from MDDLogo-clustered subgroups were incorporated into a two-layered SVM

model. The values of probability estimated from five SVM models according to a specific motif

signature were combined to form an input vector for the second-layered SVM classifier. As

shown in Table 3, based on an evaluation of five-fold cross-validation, the predictive perfor-

mance of the two-layered SVM model was significantly improved as compared to the single

SVM model trained from all datasets without MDD clustering. The two-layered SVM model

provided sensitivity, specificity, accuracy, MCC, and AUC values of 0.79, 0.80, 0.80, 0.45, and

0.85, respectively. In summary, the two-layered SVM model combining all MDDLogo-identi-

fied motif signatures can be expected to enhance performance, and could be implemented as a

web-based prediction resource.

Independent testing and comparison with existing prediction tools

An independent test set of S-palmitoylation sites in mouse taken from Gould et al. [30] consist-

ing of 613 positive sites and 5412 negative sites was used to further compare the predictive

power of the single SVM model trained using all training data and the two-layered SVM

model trained using the five MDDLogo-identified motifs (S7 Fig). As shown in Table 4, the

Fig 5. ROC curves of the SVM models trained from MDDLogo-identified motifs based on five-fold

cross-validation.

https://doi.org/10.1371/journal.pone.0179529.g005
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single SVM model yielded a sensitivity of 0.584, a specificity of 0.702, an accuracy of 0.690, and

an MCC of 0.184. Meanwhile, the performance of the two-layered SVM model achieved a sen-

sitivity of 0.690, a specificity of 0.694, an accuracy of 0.693, and an MCC of 0.244. To further

demonstrate the effectiveness of our predictive model, the independent test set was utilized to

compare the two-layered SVM model with existing prediction tools. Because several predictors

are not available online, the comparison was carried out using CSS-Palm 4.0 [16,17], NBA-

Palm [18], CKSAAP-Palm [19], WAP-Palm [21], PalmPred [22], and SeqPalm [61] based on

an independent testing dataset. As shown in Table 4, this independent testing indicated that

most of the predictors have relatively high accuracy; however, they provide an unbalanced pre-

diction performance: higher specificity accompanied with lower sensitivity. Overall, the testing

results revealed that our method could provide balanced sensitivity and specificity in the pre-

diction of S-palmitoylation sites. Additionally, the comparison of ROC curves between our

method and other prediction tools were provided in S8 Fig. Without the complete information

of predicted results from other prediction tools, the ROC curves could not be illustrated

completely for several prediction tools. However, the comparison of ROC curves showed that

the proposed method could outperform other prediction methods at a specified level of false

positive rate (1—specificity).

Web-based system for the identification of S-palmitoylation sites

Owing to the time-consuming and labor-intensive process of experimentation, constructing

an effective prediction system can aid in the study of S-palmitoylation sites. Based on cross-val-

idation evaluation and independent testing, the two-layered SVM model combining all

MDDLogo-identified substrate motifs and based on the hybrid features of AAC and PSSM

was used in the construction of a web-based prediction system called MDD-Palm. After users

submit their protein sequences in FASTA format, MDD-Palm returns the predicted results

Table 3. Five-fold cross-validation performance for five SVM models trained from MDDLogo-identified motifs.

Dataset Number of positive data Number of negative data Sn Sp Acc MCC AUC

All data 710 5,676 0.72 0.73 0.73 0.38 0.78

Palm1 112 895 0.82 0.83 0.83 0.50 0.87

Palm2 104 831 0.81 0.81 0.81 0.48 0.86

Palm3 183 1463 0.83 0.84 0.84 0.53 0.89

Palm4 107 856 0.79 0.81 0.81 0.47 0.86

Palm5 204 1631 0.73 0.73 0.73 0.39 0.79

Combined result 710 5676 0.79 0.80 0.80 0.45 0.85

https://doi.org/10.1371/journal.pone.0179529.t003

Table 4. Comparison of independent testing results between our methods and other S-palmitoylation prediction tools.

Methods TP FN TN FP Sn Sp Acc MCC

Single SVM 358 255 3801 1611 0.584 0.702 0.690 0.184

Two-Layered SVM 423 190 3755 1657 0.690 0.694 0.693 0.244

SeqPalm 22 591 5141 271 0.036 0.950 0.857 -0.020

CSKAAP-Palm 43 570 5102 310 0.070 0.943 0.854 0.017

CSS-Palm 4.0 209 404 4817 595 0.341 0.890 0.834 0.205

NBA-Palm 19 594 4673 739 0.031 0.863 0.778 -0.096

WAP-Palm 102 511 4711 701 0.167 0.870 0.798 0.033

PalmPred 169 444 4474 938 0.276 0.827 0.771 0.080

https://doi.org/10.1371/journal.pone.0179529.t004
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containing S-palmitoylation sites, the flanking amino acids, and the corresponding

MDDLogo-identified motifs. Human CD9 antigen (CD9_HUMAN) was utilized to demon-

strate the effectiveness of MDD-Palm. The human CD9 antigen contains nine verified S-pal-

mitoylation sites at Cys-9, Cys-78, Cys-79, Cys-87, Cys-152, Cys-153, Cys-167, Cys-218, and

Cys-219 [62]. As shown in Fig 6, MDD-Palm produced accurate positive predictions at all

of the previously identified S-palmitoylation sites, according to the corresponding motif

signatures.

Conclusion

In this study, we proposed a bioinformatics method for the characterization and identification

of S-palmitoylation sites with substrate site specificity. Two Sample Logo revealed that the

most pronounced feature of S-palmitoylation sites is the enrichment of the positively charged

amino acids (K, R, and H) at specific positions as well as the polar amino acids at positions -1

and +1. According to evaluation by five-fold cross-validation, the SVM model trained with a

hybrid combination of AAC and PSSM features achieved the highest sensitivity, specificity,

accuracy, and MCC. As stated previously, the main purpose of this study was to explore the

substrate motifs of S-palmitoylation sites based on amino acid sequences. Using MDDLogo,

the S-palmitoylated sequences were clustered into five subgroups corresponding with five

motif signatures. The MDDLogo-identified motifs can thus be used to construct a two-layered

SVM model to significantly enhance the predictive performance of the S-palmitoylation site.

An independent testing dataset was used to evaluate the two models: the two-layered SVM

Fig 6. A case study of S-palmitoylation site prediction on human CD9 antigen (CD9_HUMAN).

https://doi.org/10.1371/journal.pone.0179529.g006
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model and single SVM model without MDD. As expected, the two-layered SVM model, which

combined MDDLogo-identified motifs, achieved a better predictive performance. Conse-

quently, this model was employed to build a web-based resource called MDD-Palm to identify

S-palmitoylation sites and their corresponding substrate motifs.
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