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Abstract: In recent years, scientists have found a close correlation between DNA methylation and
aging in epigenetics. With the in-depth research in the field of DNA methylation, researchers have
established a quantitative statistical relationship to predict the individual ages. This work used
human blood tissue samples to study the association between age and DNA methylation. We built
two predictors based on healthy and disease data, respectively. For the health data, we retrieved a
total of 1191 samples from four previous reports. By calculating the Pearson correlation coefficient
between age and DNA methylation values, 111 age-related CpG sites were selected. Gradient
boosting regression was utilized to build the predictive model and obtained the R2 value of 0.86 and
MAD of 3.90 years on testing dataset, which were better than other four regression methods as well
as Horvath’s results. For the disease data, 354 rheumatoid arthritis samples were retrieved from a
previous study. Then, 45 CpG sites were selected to build the predictor and the corresponded MAD
and R2 were 3.11 years and 0.89 on the testing dataset respectively, which showed the robustness
of our predictor. Our results were better than the ones from other four regression methods. Finally,
we also analyzed the twenty-four common CpG sites in both healthy and disease datasets which
illustrated the functional relevance of the selected CpG sites.

Keywords: DNA methylation; CpG sites; gradient boosting regression

1. Introduction

Aging is a natural and irreversible process that occurs throughout a person’s life, and it
is influenced by many factors, such as genetic factors, living environment and diseases [1,2].
It is modified and regulated by a variety of molecular modifications occurred in tissues
or organs, including chemical modifications and changes in DNA levels such as DNA
methylation [3]. In recent years, it is reported that many aging-related performances are
formed in the process of a person’s growth through clinical research [4,5]. DNA methylation
is catalyzed by a family of DNA methyltransferases (Dnmts) that transfer a methyl group
from S-adenyl methionine (SAM) to the fifth carbon of a cytosine residue to form 5mC [6,7].
DNA methylation is one of the earliest and most common modifications for mammalian
genomic DNA. It may exist in all higher organisms and play an important regulatory role
in gene expression, involving many complex biological processes [5,8]. In 1967, Berdvshev
and his team began to explore the relationship between DNA methylation and aging by
studying the hunchback carp in the spawning period [9,10]. Subsequently, Vanyushin,
Wilson, Bocklandt and other scientists studied with animal and human tissue cells and
confirmed that the degree of DNA methylation in different tissues had a certain correlation
with age [11,12]. More recently, different models using the degree of DNA methylation
have been built for age prediction in various tissues [5,13,14].

In forensic science, individual age has always been an important research indicator.
At present, forensic doctors usually use the well-matched models to estimate and predict
the age of the individual by measuring bone morphological indicators [15–17]. However,
sometimes the perpetrators fled after the crime, only leaving sporadic blood, saliva or
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semen, and the bone markers cannot be found. Thus, it is not feasible to use the above
methods to predict age sometimes. Meanwhile, in molecular biology, characteristics such
as the degree of DNA damage, mitochondrial mutations and leukocyte telomere length can
be used to predict age [18]. Except, in fact, these models are not very effective in predicting
ages, and the results are not very satisfactory. Besides, it is not easy to implement on the
technical level. Therefore, it is imperative to find another feasible method to predict age. In
recent years, with the development of epigenetics, researchers have found that there is a
correlation between DNA methylation and aging. With the gradual improvement in DNA
methylation research and more in-depth research in this field, the quantitative statistical
relationship between DNA methylation and different ages was well established according
to the change of DNA methylation with age [19,20].

Based on previous studies, Horvath et al. used the degree of DNA methylation in
various human tissues to predict the actual age of an individual [21]. Horvath et al. selected
7844 samples from different tissues and cell types, and performed an intensive analysis on
relevant experiments and information data to study the correlation between the degree of
DNA methylation and age. Finally, they selected 353 CpG sites common in several different
tissues and identified that DNA methylation levels of these 353 CpG sites were predictive
for estimating human age. Specifically, they used this set of sites to successfully construct
an age predictor across different tissue types, with a mean absolute deviation (MAD) value
of 3.6 years [13,21,22]. Following Horvath’s seminal study, a large number of scientists
began to engage in and contribute to this field. For instance, in 2014, Dr. Yi and his team
used blood samples to predict age with a multiple linear regression, and the MAD was
about 4 years [23]. Zbiec-Piekarska et al. built an age predictor by using human blood CpG
sites with a multiple linear regression model in 2015 [24–27]. Different from their strategies
where linear regression models were used, we adopted a nonlinear regression model called
gradient boosting regression to build the age predictor. Through comparing R2, MAD,
MSE and RMSE (four performance indicators for regression) on training sets and testing
sets, our non-linear age predictor performed better than linear regression models.

2. Materials and Methods
2.1. Data Collection and Processing

We downloaded four datasets from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO). All of these datasets were selected from Illumina
Human Methylation 450 BeadChip. Here are some details about healthy and disease
dataset (Table 1). The healthy datasets contain a total of 1191 healthy individuals and the
disease dataset has a total of 354 rheumatoid arthritis patients.

Table 1. Four healthy and one disease DNA methylation datasets.

Series DNA Origin Platform Author and
Publication Year Disease Number

GSE40279 Blood 450k Zhang K [28] (2012) – 656
GSE42861 Blood 450k Liu Y [29] (2013) – 335
GSE65638 Blood 450k Xu C [30] (2015) – 16
GSE69270 Blood 450k Kananen L [31] (2016) – 184
GSE42861 Blood 450k Liu Y [29] (2013) Rheumatoid arthritis 354

β values of DNA methylation were used in all experiments. For each CpG site the
β value ranged between 0 and 1 indicates the ratio of methylation. Where 1 represents
complete methylation, and 0 represents complete demethylation. The data processing
was following: (1) extract relevant information (including age and the β value) from the
original datasets downloaded from GEO; (2) merge four datasets and impute in the missing
value. For each CpG site if there were ≥30 samples missing, we removed it. Otherwise, we
imputed the missing values with the average of that CpG site.
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2.2. Selection of Age-Related CpG Sites for Healthy Blood and Rheumatoid Arthritis
Disease Dataset

To illustrate the performance of different models, we randomly divided the benchmark
dataset into training and testing in a ratio of 7:3. CpG sites were selected as following:
(1) calculate Pearson correlations between human age and DNA methylation value of each
CpG site in the training; (2) choose the CpG sites whose Pearson correlation was more than
0.6 or less than −0.6. According to Pearson correlation analysis, 111 highly age-related
CpG sites [32,33] were selected (Supplementary S1). The disease data were dealt with the
same scheme as healthy samples. 45 CpG sites were selected with Pearson correlation
absolute values greater than 0.6 (Supplementary S2).

2.3. Operation Algorithm

Based on the idea of boosting algorithm, Friedman came up with the gradient boosting
regression (GBR) algorithm [34]. Nowadays, GBR is widely applied in the field of biology.
It is precisely because GBR can effectively process data with noise and support different
loss function. In addition to this, GBR also provides better accuracy for predicting data,
especially in terms of non-linear data. GBR is a non-parametric supervised machine
learning algorithm, and it approximates the unknown functional mapping from input
explanatory variables to corresponding output variables [35]. The key of GBR is to use
the negative gradient of the loss function in the current model [36]. Besides, we chose the
minimum absolute deviation as the loss function, L(y, f (X)).

L(y, f (X)) =
1
2
|y− f (X)| (1)

where X is the input vectors, y is the output vector, and the regression function is;

∑T
t=1 ft(X) = ∑T

t=1 βth(X; αt) (2)

where T is the number of basic functions, t is the ordinal number (t from 1 to T), βt is
the expansion coefficient, α represents the node branch variable and h(X; αt) is the basis
function with fewer parameters and simple. We utilized the sklearn package in python
and the parameters are as following:

learning_rate = 0.03, n_estimators = 400, subsample = 0.6, min_samples_split = 2,
max_depth = 4, alpha = 0.6, verbose = 0.

2.4. Statistical Measurement

In machine learning, performance indicators are the key to measure the quality of
a predictor. Performance indicators reflect the task requirements. When comparing the
capabilities of different predictors, different performance indicators often lead to different
evaluation results. What kind of model is good, not only depends on algorithms and data
but also task requirements. In this work, we used the common following performance
indicators for regression [20,25]:

R2 = 1− ∑m
i=1(yi− f (xi))

2

∑m
i=1(yi−y)2

MAD = ∑m
i=1|yi−y|

m

MSE = ∑m
i=1(yi−y)2

m

RMSE =

√
∑m

i=1(yi−y)2

m

(3)

where m represents the number of samples, yi is the actual age and y is the predicted age.
The MAD is the mean absolute deviation between the predicted age and the actual age,
MSE is mean square error, RMSE is root mean square error and R2 is correlation coefficient.
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3. Results
3.1. Results of Healthy Blood Tissues

To illustrate the performance of gradient boosting regression, we compare it with
other four common regression models multiple linear regression [37,38], support vector
regression [39], Bayesian ridge regression [40] and lasso regression [41]. On the training,
R2 was 0.97 for gradient boosting regression, with root mean square error (RMSE) and
MAD being 2.46 and 1.40 years, respectively (Figure 1a and Table 2). The RMSE and MAD
were 3.83 and 2.91 years for multiple linear regression (Figure 1b), 5.54 and 4.20 years for
support vector regression (Figure 1c), 3.88 and 2.94 years for Bayesian ridge regression
(Figure 1d), 5.57 and 4.19 years for lasso regression (Figure 1e).
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Figure 1. Comparison results between the actual age and predicted age by five different models on
the training health data. (a) gradient boosting regression, (b) multiple linear regression, (c) support
vector regression, (d) Bayesian ridge regression and (e) lasso regression.

Table 2. Comparison results of our predictor with other four regression models and Horvath’s model
on healthy datasets.

R2 MAD MSE RMSE

Training
Multiple Linear Regression 0.9363 2.9150 14.647 3.8271
Support Vector Regression 0.8667 4.1965 30.636 5.5350
Bayesian Ridge Regression 0.9345 2.9376 15.064 3.8813

Lasso Regression 0.8652 4.1925 30.982 5.5661
Gradient Boosting Regression 0.9737 1.4034 6.0335 2.4563

Testing
Multiple Linear Regression 0.8649 3.8228 30.1042 5.4867
Support Vector Regression 0.8417 4.4448 35.2690 5.9387
Bayesian Ridge Regression 0.8727 3.6679 28.3670 5.3260

Lasso Regression 0.8478 4.3360 33.9035 5.8226
Gradient Boosting Regression 0.8625 3.8988 30.6367 5.5350

Horvath’s model 0.8110 4.9441 41.1128 6.4119
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On the testing dataset, these results were similar to those in training (Table 2). R2

was 0.86 for gradient boosting regression, with RMSE and MAD being 5.54 and 3.90 years,
respectively (Figure 2a). The RMSE and MAD were 5.49 and 2.92 years for multiple linear
regression (Figure 2b), 5.94 and 4.44 years for support vector regression (Figure 2c), 5.33
and 3.67 years for Bayesian ridge regression (Figure 2d) and 5.82 and 4.34 years for lasso
regression (Figure 2e). In this work, we also compared our results with that of Horvath [21]
(hereinafter referred to as Horvath’s), the current state-of-the-art. Horvath’s MAD was
4.9441 and RMSE 6.4119. Our results were better than those ones which showed the
performance and robustness of our predictor on healthy blood tissues.
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Figure 2. Comparison results between the actual age and predicted age by five different models on
the testing healthy data. (a) gradient boosting regression, (b) multiple linear regression, (c) support
vector regression, (d) Bayesian ridge regression and (e) lasso regression.

3.2. Results of Rheumatoid Arthritis Disease

We also retrieved rheumatoid arthritis disease data from GEO. First, we used the
healthy predictor to predict the rheumatoid arthritis data. The RMSE and MAD were
18.69 and 3.28 years, respectively (Table 3). These results and scatter plot (Figure 3) which
samples were near the central straight line could be accepted. However, rheumatoid
arthritis data could have its characters and a specific impact on DNA methylation. As a
result, we recalculated the Pearson correlation and select 45 CpG sites, then retrained the
GBR. On the training, the RMSE and MAD were 1.46 and 0.63 years for gradient boosting
regression (Figure 4a), 3.34 and 2.48 years for multiple linear regression (Figure 4b), 4.40 and
3.44 years for support vector regression (Figure 4c), 3.42 and 2.56 years for Bayesian ridge
regression (Figure 4d) and 4.56 and 3.63 years for lasso regression (Figure 4e). These results
improved greatly (Table 4). Meanwhile, on the testing the RMSE and MAD were 3.90 and
3.11 years for gradient boosting regression (Figure 5a), 4.06 and 3.24 years for multiple
linear regression (Figure 5b), 4.47 and 3.58 years for support vector regression (Figure 5c),
3.82 and 3.06 years for Bayesian ridge regression (Figure 5d) and 4.57 and 3.78 years
for lasso regression (Figure 5e). The RMSE and MAD for gradient boosting regression
improved 14.79 and 0.17, respectively. The performance of the retrained predictor was
better than the former healthy ones on rheumatoid arthritis data.
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Table 3. Performance of the healthy predictor on rheumatoid arthritis dataset.

R2 MAD MSE RMSE

0.870958 3.284863 18.691550 4.323373
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Table 4. Comparison results of our predictor with other four common regression models on rheuma-
toid arthritis dataset.

R2 MAD MSE RMSE

Training
Multiple Linear Regression 0.922834 2.477032 11.16546 3.341476
Support Vector Regression 0.866253 3.439445 19.35249 4.399147
Bayesian Ridge Regression 0.919139 2.564907 11.70018 3.420553

Lasso Regression 0.856411 3.625878 20.77659 4.558135
Gradient Boosting Regression 0.985262 0.625448 2.132504 1.460310

Testing
Multiple Linear Regression 0.886814 3.242406 16.46903 4.058205
Support Vector Regression 0.862663 3.582393 19.98303 4.470239
Bayesian Ridge Regression 0.899453 3.064368 14.62997 3.824914

Lasso Regression 0.856548 3.780038 20.87289 4.568686
Gradient Boosting Regression 0.895673 3.114274 15.18006 3.896159
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Figure 5. Comparison results between the actual age and predicted age by five different models on
the testing rheumatoid arthritis data. (a) gradient boosting regression, (b) multiple linear regression,
(c) support vector regression, (d) Bayesian ridge regression and (e) lasso regression.

3.3. Impact of Disease on Age Prediction

As we all know, some genes are linked to age-related diseases, such as cancer and
Alzheimer’s disease. DNA methylation is not regular in these diseases. Dr. Horvath’s
experiment showed that the predicted age of cancer patients had poor correlation with
the actual age [21]. Park and his team found that the correlation between the degree of
methylation and age of three CpG sites in patients with acute myeloid leukemia disap-
peared [24,42]. There were also studies showing that Alzheimer’s disease had a certain
correlation with some age-related DNA methylation [43,44]. In this work, the impact of dis-
ease on age prediction was mainly reflected in the repeated twenty-four CpG sites (Table 5).
The twenty-four common CpG sites between healthy and disease dataset indicated that
arthritis disease affected DNA methylation and had a correlation with age. However, other
twenty-one new sites have obtained this correlation.
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Table 5. Information about the twenty-four common CpG sites for healthy and rheumatoid arthritis datasets.

CpG Sites
Pearson Correlation

Coefficient in
Healthy Datasets

Pearson Correlation
Coefficient in

Disease Datasets

Physical Position in
GRCh37/hg19

(Chromosome: Position)
Gene Names

cg16867657 0.8715 0.8240 chr6:11044877 ELOVL2
cg22454769 0.7892 0.8107 chr2:106015768 FHL2
cg19283806 −0.7646 −0.7112 chr18:66389420 CCDC102B
cg04875128 0.7412 0.6803 chr15:31775896 OTUD7A
cg10501210 −0.7381 −0.7302 chr1:207997020 -
cg24079702 0.7328 0.6829 chr2:106015772 FHL2
cg06639320 0.7265 0.8027 chr2:106015740 FHL2
cg08097417 0.7019 0.6814 chr7:130419134 KLF14
cg07082267 −0.6933 −0.6650 chr16:85429036 -
cg24724428 0.6788 0.6607 chr6:11044888 ELOVL2
cg09809672 −0.6723 −0.6005 chr1:236557683 -
cg11649376 −0.6667 −0.6361 chr12:81473234 ACSS3
cg23078123 −0.6587 −0.6089 chr1:68577796 GNG12
cg08262002 −0.6525 −0.6530 chr4:16575323 LDB2
cg21572722 0.6503 0.8270 chr6:11044894 ELOVL2
cg18933331 −0.6463 −0.6085 chr1:110186419 -
cg06784991 0.6427 0.6287 chr1:53308769 ZYG11A
cg22736354 0.6370 0.6769 chr6:18122719 NHLRC1
cg01528542 −0.6250 −0.6350 chr12:81468232 -
cg23500537 0.6093 0.7347 chr5:140419820 -
cg06819923 −0.6087 −0.6300 chr16:21214509 ZP2
cg17110586 0.6035 0.6934 chr19:36454623 -
cg00481951 0.6031 0.6107 chr3:187387651 SST
cg03473532 −0.6012 −0.6310 chr7:131008744 MKLN1

3.4. Analysis of Selected Twenty-Four CpG Sites

A total of twenty-four CpG sites in the rheumatoid arthritis disease were identical
to the healthy dataset which may be the reason why disease dataset can also be applied
to healthy predictor and obtained accepted performance. In order to find out the effect
of these twenty-four CpG sites on age, we performed biological analysis on these sites
and visualized them on UCSC genome browser (https://genome.ucsc.edu/, accessed on
20 October 2020). For example, it can be seen from the Figure 6 that cg16867657 was located
in Human Gene ELOVL2. Besides, from the Table 5, we can see that several CpG sites
mainly locate in Human Gene ELOVL2 and FHL2, which are considered as age-related
genes, and play important roles in the process of human aging [42,45–47]. In fact, we
observed that all these 24 CpGs were basically located on the age-related genes, implied
their functional relevance with age.
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4. Discussion

At present, age prediction becomes more and more popular in the field of DNA
methylation. In the last decade, many studies have been conducted in the field, and there
were several age predictors. In 2009, based on human blood sample data, Bekaert et al.
established a quadratic regression model of age predictor, and accuracy of the predictor
reached the high level at that time. Interestingly, they found the accuracy decreased with

https://genome.ucsc.edu/


Genes 2021, 12, 870 9 of 11

age increasing [48]. From 2013 to 2015, Horvath, Yi and Zbiec-Piekarska built linear models
to predict age [21,23,24]. The advantage of linear models was that they were fast and easy
to use. In 2017, Alisch et al. brought in non-linear models and built non-linear age predictor.
Since they only used children dataset (3–17 years old), their model could not be applied to
all age groups. They also found that the DNA methylation did not change at a constant
rate with age in life [49]. Here, we intend to establish an age predictor that uses a nonlinear
model and is suitable for all age groups.

In this work, we selected 111 CpG sites through calculating Pearson correlation in the
healthy datasets. The predictor based on gradient boosting regression has better perfor-
mance than other four models. In the disease dataset, we used a dataset of rheumatoid
arthritis patients with a total of 354 samples. There were twenty-four common CpG sites
between healthy and disease dataset, indicating that age-related diseases may have some
effects on DNA methylation. The performance of new predictor improved greatly with
disease CpG sites which showed rheumatoid disease having its certain correlation with
age-related DNA methylation.

Of course, there were still some limitations in this study. First, the impact of gender on
DNA methylation and age was not considered. In the past, scientists held two very different
perspectives on gender research. Zaghlool SB showed that age-related methylation levels
may differ in gender performance [48]. However, in Bram’s study [24], between men
and women, age-related methylation levels seemed to be similar. Secondly, we did not
consider the effects of environmental factors. Jenkins et al. studied DNA methylation in
male sperm, found that long-term smoking and harsh environments (such as severe cold)
accelerate the aging of gametes, making the predicted age often higher than the actual
age [13,47,49]. Thirdly, we only used blood tissue, did not use data from other organs,
such as skin, lungs and so on. Song et al. found each tissue had a different methylation
pattern [21,50], implied that tissue-specific age predictors might achieve better performance
than the multiple-tissue one. Finally, some age-related diseases and cancers were shown
to accelerate or slow down the degree of DNA methylation [51]. Our disease dataset only
contained one disease, leaving it being less explored whether other diseases affect age. In
future, we will continue the work from the above aspects.

5. Conclusions

Age prediction based on DNA methylation was rapidly evolving in the field of
epigenetics. In this work, we collected four healthy datasets and selected 111 highly
age-associated CpG sites by calculating the Pearson correlation between age and DNA
methylation value of each CpG site. Through comparing with other four regression
algorithms, our proposed GBR was optimal which achieved R2 value of 0.97 and MAD of
1.40 years on training datasets, and R2 of 0.86 and MAD of 3.90 years on testing datasets,
respectively. For the rheumatoid arthritis disease dataset, we identified 45 CpG sites
showing highest Pearson correlations. The MAD and R2 were 0.63 years and 0.98 with
GBR on the training dataset, and 3.11 years and 0.89 on the testing dataset. In addition, the
deep analysis of twenty-four common CpG sites for both healthy and rheumatoid arthritis
disease datasets illustrated the importance of the selected CpG sites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12060870/s1, Supplementary S1: 111 selected CpG sites on the healthy dataset, Supple-
mentary S2: 45 selected CpG sites on the disease dataset.
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