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Abstract 

Background:  There has been huge progress in the open cheminformatics field in both methods and software devel-
opment. Unfortunately, there has been little effort to unite those methods and software into one package. We here 
describe the Open Drug Discovery Toolkit (ODDT), which aims to fulfill the need for comprehensive and open source 
drug discovery software.

Results:  The Open Drug Discovery Toolkit was developed as a free and open source tool for both computer aided 
drug discovery (CADD) developers and researchers. ODDT reimplements many state-of-the-art methods, such as 
machine learning scoring functions (RF-Score and NNScore) and wraps other external software to ease the process of 
developing CADD pipelines. ODDT is an out-of-the-box solution designed to be easily customizable and extensible. 
Therefore, users are strongly encouraged to extend it and develop new methods. We here present three use cases for 
ODDT in common tasks in computer-aided drug discovery.

Conclusion:  Open Drug Discovery Toolkit is released on a permissive 3-clause BSD license for both academic and 
industrial use. ODDT’s source code, additional examples and documentation are available on GitHub (https://github.
com/oddt/oddt).
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Background
Over the past decades, in silico drug discovery has 
become an important element augmenting classical 
medicinal chemistry and high throughput screening. 
Many novel computational chemistry methods were 
developed to aid researchers in discovering promising 
drug candidates. In recent years, much progress has been 
made in areas such as scoring functions, similarity search 
methods and statistical approaches (for review see [1, 
2]). By contrast to computational chemistry, cheminfor-
matics remains a relatively young field that suffers from 
many “early age diseases”, such as lack of standardiza-
tion, particularly regarding data interchangeability and 

manipulation and reproducibility of results. To compli-
cate the situation even more, format implementations 
usually have some additional, non-standard, software-
oriented extensions (PDBQT is one prime example). 
Hardcoding a format into scientific software is also more 
common than using higher level toolkits, such as Open-
Babel [3], RDKit [4], and OpenEye [5].

Some of the most popular and successful methods in 
drug discovery are structure-based. Structure-based 
methods are commonly employed to screen large small-
molecule datasets, such as online databanks or smaller 
sets such as tailored combinatorial chemistry libraries. 
These techniques, from molecular docking to molecular 
mechanics to ensemble docking, employ scoring pro-
cesses that are crucial for decision making. Empirical 
scoring functions use explicit equations based on physi-
cal properties of available ligand-receptor complexes. 
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Knowledge-based scoring functions may additionally or 
exclusively use other types of interaction quantities that 
are parameterized using training set(s) to fit the data 
(for review see: [6, 7]). Currently, much effort is directed 
towards machine learning, which is most helpful in elu-
cidating non-linear and non-trivial correlations in data. 
NNScore [8], Rfscore [9], and SFCscore [10] are among 
the most distinguished examples. However there are only 
a few freely accessible scoring functions and even fewer 
that are fully open source.

Analyzing output data, particularly when working with 
large scale virtual screening, can be a tedious and labor-
demanding task that incorporates human error. Com-
mercial software facilitate output data analysis to some 
extent, but there are also open source/free software solu-
tions, such as VSDMIP [11] or DiSCuS [12], which are 
particularly designed for processing “big data”. However, 
the field is still missing a coherent, open source solu-
tion that will guide the researcher in building a custom 
cheminformatics pipeline, tailored for specific project 
needs. Therefore, we sought to develop a comprehensive 
open source small-molecule discovery platform for both 
researchers designing their own pipelines or developing 
new drugs. To achieve this goal, we have reviewed state-
of-the-art tools and algorithms and united them in one 
coherent toolkit. When the use of open-source tools was 
not possible, the algorithms were reimplemented using 
open source software. This approach will make the in 
silico discovery process more scalable, cost-effective and 
easier to customize. We believe, that making software 
open is especially important to ensure data reproducibil-
ity and to minimize technology costs. Open-source soft-
ware model allows numerous individuals to contribute 
and collaborate, on creating opportunities for novel tools 
and algorithms to be developed.

Implementation
The Open Drug Discovery Toolkit (ODDT) is provided 
as a Python library to the cheminformatics community. 
We have implemented many procedures for common and 
more sophisticated tasks, and below we review in more 
detail the most prominent. We would also like to empha-
size that by making the code freely available through a 
BSD license, we encourage other researchers and soft-
ware developers to implement more modules, functions 
and support of their own software.

Molecule formats
Open Drug Discovery Toolkit is designed to support as 
many formats as possible by extending the use of Cinfony 
[13]. This common API unites different molecular tool-
kits, such as RDKit and OpenBabel, and makes interact-
ing with them more Python-like. All atom information 

collected from underlying toolkits are stored as Numpy 
[14] arrays, which provide both speed and flexibility.

Interactions
The toolkit implements the most popular protein-ligand 
interactions. Directional interactions, such as hydro-
gen bonds and salt bridges, have additional strict or 
crude terms that indicate whether the angle parameters 
are within cutoffs (strict) or only certain distance cri-
teria are met (crude). The complete list of interactions 
implemented in ODDT consists of hydrogen bonds, 
salt bridges, hydrophobic contacts, halogen bonds, pi-
stacking (face-to-face and edge-to-face), pi-cation, pi-
metal and metal coordination. These interactions are 
detected using in-house functions and procedures uti-
lizing Numpy vectorization for increased performance. 
Calculated interactions can be used as further (re)scoring 
terms. Molecular features (e.g., H-acceptors and aromatic 
rings) are stored as a uniform structure, which enables 
easy development of custom binding queries.

Filtering
Filtering small molecules by properties is implemented 
in ODDT. Users can use predefined filters such as RO5 
[15], RO3 [16] and PAINS [17]. It is also possible to apply 
project-specific criteria for MW, LOGP and other param-
eters listed in the toolkit documentation. See Example 1 
in the “Results and discussion” section for more details 
on how to use filtering.

Docking
Merging free/open source docking programs into a 
pipeline can be a frustrating experience for many rea-
sons. Some programs, like Autodock [18] and Autodock 
Vina [19], do not support multiple ligand inputs, where 
some other programs output scores to separate files (e.g., 
GOLD [20]) or even directly print to the console. Addi-
tional effort is required for re-scoring output ligand-
receptor conformations in other software. Every in-silico 
discovery project is flooded with custom procedures and 
scripts to share data between programs. The docking 
stack within ODDT provides an easier path with the 
use of a common docking API. This API allows retriev-
ing output conformations and their scores from various 
widely-used docking programs. The docking stack also 
supports multi-threading virtual screening tasks inde-
pendently of underlying software, helping to utilize all 
available computational resources.

Scoring
Open Drug Discovery Toolkit provides a Python re-
implementation of two machine learning-based func-
tions: NNscore (version 2) and RFscore. The training 
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sets from its original publication were used for the 
RFscore function [9]. For NNScore, neither the train-
ing set nor the training procedure was made available 
by authors, other than a brief description [8]. To bring 
support for NNScore, we used ffnet   [21]. The training 
procedure for NNscore was reimplemented in ODDT 
and should closely reproduce the resulting ensemble 
of neural networks. The training data are stored as csv 
files, which are used to train scoring functions locally. 
After the initial training procedure, the scoring func-
tion objects are stored in pickle files for improved 
performance.

Machine learning scoring functions consist of four 
main building blocks: descriptors, model, training set 
and test set. ODDT provides a workflow for training new 
models, with additional support for custom descriptors 
and custom training and test sets. Such a design allows 
not only the use of the toolkit to reproduce scores (or 
reimplement scoring functions) but also enables the 
researcher to develop their own custom scoring proce-
dures. Finally, if random seeds are defined, the scoring 
function results in ODDT are fully reproducible.

The ability to assess the predictive performance of scor-
ing function (or scoring procedures) is of utmost impor-
tance. ODDT provides various ways to accomplish these 
tasks. One approach may use the area under receiver 
operating characteristics curve (ROC AUC and semi-log 
ROC AUC) and the enrichment factor (EF) at a defined 
percentage. These methods can be applied for every scor-
ing function (and their combination) when training/test 
sets or active/inactive sets are supplied. Two other meth-
ods to test scoring function(s) performance include inter-
nal k-folds and leave one out / leave p out (LOO/LPO) 
cross-validation, both of which are particularly useful to 
detect model overfitting. These methods are available in 
ODDT through the sklearn python package [22].

Statistical methods
Modeling the relationship between chemical structural 
descriptors and compound activities provides insight 
into SAR. Ultimately, such models may predict screening 
outcomes of novel compounds, guiding future discovery 
steps. Because some screening data are linear by their 
nature, simple regressors can be applied to find correla-
tions (e.g., comparative molecular field analysis, CoMFA 
[23]). We implemented two straightforward regressions 
which that are widely used in cheminformatics, both 
in ligand and structure-based methods: multiple linear 
regression and partial least squares regression.

Nonlinear, more complex data are better assessed by 
machine learning models. Two forms of machine learn-
ing models are particularly important in drug discovery: 
(1) regressors for continuous data, such as IC50 values 

or inhibition rates, and (2) classifiers applied to multi-
ple bit-wise features or ligands tagged as active/inactive 
(e.g., NNScore 1.0). ODDT employs sklearn as the main 
machine learning backend because it has a mature API 
and good performance. In some cases when neural net-
works are required, ODDT mimics the sklearn API and 
instead uses ffnet [21]. The current version of our toolkit 
provides machine learning models that are widely used in 
cheminformatics and drug discovery: (1) random forests, 
(2) support vector machines, and (3) artificial neural net-
works (single and multilayer). These models have been 
shown to provide great guidance when assessing protein-
ligand complexes in the development and application of 
various scoring functions [8–10] and in SAR and QSAR 
(e.g., [24, 25]).

Results and discussions
In this section, we provide examples of ODDT usage with 
code snippets. Our aim is to illustrate how one can utilize 
the toolkit for (a) preparing data for an in silico screen-
ing procedure, (b) score and rescore protein-ligand com-
plexes, and (c) assess data quality and performance of 
different computational approaches for elucidating statis-
tical correlations.

Example 1: filtering, docking and re‑scoring workflow
In this code example, the researcher uses ODDT to dock 
a database of ligands with Autodock Vina and rescore the 
results with two independent scoring functions. First, 
he defines how many cores are available for this task (a 
0 value will force all resources to be used). Next, a ligands 
library is loaded and two filtering steps are applied (for 
weight and solubility to be consistent with Lipinski’s 
“Rule of five” [15]. After filtering, the docking engine is 
specified (Autodock Vina) and its parameters can be 
defined (here default values are used, and the docking 
box is centered around a crystal ligand). In this example, 
the docked ligand conformations are written to a file for 
future examination. Two scoring functions are applied 
to the generated ligand-receptor conformations. The re-
scoring results are finally written to a generic csv file for 
further analysis (Figure 1).

Example 2: training and evaluating models for binding 
affinity datasets
In this example, the researcher is using a PDBbind data-
set (ligand-receptor crystal structures along with exper-
imentally-derived binding affinities (log Ki/Kd values) 
[26]. She wishes to train various prediction models on 
these data and then evaluate which model is the best pre-
dictor. (This workflow can also be used as a template to 
test and develop novel scoring functions and create cus-
tom, descriptor-based machine learning models).
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In the first step, affinity values for both sets (training 
and test) are loaded from csv files. Then, all molecules 
and protein pockets (in sdf and pdb formats, accordingly) 
are read from the PDBbind 2007 directory (downloaded 
locally). Based on the csv files, these data are separated 
into training and test sets and close contact descriptors 
are generated (same as in RF-Score).

Then, the researcher trains various different regressor 
model types (random forests, support vector machines, 
neural networks and multiple linear regression). The 
performance of every scoring function is simultaneously 
estimated by computing the correlation coefficient (R) 
between the predicted and target affinities; additionally, a 
2D plot is drawn. To check whether the models are over-
fit, 10-fold cross validation is performed on the joined 
test and training sets to derive the mean and standard 
deviation of 10 correlation coefficients of the cross vali-
dation sets (Figures 2, 3).

Example 3: training classifiers to distinguish active 
from inactive compounds based on DUD‑E
This code snippet illustrates how to determine which 
fingerprint descriptor is the most suitable for describing 
active compounds for the AMPC protein by using DUD-
E’s subset of actives, inactives and decoys. The random 
forest classifier model is trained using various finger-
prints implemented both in RDKit and OpenBabel.

Firstly, molecules for actives, inactives, decoys and 
marginal actives (treated as inactives for training) are 
read from SMILES files. Next, a wide range of finger-
prints is built for all molecules: OpenBabel: fp1, fp2, 
MACCS; RDKit: rdkit (default), morgan, layered.

Secondly, a random forest classifier model is fit 
on all computed fingerprints, and the quality of the 
trained model is assessed by a correlation coefficient 
(R). Additionally, trained models are cross-validated 

from oddt.virtualscreening import virtualscreening as vs
# Initiate virtual screening pipeline using 8 CPUs
pipeline = vs(n_cpu=8)
# Load ligands from a mol2 file
pipeline.load_ligands('mol2', 'ampc/actives_final.mol2.gz')
# Filter ligands by weight and solubility
pipeline.apply_filter('150 < mol.molwt < 350')
pipeline.apply_filter('0 < mol.logp < 5')
# Dock entire library to receptor, autocenter docking box on  ligand
pipeline.dock('autodock_vina', 'ampc/receptor.pdbqt', 'ampc/crystal_ligand.mol2')
# Write docked ligands conformations to a file (including scores)
pipeline.write('mol2', 'ampc_docked.mol2', overwrite=True, opt={'c':None})
# Rescore docking results using RFscore NNscore
pipeline.score(function='rfscore', protein='ampc/receptor.pdbqt')
pipeline.score(function='nnscore', protein='ampc/receptor.pdbqt')
# Write computed scores to csv

ampc

Figure 1  Code snippet illustrating ligand filtering, the docking procedure using the Autodock Vina engine, and rescoring with two machine learn-
ing functions: NNScore and RFscore.

Figure 2  Workflow chart that illustrates how to select the best 
model for predicting compound activities based on the RF-Score 
descriptor. At each node there are methods/functions responsible 
for each calculation. Underlying code for this workflow is available in 
Additional file 1: (Snippet_2.ipnb).
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to examine overfitting. From such a short analysis, one 
can conclude that in the presented case, morgan fin-
gerprints yields the best results (R2 =  0.99) in classi-
fying active molecules in the benchmarking sets taken 
from DUD-E (Figure 4).

Conclusion
In this article, we introduce an out-of-the-box solution 
for building in-silico screening and data elucidation pipe-
lines. The solution is flexible and provides a selection of 
useful tools, some of which are implemented for the first 
time. The three workflows illustrated in this paper dem-
onstrate how one can use the toolkit to quickly prepare, 
filter, and screen data and apply various statistical meth-
ods to elucidate relationships.

Availability and requirements
ODDT (Open Drug Discovery Toolkit) is available at 
https://github.com/oddt/oddt

Operating system(s): platform independent
Programming language: Python
Other requirements:

•  • at least one of the toolkits:

•	 OpenBabel (2.3.2+),
•	 RDKit (2012.03)

Figure 3  2D plots presenting the predicted and target affinities produced by specific models.

Figure 4  Workflow to assess the performance of using specific 
fingerprints for distinguishing actives from a library of substances. 
At each node there are methods/functions responsible for each 
calculation. The code for this workflow is available in Additional file 1: 
(Snippet_3.ipnb).

https://github.com/oddt/oddt
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•  • Python (2.7+)
•  • Numpy (1.6.2+)
•  • Scipy (0.10+)
•  • Sklearn (0.11+)
•  • ffnet (0.7.1+), only for neural network functionality.

License: 3-clause BSD,
Any restrictions to use by non-academics: none.

Abbreviations
CADD: computer aided drug discovery; ODDT: Open Drug Discovery Toolkit; 
EF: enrichment factor; ROC: receiver operating characteristic; AUC: area under 
curve; LOO: leave one out; LPO: leave p out; USR: ultra-fast shape recognition; 
SAR: structure-activity relationship.
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