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A multiscale model of the regulation of aquaporin 2 recycling
Christoph Leberecht 1,2✉, Michael Schroeder1 and Dirk Labudde2

The response of cells to their environment is driven by a variety of proteins and messenger molecules. In eukaryotes, their distribution
and location in the cell are regulated by the vesicular transport system. The transport of aquaporin 2 between membrane and storage
region is a crucial part of the water reabsorption in renal principal cells, and its malfunction can lead to Diabetes insipidus. To
understand the regulation of this system, we aggregated pathways and mechanisms from literature and derived three models in a
hypothesis-driven approach. Furthermore, we combined the models to a single system to gain insight into key regulatory mechanisms
of Aquaporin 2 recycling. To achieve this, we developed a multiscale computational framework for the modeling and simulation of
cellular systems. The analysis of the system rationalizes that the compartmentalization of cAMP in renal principal cells is a result of the
protein kinase A signalosome and can only occur if specific cellular components are observed in conjunction. Endocytotic and
exocytotic processes are inherently connected and can be regulated by the same protein kinase A signal.
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INTRODUCTION
Protein kinase A and its regulation by cAMP
cAMP is a ubiquitous second messenger that mediates the
intracellular response to extracellular stimuli. After a signal has
been recognized by G protein-coupled receptors, adenylyl cyclases
(AC) catalyze the conversion of ATP to cAMP. Protein Kinase A
(PKA) is activated by cAMP. PKA was one of the earliest kinases to
be discovered and was extensively studied ever since1–3. Still
today, the mechanism of PKA activation by cAMP and its intricate
specificity is under ongoing investigation4–7. A part of the solution
is the assembly of so-called signalosomes in intact cells8. A-kinase
anchoring proteins (AKAPs) are scaffolds that organize the local
and temporal interaction of proteins involved in a signaling
cascade9. AKAPs are a key component of the cell type-specific
response and occur in many isoforms and tissues10–12. The
dynamic organization of proteins that cooperate in AKAP-based
signaling pathways is a basic requisite for the specific processing of
signals13. It is well known that PKA in its inactive form is a
heterotetramer consisting of two regulatory (PKAR) and two
catalytic (PKAC) subunits. The regulatory subunits inhibit PKAC in
their basal state and dissociate from the catalytic subunits once
two molecules of cAMP bind14. It was uncovered that the
autophosphorylation at serine 144, which reduced the affinity for
the regulatory subunit, happens in the absence of cAMP and can
lead to a positive feedback loop15. The phosphorylated PKAR
subunits are rescued by phosphatases (PP) which can further
modify the response and signal dynamics16,17. Probably the most
idiosyncratic properties of PKA activator cAMP is its varying
diffusion coefficient18 when comparing in vitro and in vivo
experiments19. Phosphodiesterases (PDE) are a key component
when considering the movement and dispersal of cAMP. PDEs are
efficiently able to hydrolyze cAMP to AMP and have been shown to
restrict its distribution to certain regions of the cell20. Nevertheless,
when examining experimental and in silico studies6,21,22 cAMP
diffusion coefficients vary from 5 μm2 s−1 to 780 μm2 s−1, and still,
some models are using PDE concentrations beyond physiological
ranges to restrict cAMP movement accordingly21. Latest research
has unveiled that a combination of phase separation and cAMP

buffering is the root of the phenomenon6,7. The different apparent
diffusion coefficients are the result of frequent binding and
unbinding events of cAMP, such that the fraction of cAMP that is
able to move through the cell is low. Additionally, PDEs are able to
create nanometer-sized domains of reduced cAMP concentrations
that are able to fine-tune the amount of cAMP that is able to bind
to relevant PKAR subunits. Taken together, a localized cAMP signal
is able to affect a specific subpopulation of cAMP effector proteins
depending on the concentration, localization, and composition of
the signalosome.

Aquaporin 2 recycling
In eukaryotic cells, the distribution of molecular components is
managed by the vesicular transport system. Molecular motors
transport proteins and small molecule cargo from storage and
synthesis sites to areas where they are required for their respective
cellular functions23. The cytoskeletal network of microtubule and
actin filaments is a flexible and dynamic scaffolding system that
not only allows for the directed transport but also for regulation
and even interference with signaling cascades24–26. The redis-
tribution of the water-channel protein aquaporin 2 (AQP2)27 from
intracellular storage vesicles to the membrane is a prominent
example of the complexity of the cellular signaling and transport
system. The signaling cascade that triggers the redistribution of
AQP2 is initialized by the antidiuretic hormone, arginine
vasopressin, that binds to the G protein-coupled receptor V2R.
This activation causes the production of cAMP by AC and the
subsequent cascade that leads to active PKA, which is able to
phosphorylate AQP2 at serine 25628. Other phosphorylation sites
of AQP2 are known (serine 261, 264, and 269) and there are
multiple cellular mechanisms involved to archive AQP2 accumula-
tion at its target site: the apical cell membrane29–31. The
importance and interplay of the phosphorylation sites involved
in this pathway are slowly being unraveled and reviewed
elsewhere32,33. We would like to highlight the key components
of this work. Klussmann et al. discovered that AKAPs are required
to translocate AQP2 to the apical membrane34 and laid the
foundation for the subsequent interest of AKAP as focal points for
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signal protein localization8. Known proteins that act as scaffolds in
the AQP2 pathway are AKAP18δ (AKAP-7)11,35, AKAP220 (AKAP-
11)36,37, as well as AKAP-Lbc (AKAP-13)34,38 although their
expression and mode of action seem to be dependent on renal
cell type and location in the kidney39. Recently, STUB1 was also
found to be involved in AQP2 mediating dephosphorylation of
AQP2 at serine 261, leading to a decrease in poly-ubiquitination31.
The scaffolding protein plays a major role in the signaling process,
and the absence or presence of key molecules can make or break
the signaling process. Which proteins and pathways are affected
by a signalosome is vastly dependent on their ability to form
localized groups that are able to stay together throughout the
signaling process, therefore the AKAP should be the starting point
to understanding a signaling cascade. The models build in this
work focus on AKAP18δ and its involvement in the recycling
process. AKAP18δ provides binding sites for phosphodiesterase
type 4D3 (PDE4)40,41, Serine/threonine-protein phosphatase 2B
(PP2B)42, and of course protein kinase A regulatory subunit II
(PKAR)11,35 in renal principal cells. PDE4D3 hydrolyzes cAMP to
AMP and is, therefore, able to control PKA activation and signal
termination. Interestingly, this isoform has an increased catalytic
efficiency after phosphorylation at serine 54 by PKA43. This
configuration allows for a negative feedback loop that was
described in a different setup44 and will be evaluated in this work.
Phosphatase PP2B is able to dephosphorylate AQP2 as well as
PKA42, which allows the protein to influence the phosphorylation
state of both proteins simultaneously. To evaluate the actual
phenotypic effect of the signalosome in the whole-cell context, we
decided to model the effect of the cascade on exo- and
endocytosis systems that regulate the membrane permeability
by the accumulation of AQP2. The fact that both transport
directions are regulated in response to arginine vasopressin is
known through models and experiments45–48. How exactly the
phosphorylation increases the frequency of exocytosis is not fully
understood49,50. It seems certain that an intact actin network is
required for the transport from storage sites to the apical
membrane51,52. However, the actin cortex at the apical membrane
represents a physical barrier and needs to be “softened" for the
vesicle to reach and be incorporated into the membrane51,53.
Clathrin-mediated endocytosis is able to internalize AQP2-positive
vesicles47,54, which are transported on microtubules to storage
compartments via endosomes48,55. AQP2 has become a “model
protein" for understanding exocytic and endocytic processes, as
well as eukaryotic hormone-regulated signaling mechanisms33

(see Fig. 1).

Models of water permeability regulation in renal principal
cells
One of the first models that considered the water permeability of
principal cells was presented by Knepper and Nielsen45. They
considered that the water transporter was in an “active", “inactive",
and “reserve" state, and the transition from one state to another
requires first-order kinetic reactions. The reaction rates are scaled by
the presence of vasopressin and simulated to fit the experimentally
measured trajectories. They concluded that vasopressin and by
proxy cAMP must regulate both the insertion (activation) and the
retrieval (inactivation) of water transporters in order to explain the
measurements. In the spirit of this model, describing the phenotype
of cell permeability, Fröhlich et al. constructed a more detailed
model56. The roles of the vasopressin receptor, ACs, PKA, and AQP2
were evaluated. Ordinary differential equations were used to
simulate mass action kinetics. Different versions of the model were
devised as in silico experiments to assess the importance of the
internalization of the vasopressin receptor and the PDE activity,
amongst others. Nine reactions were used to describe the most
important transitions in the system. They found that either a
negative feedback loop during PDE hydrolysis of cAMP or the
internalization of VR is required to explain the data. Furthermore,
they determined that the parameter for endocytosis had the
highest impact on the AQP2 concentration in the membrane. Both
models considered the whole cell from vasopressin simulation to
AQP2 membrane accumulation, by compromising the mechanistic
details of the individual mechanisms. Other models that inspired
this work are of more mechanistic nature. Buxbaum and Dudai
considered the activation of PKA using two isomorphic cycles57.
One cycle describes the dephosphorylated form of PKAR and the
other describes its phosphorylated version. The addition of cAMP to
the system leads to the dissociation of the holoenzyme and the
accompanying activation of PKAC. Twelve differential equations
were simulated numerically using kinetic parameters from litera-
ture, complemented by estimations from the authors. They could
recreate experimentally observed trajectories by systematically
varying kinetic parameters and evaluating the necessary changes
thoroughly. Multiple models exist that consider different cell types
and mechanisms of cAMP diffusion58. Feinstein et al.59 used the
Virtual Cell framework to simulate the spread of cAMP in cells,
varying multiple physical and biochemical parameters. Diffusion
processes and reactions were solved using a finite volume method
and differential equations. They conclude that the observed
reduction of diffusivity is probably facilitated through high
concentrations of cAMP buffers, changes in cytosolic viscosity,
and structural impediments. Lastly, we would like to highlight the
model of vesicle transport and cytoskeleton by Klann and
colleagues24. In a general agent-based framework, they model
vesicles as well as proteins as agents that are able to move in a 3D
environment. Reactions can occur at the membrane surface, the
cytoplasm, or inside the vesicle using mass action kinetics solved by
a stochastic integration scheme. The resulting vesicle model is able
to reproduce vesicle budding, transport, and fusion events
determined by the vesicle cargo in a multiscale manner. They
acknowledge that the setup is a step towards system-level
understanding through a mechanistic approach, and bridging the
gap from molecular interactions to cellular phenotype is desirable.

Motivation and aim
The response of eukaryotic cells to signaling molecules in adjacent
tissues is a complex interplay of many molecular systems60.
However, the integration of all relevant mechanisms in conjunction
with their location in the cell into a complete signaling cascade is
an intricate undertaking. The modeling process is further compli-
cated by the different scales of time and space. Systems biology is
therefore challenged with the integration of mechanistic details
and rules from different studies61. The modeling of the vesicular

vesicle dynamics PKA signaling

allosteric regulation

cAMP hydrolysis

permeability control

exocytosis

endocytosis

transport

Aquaporin 2
recycling

Fig. 1 Overview of key mechanisms involved in Aquaporin 2
recycling. Macroscopic phenomena are displayed on the left side of
the figure, whereas microscopic phenomena are displayed on the
right. AQP2-positive vesicles are transported from the intracellular
storage region to the apical membrane upon cAMP signal.
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transport system is most often tackled by agent-based
approaches24,62,63 whereas other intracellular transports and
signaling phenomena are approached via continuous models64–66.
Signaling cascades that involve vesicles for intracellular transport
include phenomena of both areas. We investigated biological
phenomena that are involved in the vesicular recycling in general
and in the AQP2 response especially:

● The unique nature of PKA regulation3
● Organization of proteins in signalosomes8 and biological

condensates67
● cAMP compartmentalization and its apparent low diffusivity68
● Coupling of microscopic and macroscopic signal

transduction69

We found that all these different aspects are inherently tied
together and are key elements to understand the PKA/
AQP2 signalosome. In order to address systems that involve both
macroscopic and microscopic changes, a hybrid model similar to
that of Klann and colleagues24 is required. We, therefore,
developed an integrated approach that allows for hypothesis-
driven modeling of complex signaling pathways. Furthermore, we
implemented this approach in a framework that encourages the
definition of rule-based reaction- and behavioral systems. We
build the models sequentially, starting with the PKA signaling
response. Afterwards, the model was extended to include cAMP
diffusion and compartmentalization. Finally, endo- and exocytosis,
as well as intracellular transport were added. After each step, we
evaluated the behavior of each model individually and in

conjunction with the previous results. We reviewed literature
knowledge of this signaling cascade and found qualitative as well
as quantitative building blocks. This allowed us to verify the
applicability and parameters of the individual components.
Furthermore, we were able to deduce cellular behavior in parts
of the model where no literature information could be deter-
mined. This knowledge allows suggesting new experiments where
research can focus to fill in gaps and approaching whole-cell
models in an incremental approach70. The ability to encapsulate
cellular behavior of different scales into independent modules
allowed us to integrate numerous mechanisms and parameters.
We devised the most complete model of the vesicular AQP2
transport system to our knowledge, using data from more than
100 published sources. An overview of the integrated aspects can
be found in Supplementary Figure 1.

RESULTS
Allosteric phosphorylation model
The group of Susan Taylor14,71,72 systematically explored the
mechanisms of PKA activation. New models are already starting to
include and explore this mechanistic knowledge15. We imple-
mented the most recent model for the activation of PKA and
included the subsequent phosphorylation of AQP2 and PDE4 (see
Fig. 2). For a detailed description and biological background of the
model, see the Supplementary Information Section 1. The most
interesting observation in recent years is, that the active subunit of
PKA, PKAC, binds to the regulatory subunit PKAR with a high

Fig. 2 PKA regulation and effect on AQP2 and PDE4 phosphorylation. The network of possible reactions during signal processing as a
response to cAMP. Black arrows indicate preferred and fast reactions, gray arrows show slow but still significant reactions, gray and dotted
arrows are considered negligible in their frequency. The following reactions in each row from top to bottom: PKA and substrate association,
substrate phosphorylation, substrate dissociation, phosphatase and substrate association, and PP2B phosphorylation and release. Substrates
are only displayed once and considered implicitly row and column-wise. PKAC is only released upon binding of a second cAMP to the
regulatory subunit. A negative feedback loop is present, where the released PKAC phosphorylates PDE4, leading to an increased PDE4 activity
which decreases the cAMP concentration. Abbreviations: protein kinase A type II regulatory subunit (PKARII), cAMP binding site A/B at PKARII
(RII:A/B), protein kinase A catalytic subunit (PKAC), A-kinase anchoring protein 18 variant δ (AKAP18δ), Serine/threonine-protein phosphatase
2B (PP2B), aquaporin 2 (AQP2), phosphodiesterase 4D (PDE4D).
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affinity and phosphorylates it. In principal cells, the regulatory
subunit that regulated PKA response at vesicles is PKARIIβ11. The
phosphorylation will prevent the binding of further PKA, but the
PKA that phosphorylated the PKAR is trapped in the bound state
until two molecules of cAMP bind to PKAR. This leads to an
interesting dynamic, where the PKAC/PKAR complex is disbanded,
if enough cAMP is available and needs to be dephosphorylated to
return to its basal state. Since this model does not include ACs, we
modeled a steady cAMP influx to emulate their activation. We
explored the reaction parameter space of this phosphorylation
model, by observing the phosphorylation ratio of AQP2 and the
PKA activity in 5184 different settings for five minutes each.

PKA activation is buffered and underlies a positive feedback
loop. The simulations show, that PKA activity is highly sensitive
to the influence of cAMP (see Fig. 3b). cAMP causes PKAC to be
released from its regulatory subunit, and subsequently, free PKAC
is able to phosphorylate PKA regulatory subunit (PKAR), reducing
its affinity to PKAC71. This positive feedback loop increases the
amount of unbound PKAC. Since PKAR is available in excess73 and
two molecules cAMP are required to release PKAC, PKAR is able to
buffer some cAMP and the amount of unbound PKAC is initially
small. Nevertheless, the buffering of cAMP is not able to
significantly alter the process of PKA activation once enough
cAMP is available. The process might be required to attenuate
volatile cAMP concentration in the cell to inhibit premature
activation of the positive feedback loop.

Hydrolysis of cAMP decreases PKA activation. Phosphorylation of
PDE4 has the possibility to initiate a negative feedback loop by
increasing cAMP hydrolysis43, subsequently reducing the PKA

activation level. In this model and with parameters varying around
physiological conditions, a negative feedback loop could be
observed. PDE4 activation and hydrolysis rate had a big impact on
PKA activity (Fig. 3c), but played a secondary role when
considering AQP2 phosphorylation. Further, PKA activity is heavily
influenced by the cAMP influx and the PKAR binding rate (see Fig.
3b). About 75% of the AQP2 molecules phosphorylated at S256
are sufficient to trigger the departure of the vesicles to the apical
membrane74. Therefore, we used this threshold to evaluate
whether phosphorylation is sufficient for the propagation of the
signal. An influx of 200 nMs−1 cAMP resulted in a sufficient
phosphorylation ratio in all simulations where cAMP binding rate
was 0.07 μM−1 s−1 or greater.

Phosphatase PP2B reverses PKA response. The binding rates of
PKAC and PP2B to AQP2 are key factors for AQP2 phosphorylation
(see Fig. 3a). High binding rate of PKAC and low binding rate of
PP2B lead to an increased AQP2 phosphorylation ratio at similar
PKA activity levels. PKAC is able to phosphorylate PKAR, PDE4 and
AQP2 in this model and additional targets in vivo. The competitive
binding that is possible in this configuration was considered by
using two reactions for binding and phosphorylation, essentially
trapping a small amount of PKAC in each time step. Decreasing
the binding rate of PKAC to AQP2 therefore increases the amount
of PKAC available to phosphorylate other components. The
variation of the relevant binding affinities was unable to produce
an effective difference in PKAC concentration, and has therefore
minor impact on PKA behavior. PP2B is indirectly activated by
Ca2+ via Calmodulin. Since the Calmodulin pathway was not
considered in this model, the parameter variation in PP2B binding
rate is used as a proxy to determine the influence of Ca2+ on the

Fig. 3 Simulation results of PKA and AQP2 phosphorylation. Simulations with different parameter combinations were run for 5minutes and
the resulting phosphorylation ratios and have been measured. Basal phosphorylation (0.46) and threshold AQP2 phosphorylation ratio (0.75)
are shown as gray dashed lines. cAMP influx describes the cAMP concentration entering the system every second produced by adenylyl
cyclases. a High cAMP influx (indicated by color) is a major determinant for phosphorylation. Low PP2B binding rate (increasing from top to
bottom) leads to an increased concentration of PKAC in the simulation and higher phosphorylation rate, whereas a high PKAR-cAMP binding
rate (increasing from left to right) leads to a high phosphorylation rate nearly independent of the cAMP influx. Horizontal lines are drawn in
the background density estimates at 25%, 50%, and 75% quantiles. b cAMP influence factor is calculated by log(cAMP influx ⋅ cAMP binding).
High cAMP influence on the simulation leads to high PKA activation and subsequent AQP2 phosphorylation. Physiological parameters for PKA
activity should be able to reach AQP2 phosphorylation required (0.75), but still be sensitive to shifts in cAMP concentration. c cAMP hydrolysis
mediated through PDE4 significantly influences PKA phosphorylation, depending on the cAMP influx and PKAR-cAMP binding rate.
Abbreviations: protein kinase A regulatory subunit (PKAR), protein kinase A catalytic subunit (PKAC), serine/threonine-protein phosphatase 2B
(PP2B), aquaporin 2 (AQP2), phosphodiesterase 4D (PDE4D).

C. Leberecht et al.

4

npj Systems Biology and Applications (2022)    16 Published in partnership with the Systems Biology Institute



PKA/AQP2 pathway. High PP2B binding rates were able to reduce
AQP2 phosphorylation in some models, but high cAMP influx was
able to override this effect for nearly all setups (see Fig. 3a).
We demonstrate that the model is able to represent multiple

aspects of PKA activation. The excess of PKAR and two cAMP
binding sites prevent premature activation. An initial positive
feedback loop wherein PKAR phosphorylation reduces PKAC
binding leads to a switch-like activation of all phosphorylation
targets of PKA. The subsequent negative feedback loop involving
PDE4 is able to effectively reduce cAMP concentration and PKA
activation. The simulations were performed without spatial compo-
nents that could prevent cAMP from reaching its destination. In the
next models, we wanted to investigate, how cAMP compartmenta-
lization influences the PKA and AQP2 phosphorylation.

cAMP compartmentalization in the vesicle storage region
One of the most well known second messengers, cAMP is
compartmentalized frequently in signaling pathways2,75,76. For this
to occur, various chemical and physical prerequisites have to be
met59. The phenomena that influence the compartmentalization
of cAMP can be condensed to three major factors: the hydrolysis
of cAMP by PDE, the apparent low diffusivity of the cytoplasm
in vivo, and transient or permanent chemical interactions21,58,76,77.
We modeled and assessed these factors by a variation of kinetic
parameters and environmental setup. The reduced diffusivity of
cAMP molecules in the cytoplasm can be caused by multiple
factors, which we refer to as cytoplasmic permeability or
permeability for short. To model this, a base diffusivity of cAMP
of 32 μm2 s−122 is used and scaled in certain regions of the cellular
model with the permeability coefficient. Further, the influence of
macroscopic objects that block access to the areas where PKA was
assessed (see Fig. 4). The hydrolysis of cAMP was explicitly
modeled and binding affinities to all relevant components were
systematically explored. The detailed model setups and parameter
variations are listed in Supplementary Information Section 2. To
evaluate the importance of cAMP for the actual regulation of the
AQP2 pathway, both, the developing cAMP gradient and the
resulting PKA activity need to be considered.

cAMP compartmentalization only develops in regions with reduced
permeability. The most important factor for the emergence of
gradients is permeability (see Fig. 4b). It is possible to observe
compartmentalization effects in all simulations. Differences on the
scale of 10-fold reduction as suggested by Iancu and colleagues78

are only obtained with low permeability and high cAMP hydrolysis
rates. Simulations without any obstacles and full permeability
were unable to attain a significant cAMP gradient, even when
considering highly potent PDE and buffering (see Fig. 4c). With
high permeability, the whole system is affected by the cAMP
hydrolysis, resulting in a nearly uniform distribution across
compartments. Others have also observed these effects in
experiments and simulations in neonatal cardiac myocytes21,79,
dendrites of neurons77,80, and other cell types59,81. Stephan and
colleagues observed cAMP compartmentalization in renal princi-
pal cells82. Since cAMP is produced at the basolateral membrane
and vesicles are stored close to the apical membrane, cAMP needs
to travel through the cytoplasm. It seems feasible that a locally
reduced cAMP concentration is required to prevent premature
activation of PKA as a response to the basal cAMP concentration19.
After the cellular concentration of cAMP increases due to
activation by vasopressin, the actual response pathway is
triggered. The required components of the signalosome are all
coupled to AKAP1841,42.

Buffering effects of AKAP bound PKAR play a minor role in
compartmentalization. Buffering was proposed to have an effect
on cAMP compartmentalization. cAMP buffering is the capacity of

proteins and other cAMP binding molecules to temporarily or
permanently fixate cAMP rendering it unavailable in the pool of
free cAMP. In this setup, buffering is mostly performed by PKAR
subunits. Since PKAR is available in excess, it is able to bind a
significant amount of cAMP (twice the concentration of PKAR in
the system)73. PDE4 buffers a negligible amount just before
catalysis. As discussed in the phosphorylation model, buffering is
able to create short-term reduction of the cAMP and therefore
fine-tune and stabilize small fluctuations in the sink. However,
binding to PKAR is also required to activate PKAC. Therefore, cAMP
buffering at PKAR can not be viewed as a means to generate
cAMP gradients that result in a specialized response. PKAR and
PDE4 are only a part of the possible binding partners of cAMP. It
would be interesting to analyze the specific and unspecific
binding of cAMP to gain more insight as to how unspecific
buffering contributes to compartmentalization.

The creation of cAMP sinks is a delicate balance between multiple
factors. PDE4 degrades cAMP in the cell. PDE4 in the PKA
signalosome can be activated by PKA, which increases its cAMP
hydrolysis rate43. A high hydrolysis rate leads to lower cAMP
concentrations close to the vesicles. The creation of cAMP sinks is
a delicate balance between the amount of cAMP that is produced,
the turnover rate of PDE, and the reduced access of cAMP to
relevant regions of the cell (see Fig. 4c). Physiologically, increasing
the cAMP influx seems inefficient, since large amounts of energy
would be required to produce cAMP, only to degrade it moments
later. The amount of PDE4 required to decrease cAMP influx
without diffusive restriction would far exceed physiological
ranges21. This can be confirmed by our simulations. The cAMP
influx is not sufficient to compete with the degradation by PDE4
for permeabilities of 0.1 or higher. A high diffusive restriction in
the vesicle area is an elegant solution to compromise both factors.
Fewer cAMP molecules reach the vesicles and whenever the influx
exceeds the degradation capacity of PDE, it results in activation of
PKA. Other factors gain influence, if the permeability is 0.1 or less.
We used the phosphorylation ratio of AQP2 to determine, under
which conditions, cAMP compartmentalization is able to influence
signaling. We found that phosphorylation levels of AQP2 surpass
the 75% threshold, if the cAMP hydrolysis rate is low enough and
cAMP influx is sufficiently high (see Fig. 4d).
In conclusion, the prime factor to create effective cAMP

compartmentalization was the permeability of the vesicular
storage. Hydrolysis of cAMP by PDE4 is able to fine-tune the
concentration of cAMP and regulate the signaling response. The
explicit buffering modeled in this study did not contribute
significantly to sustainable compartmentalization.

Clathrin-mediated endocytosis model
In the basal state of the cell, vesicles are located in the storage
region until they are transported to the membrane for fusion. New
vesicles are created at the apical membrane via clathrin-mediated
endocytosis, depending on SRC phosphorylation54,83. A constantly
shifting imbalance of exocytosis and endocytosis is the major
driver behind the water reabsorption of principal cells in the
kidney. An increased endocytosis shifts the majority of AQP2 to
the storage region, whereas increased exocytosis leads to high
AQP2 concentrations in the apical membrane. The increase in
exocytosis is mediated by the pathways we explored in the
previous models. The frequency and regulation of endocytosis is
the focal point of the endocytosis model.

Endocytosis is mediated by PKA activation and AQP2 concentration.
Endocytotic pits, the precursors of clathrin-coated vesicles,
emerge spontaneously on the apical membrane surface and the
maturation from pit to vesicle is correlated to key cargo
molecules84. We determined the rate of endocytotic pit formation
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as well as the cargo collection speed, from the approximate
number of AQP2 molecules per vesicle85 and parameter variation.
Furthermore, we implemented a regulation mechanism involving
Non-receptor tyrosine kinase Src (SRC) to model the AQP2
accumulation observed in active cells83. The model to evaluate
the parameters for this process imitates an apical membrane
section with a surface of 1 μm2 that contains the expected
molecules after cAMP stimulation. Knowledge from the phosphor-
ylation and compartmentalization models was used to constrain
the parameters of the endocytosis model. The detailed model
setups and parameter variations can be reviewed in Supplemen-
tary Information Section 3.

Pit emergence and cargo addition are coupled parameters. A low
cargo addition rate results in a high number of abortive pits, since
the threshold for successful maturation, cannot be reached in time
(see Fig. 5a). Furthermore, high pit formation rates lead to a high
number of abortive pits (see Fig. 5b). There is an upper threshold
to the number of productive vesicles that are able to form,
imposed by the total number of AQP2 in the membrane. After a
significant amount of cargo has been transferred to vesicles, no
more productive pits are able to develop. If many pits form in
parallel, the available cargo molecules are distributed across all
pits in the membrane. Hence, not enough cargo can be
accumulated in each pit and the number of productive pits
remains low.

Model of SRC inhibition is able to reduce productive pit count. In
this model, the ratio of inhibited and active SRC was used to scale
the cargo accumulation rate, such that inhibited SRC leads to an
increase in abortive pits. The inhibition of SRC is mediated by
phosphorylation of tyrosine 527, which is performed by activated
C-terminal SRC kinase (CSK)86. CSK itself can be activated by PKA
via phosphorylation of Serine 36487. Therefore, activation of PKA
leads to an inactivation of SRC and subsequently to AQP2
retention in the apical membrane. The influence of SRC
phosphorylation can be seen in Fig. 5c. The decrease in effective
cargo collection rate resulting from SRC phosphorylation is able to
qualitatively reproduce the observations made by Cheung et al.83.
A high cAMP influx rate is associated with fewer productive pits.
Inversely, a high number of productive pits can be observed in
systems with a low cAMP influx, as a result of inactive PKA and
dephosphorylated SRC.

Full recycling model
For the recycling model, we use the previous sub-models to set up
a spatiotemporal model of the vesicular recycling system of renal
principal cells. The model represents a subsection of the cell that
includes a vesicular storage region as well as the apical cell
membrane. The processes and reactions implemented in this
model are detailed and visualized in Supplementary Information
Sections 4 and 5.

Fig. 4 cAMP compartmentalization in different environments. Simulation of cAMP diffusion was performed in different environments and
with multiple parameter sets. a Schematic representation of restricted environmental setups with and without barriers around a vesicle
storage region. b cAMP gradient over time, depending on the number of passages (dashed lines) and cAMP influx (color). Simulations without
permeability reduction (decrease in diffusivity) are unable to maintain effective gradients of 100 nM or more. c Influence of PDE4D hydrolysis
rate and a number of passages on concentration in different compartments after five minutes of simulation. Circle size indicates cAMP influx,
whereas color shows permeability. Only the combination of diffusive restriction and low permeability was able to create significant differences
in concentration, indicated by circles far away from the dashed lines. d Shown is the AQP2 phosphorylation ratio and PKA activity
development during simulation starting from basal value. After an initial increase, a negative feedback loop first slows and subsequently
decreases phosphorylation rates. High PDE4 hydrolysis rate (increasing from top to bottom) leads to lower cAMP concentration in the vesicle
region, leading to lower activity. High cAMP influx (yellow lines) allows overcoming the phosphorylation threshold of 0.75. Abbreviations:
protein kinase A (PKA), aquaporin 2 (AQP2), phosphodiesterase 4D (PDE4D).
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As our previous models have shown, diffusion-restricted regions
are required to achieve cAMP compartmentalization. Therefore,
two regions are defined that reduce the diffusivity of cAMP (see
Fig. 6a). Agent-based modeling is used to simulate the dynamic
behavior of vesicles. Two exemplary setups are used to evaluate
the behavior shown by the model: activation and recycling. The
first activation model exhibits behavior close to that of natural
principal cells. In the recycling model, SRC and CSK depho-
sphorylation have been increased, which allows for observing
exocytosis as well as endocytosis in action.
Both models exhibit a distinct increase in exocytosis. Vesicles

are able to move along actin filaments to the apical region of the
cell whenever the phosphorylation threshold is reached. Once the
vesicle is in proximity to the apical membrane, fusion com-
mences88. The initiation of this cascade is regulated by PKA, as
demonstrated in previous results. The discrete increases in
permeability (see Fig. 6b) are the result of individual vesicle
fusion events. cAMP produced by ACs is stimulated by cAMP influx
at nodes indicated in Fig. 6a. In both models, cAMP is created at
400 nMs−1 for each of the four cAMP influx grid points for the first
5 minutes and at 200 nMs−1 up until 15 minutes. For the rest of
the simulation, a basal cAMP influx of 50 nMs−1 is assumed.
Initially, cAMP concentration in the cytoplasm and at the apical
membrane increase steadily (see Fig. 6c), and the amount of active
PKA rises in conjunction. cAMP in the storage region fluctuates
significantly, driven by movement and departure of vesicles. After
an initial decrease where cAMP binds to PKAR and PDE4 in large
amounts, the average cAMP concentration increases slowly. In this
model, the access to the vesicular storage region is decreased by
membranes, whereas the apical membrane is more exposed. The
resulting effect is an effectively decreased cAMP hydrolysis
whenever a major part of the PDE4 concentration is in the
storage region. Less cAMP is able to reach PDE4 and fewer cAMP
production is required to keep basal cAMP levels stable. Vice
versa, the exposure of PDE4 to cAMP is increased whenever
vesicles at the apical membrane, decreasing the cellular cAMP
stores faster. This mechanism increases the effectiveness of the
negative PDE4 feedback loop already present in the initial
phosphorylation model and was not explicitly implemented in

the model. This is further underlined by the quick deactivation of
PKA in the apical membrane, even with significantly increased
cAMP concentration (see Fig. 6d).
In the recycling model, PKA and SRC phosphorylation rise

similarly as in the activation model. The increased CSK and SRC
dephosphorylation lead to a quick reversal of SRC activity. The
increased concentration of AQP2 in the membrane, as well as the
reactivation of SRC, lead to an increased endocytosis rate. Vesicles
are then transported to the storage region using microtubule-
based transport48. In the activation model with slower depho-
sphorylation rates, endocytotic events only produce aborted pits
and the concentration of AQP2 in the membrane stays constant.

Increase in exocytosis and decrease in endocytosis are entwined.
cAMP influences not only the exocytosis of AQP2-positive vesicles,
but also their endocytosis. In the basal state of the cell, the
majority of AQP2 is kept in storage compartments in the center of
the cell. A two-pronged approach ensures that the effort of
transportation is effectively utilized. The maturation of endocytotic
pits is reliant on the cargo concentration in endocytotic pits,
hence an increase in AQP2 in the membrane leads to an increase
in endocytotic events. The regulation mechanism in place is
modeled by SRC inhibition. The actual quantitative influence of
SRC to inhibit pit maturation is speculative. It would be interesting
to investigate the actual kinetic influence SRC has on pit
maturation and/or vesicle scission experimentally. Other mechan-
isms have been identified that can contribute to the decrease in
internalization89, therefore it is unlikely that SRC is the only
determinant for the inhibition of endocytosis.

Molecular condensates can explain localized responses. The
diffusive restriction of cAMP and coherence of all molecular
components are requirements for a regulated and distinct signal
response. The diffusive reduction falls within a regulated margin: if
no reduction is present, cAMP renders PKA always active, even at
basal cAMP levels. Since endocytosis is also reliant on indirect
cAMP-based activation of SRC kinase, the system transitions to a
state where AQP2 concentration in the apical cell membrane is
always high. On the other hand, systems with high restriction are

Fig. 5 Distribution of abortive and productive endocytotic pits. a Lifetime of endocytotic pits across all simulations at varying cargo
addition rates. The first peak indicates abortive pits that did not enter the maturation phase, the second peak indicates pits that matured to
vesicles. b The number of abortive and productive pits after five minutes. High cargo addition rate leads to high number of productive pits.
After a substantial amount of AQP2 molecules are transferred to vesicles, no new productive pits are able to form. The central line represents
the median, lower and upper box boundaries correspond to the first and third quartiles (the 25th and 75th percentiles). The whiskers extend
to the largest/smallest value, no further than 1.5 time the interquartile range. Data beyond the end of the whiskers (outliers) are plotted
individually. c Number of productive pits at varying parameters, colored by average SRC phosphorylation ratio. Low cAMP influx leads to
higher number of productive pits, given a sufficient pit formation rate. Horizontal lines are drawn in the background density estimates at 25%,
50%, and 75% quantiles. High SRC phosphorylation ratio results in fewer productive pits. Abbreviation: non-receptor tyrosine kinase Src (SRC).
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slow to respond to signals, since few cAMP molecules are able to
reach the cAMP storage region at a time, delaying PKA activation.
Furthermore, AQP2 does not remain in the membrane, since
endocytotic events occur frequently. The decrease in diffusive
restriction would therefore be associated with chronically increased
membrane permeability, whereas increased restriction would lead
to polyuria. All components associated with the AQP2 response are
associated with a PKA signalosome. If any of the components would
remain in the storage region or at the apical membrane, they
accumulate and alter the signal response over time.

Deviations between model and phenotype. The original response
of principal cells is mostly measured by the water permeability of
the apical membrane90,91. Therefore, we converted the

concentration of AQP2 to permeability as described in Supple-
mentary Table 15. The majority of the activation happens in the
first minutes. This is consistent with the previously observed mode
of PKA activation, where a positive feedback loop is present. The
measurements of Deen and colleagues91 show that permeability
doubled after 10 mins and tripled after about 30 mins when
compared to the basal rate. We also observe these ratios, but the
measured progression in experiments is closer to a linear gradient.
This derivation may have multiple potential origins, of which we
will address three that seem the most probable to us. The model
describes one storage area and subsection of the cell. Measure-
ments in experimental data were not taken from a single cell, but
from cell culture. Potentially, multiple storage sites that are
triggered at different times can contribute to a more evenly

Fig. 6 AQP2 transport activation and recycling. Two setups of the AQP2 transport full model showcase 40mins of activation (left) in
opposition to recycling (right) when using accelerated SRC and CSK dephosphorylation. a Schematic representation of the environmental
setup. The perinuclear storage region contains AQP2-positive vesicles that are transported to the apical membrane along actin filaments.
Endocytosis is able to form productive pits in the recycling model, leading to vesicles that are transported to the storage region. b Membrane
permeability estimated from AQP2 concentration in the apical membrane. Permeability increases and stays high if endocytosis is suppressed.
c cAMP concentration in different cell regions. cAMP influx decreases during simulation. Free cAMP in the storage region is quickly buffered
and able to active PKA, leading to AQP2 phosphorylation and vesicle departure. d Relative activity levels of selected phosphorylation targets.
PKA shows similar activation behavior in activation and recycling models. Faster reactivation of SRC after inactivation by the PKA/CSK/SRC
cascade recovers ability to produce productive pits. Abbreviations: protein kinase A (PKA), aquaporin 2 (AQP2), non-receptor tyrosine kinase
Src (SRC), C-terminal SRC kinase (CSK).
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distributed permeability increase. Furthermore, we are starting the
simulation with vesicles that contain a uniform number of
molecules. It is probable that the vesicular response is altered
depending on whether the vesicle was recently recycled or in
storage for some time31. Additionally, we did not model all the
aspects that play a role in the vesicular trafficking, for example, the
role of Ca2+, the other phosphorylation sites distinct from S256,
and different AKAPs have an influence on the recycling and alter
the specific response92.

DISCUSSION
We combined differential equations and agent-based modeling to
gain insight into the vesicular recycling system of renal principal
cells. Both approaches complement each other by modeling
different aspects of the vesicular system. Especially, the combina-
tion of microscopic and macroscopic aspects of clathrin-mediated
endocytosis requires the combination of chemical reactions and
agent-based modules. Additionally, it was required to work out a
viable model of clathrin-mediated endocytosis, extend existing
models of PKA regulation, and estimate parameters to link the
involved processes.

Modeling and simulation approach
Vesicular transport is a key cellular activity responsible for molecular
traffic between membrane-enclosed compartments and outer
membranes. Vesicles are the cell’s solution to directed transport
that was necessary to reap the benefits of eukaryotic size and
complexity. It is however difficult to consider the interplay between
biochemical reactions and diffusion processes and large membrane-
enclosed compartments. The diameter of intracellular vesicles is
between 30 nm and 100 nm93, on the order of 10 times larger than
typical proteins, and even 100 times larger than small molecules94.
Furthermore, the physicochemical processes occur at different scales
of organization. While vesicles diffuse at 0.13 μm2 s−1 95 the
important second messenger cAMP has a diffusion coefficient of
~32 μm2 s−1 22. In order to integrate the different scales of
organization in a single model, simulation of the different
components has to be addressed with multiscale modeling and
simulation systems. The hybrid model devised in this work allows for
defining agents as well as reactions in a hypothesis-driven approach.
The continuous modules of the model are calculated on a “reservoir"-
like grid using mass-action kinetics. Diffusion of chemical entities
between the reservoirs is possible. Agents such as vesicles and
membranes are added as a second layer to the model. Agents can
also contain reservoirs that are able to exchange information and
react with the nearby underlying grid. Whenever agents move, the
overlapping regions of the agent and grid are calculated and
updated. The numerical error resulting from the calculations is
observed on a per-reaction basis as well as for the whole system. This
allows determining critical reactions that govern the time step size in
an adaptive step width approach. The resulting adaptive system
considers smaller time steps during critical periods of the simulation
and speeds up if numerical errors are negligible. The computational
cost, therefore, scales with the fastest reaction in the system
(requiring the most time steps to compute to a sufficient accuracy).
The computation of one real-time hour of the full recycling model
with a single parameter set requires about 100 hours of run time on a
desktop computer with an 8-core CPU and 16 GB of RAM. Naturally,
the framework presented in this work is not as refined as established
approaches, it is however capable of capturing the diverse aspects of
vesicular transport and signaling.

Insights into the AQP2 recycling model
We categorized the major findings resulting from the models into
the following three groups: support for previous findings, new
insights, and topics that remain to be explored.

Support for previous findings. Our model confirms that PKA
activity can be tightly regulated by a controlled local association
and dissociation of PKAC and PKAR controlled by cAMP as
suggested by Zhang et al.71. We verified that PKA needs to be
tethered to the vesicle and to the other components of the
signalosome for it to have a distinct effect73. Components that are
not bound to the vesicular storage region diffuse into the cell and
render the response unspecific. The PKA signalosome plays a role
in multiple cellular processes, depending on its composition8. In
renal principal cells at least AKAP18, PDE4, PKAR, PKAC, and PP2B
are essential for the cellular response and the formation of
condensates seems an important factor in reducing the perme-
ability of cAMP.
The phosphorylation of PDE4 initiates a negative feedback

loop44 in order to restore basal PKA activity. It is being debated if
the pathway via cAMP and Ca2+96,97 can be triggered indepen-
dently and result in comparable AQP2 distributions83,98,99. We
argue that there must be some degree of overlap between the
responses since PP2B is also regulated by Ca2+ indirectly and that
they modulate the reaction in different complementary ways. The
fact that both secondary messengers are connected is known100.
Nevertheless, two largely uncoupled pathways allow for the
regulation on different timescales and/or use cases.
We confirm, that PDE4 concentrations or affinities would need

to be beyond physiological ranges21,81 also when viewed in
conjunction with the PKA pathway in order to be effective for the
generation of CAMP gradients. It turned out that cytoplasmic
permeability and, as a result, the ability of cAMP to reach PDE in
the PKA signalosome, is the most critical component that allows
for the buildup of cAMP gradients. Nevertheless, no effect in
isolation is able to create CAMP gradients; the interplay of all
effects is required to regulate this phenomenon. The permeability
required to create gradients was nevertheless higher than
expected. While some gradient can be observed for all
permeabilities, effective compartmentalization (on the scale of
10-fold diffusivity reduction) was only consistently obtained for
permeabilities ≤0.01. Effects that lead to a diffusive slowdown can
be the result of the cytoplasmic matrix, cellular crowding, and
weak binding interactions18,101,102. Whether these factors are able
to create another order of magnitude difference in effective
permeability is debatable. A promising explanation comes in the
form of liquid phase-separated compartments, also known as
biological condensates67. Biological condensates have the ability
to reduce diffusion103,104 of the involved components. Molecules
that experience weak and strong binding effects tend to cluster
together and promote phase separation. These binding effects
can be observed for the majority of proteins involved in the
phosphorylation cascade8,41,42,73,105. Our study supports this view,
which challenges the textbook model of local degradation of
cAMP as the major driver of compartmentalization. Furthermore, it
could explain the substantial difference in cAMP required for the
activation of PKA in vivo vs in vitro19.
The regulation of either endocytosis or exocytosis has little

effect on AQP2 accumulation. Both pathways are self-regulating to
an extent, and only the combination of increased exocytosis and
decreased endocytosis is able to initiate a distinct response45.

New insights. The modeling and simulation process unveiled that
PKAR excess decreases substrate specificity106, simply by reducing
the probability of PKAC encountering and engaging with other
substrates, which could contribute to the apparent 10-fold
reduction of the activation constant78. In connection to this, we
also found, that different affinity for PKA phosphorylation targets
PKAR, PDE4, and AQP2 had no significant impact on the signal
response. Using high PP2B activity as a proxy for Calcium
influence indicates that Ca2+ does not significantly alter the
course of the PKA/AQP2 phosphorylation pathway as well. While
the PP2B lowered the basal phosphorylation rate of AQP2, it was
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not able to effectively counteract the PKA response. The buffering
effects of PKAR bound to the AKAP complex are negligible for
long-term gradient generation and only able to attenuate small
fluctuations of cAMP.
All three factors influence the compartmentalization of cAMP

slightly differently (see Fig. 4c): The cAMP hydrolysis rate mainly
affects the cAMP concentration in the vesicle region. The diffusive
reduction maintains the cytoplasmic concentration of cAMP, and
the cAMP influx impacts both cytoplasm and storage compart-
ments. This allows for largely independent control of different
spatially distinct cAMP sinks in the cell by using different variants
and concentrations of the components that are part of the
signalosome. As a result, the combination of components in each
cell type is able to determine the specificity and diversity of
responses. Furthermore, the apparent efficiency of cAMP hydro-
lysis is decreased whenever PDE4 is in the storage region. The
transport of the PKA signalosome in conjunction with the vesicles
exposes PDE4 to the cytoplasm and apical membrane, where
PDE4 is exposed to higher concentrations of free cAMP. This
increases the effectiveness of the negative PKA feedback loop.
This activation of the universal kinase PKA leads to a distinct
response, whereas the downregulation can be regulated by more
specific components such as CSK and SRC.
The cargo addition rate to an endocytotic pit as well as the

emergence of new pits needs to be balanced to support the
formation of productive pits. The cascade of PKA/CSK/SRC
phosphorylation proved to be a suitable model to inhibit AQP2
vesicle endocytosis and subsequent accumulation of AQP2 in the
apical membrane.

Unresolved phenomena. The influence of the Calmodulin path-
way and the concrete role of Ca2+ remain elusive. We speculate,
that cAMP is responsible for the activation of the PKA-based
response and Ca2+ is able to counteract it through PP2B, as well as
trigger it independently. The modeling of Ca2+ would encompass
cAMP producing ACs, that is inhibited by Ca2+107,108, as well as
Calmodulin96,109, and Myosin110. Another pathway involving Short
transient receptor potential channel 3111 is a promising candidate
to explore for apical AQP2 accumulation.
How exactly the apparent low cytoplasmic permeability close to

the vesicle storage region is maintained is not fully understood.
Biological condensates seem to play a major role in creating these
phase separation effects. Very recently, this phenomenon was
found to be critical for PKA regulatory subunit RIα5. Even if in our

setup PKARIIβ was unsuitable to efficiently regulate cAMP
buffering, the different treatment of cAMP diffusion close to
vesicles was necessary and lead to distinct PKA activation.
It is becoming more clear that the isolated observation of

components in vitro can be a bad proxy for their actual behavior
in vivo19. With the concept of biological condensates in mind, the
determination of the individual components' rate constants is not
enough. It is, therefore, crucial to determine the influence of
“signalosome partner proteins" to create reliable models. The
models lead to the conclusion that the phenomena of cAMP
compartmentalization and PKA activation are tightly coupled and
need to be viewed in conjunction.
Even though this model includes major aspects of the AQP2

transport pathway, it is by no means complete. During the
modeling process, we encountered processes that provide
substance for further research: Experimental evidence is required
for the regulation of vesicle maturation during endocytosis in the
context of signaling cascades. How does the cargo concentration
influence the vesicle maturation process52? How do Src83 and
Sipa1l189 contribute to the membrane accumulation of AQP2?
This and other questions can aid the incremental formulation of a
whole-cell model of renal principal cells.

METHODS
The modeling and simulation of cellular spatio-temporal systems involve
five major aspects:

● The microscopic components,
● the distribution of those components,
● the macroscopic components,
● the location of those components, and
● the definition of their behavior.

Although, the actual components and their behavior differ depending
on the system that is to be modeled, the general nature of the
components remains the same throughout all cellular systems. We have
developed a framework that abstracts the notion of microscopic and
macroscopic components and their interactions. This allows the user to
focus on modeling the biological system. The general setup of the
simulation system is depicted in Fig. 7.

Module-based update system
The simulation integrates changes over time that is calculated by independent
components called modules. A module can be either concentration-based,
displacement-based, or qualitative. Concentration-based modules determine

Fig. 7 Components of the simulation. First, the simulation space (1) is tiled into a regular grid, and used for numerical calculation and spatial
indexing. Next, the membrane agents (2) determine the compartments (3) of the simulation. Each cell of the grid is assigned a concentration
of chemical entities. Finally, filaments (4) and vesicles (5) are placed in the simulation. All agents are implementations of abstract agent
types (6).
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changes in concentrations of chemical entities resulting from reactions and
transport processes. Displacement-based modules are used to move agents
inside the cell. Qualitative modules can implement rules and algorithms, for
example deciding whether a vesicle should be attached to a filament or when
and how vesicles fuse with membranes.
The reactions between chemical entities are defined using a rule-based

system. The definition of reactions uses a combination of modification
operations: binding, release, addition, or removal. The modification
operations basically describe which parts of a chemical entity are added
or removed by a reaction. Additionally, criteria can be defined that narrow
the amount and kind of chemical entities that are able to react (see Fig. 8).
A network generation algorithm determines all possible reactions that can
occur with the defined rules and return them to the user for possible
refinement. The result of the network generation is a set of ordinary
differential equations. Each equation represents an elementary chemical
reaction that follows the law of mass action. The behavior of each
compartment is determined by these equations that define the
concentration change of each chemical entity. Additionally, transport
processes use the concentrations of multiple adjacent compartments to
determine a change in concentration112.

Timescale optimization and error estimation
The sum of changes for each entity and compartment is determined by the
sum of reactions that affect a chemical entity. A local numerical error is
calculated on a per-reaction basis. The error is used to decrease or increase
the time step, and therefore determines the trade-off between accuracy
and speed of the simulation. The evaluation on reaction level allows for the
determination of reactions with high numerical error, which in turn allows
for their individual optimization until a stable time step is found. After all
local errors are acceptable, a total numerical error is calculated that
evaluates the change on the chemical entity level.
Displacement-based modules are implemented using a similar

approach. The maximal displacement should be small, since abrupt
compartment changes for vesicles can lead to instability in the numerical
computations. Therefore, the maximal displacement is set to a fraction of
the numerical grid step width. A local displacement per module and a total
displacement per vesicle are calculated. If the displacement is too large,
the time step is decreased, if it is comparably small the time step can be
increased. Quantitative modules are able to implement functions that
evaluate the error of the function and are equally able to request time step
decrease and increase from the simulation.

The modular system in combination with individual error manage-
ment allows for an extensible framework that enables the simulation of
multiscale cellular systems coupling macroscopic and microscopic
environments.

Definition of microscopic components
We use the term chemical entity to refer to chemically distinct species of
molecules (according to Systems Biology Markup Language (SBML)
terminology). Chemical entities are structured objects that are the source
and the result of binding, release, addition, or removal processes
performed by chemical reactions. Chemical entities can be represented
by a graph structure, where the nodes are also chemical entities and edges
are covalent or non-covalent connections between them. The smallest
possible chemical entity is a single node that might represent the
regulatory subunit of PKA or the messenger molecule cAMP. Using a rule-
based definition, chemical entities can be combined to create more
complex ones, a process that provides both: the possible reactions and
their complex reactants.
The simulation system is subdivided into grid points and further into

compartments. The change in concentration dc/dt is determined by
modules, which encapsulate behavior of a certain aspect of the model.
Each reaction and transport process that affects chemical entities is
encapsulated in a single module. Furthermore, the behavior of macro-
scopic agents is determined by displacement-based and qualitative
modules.

Diffusion. The diffusion between compartments is a discretized form of
Fick’s Second Law of Diffusion. In the previous work112, diffusion was
discretized for uniform grid and time steps. Here, the module is adapted to
take into account non-uniform reaction spaces and adjustable time steps.
Additionally, diffusivity should be reducible in a subregion of the model.
The first of Fick’s laws describe the flow J proportional and opposite to a

concentration gradient ∂c/∂x.

J ¼ �D
∂c
∂x

(1)

The diffusion coefficient D describes the intensity of the dispersion, due to
Brownian motion. The second law describes the spatial and temporal
development of a two-dimensional diffusive system,

∂c
∂t

¼ D
∂2c
∂x2

þ ∂2c
∂y2

� �
¼ D∇2c; x 2 ð0; LxÞ; y 2 ð0; LyÞ; t 2 ð0; TÞ (2)

Fig. 8 Definition of reaction rules. Reactions can be specified by a description of the reaction process. Basic reactors are concatenated to
chains that are processed during the reaction network generation. Additionally, conditions allow for further specification of the reaction
process. The network generation process results in all reactions that can occur in the system.
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where c is the concentration of a chemical entity at a point (x, y) and time t.
Let

cðx; y; 0Þ ¼ Iðx; yÞ (3)

be the initial-value problem, where the concentration c(x, y, 0) is defined by
a prescribed function I(x, y). The domain of the system Ω is of rectangular
shape with the following boundary conditions:

Jð0; 0; tÞ ¼ JðLx ; 0; tÞ ¼ Jð0; Ly ; tÞ ¼ JðLx ; LY ; tÞ ¼ 0 8t > 0: (4)

The domain is discretized on a uniform Cartesian grid with step width
Δs. The set of all grid points is given by

Ω :¼ fðx; yÞ 2 Ω : x=Δs 2 Z and y=Δs 2 Zg (5)

Let Γ⊂Ω be the set of non-diffusible git points, such that J(x, y, t)= 0 ∀ (x,
y)∈ Γ. For each grid point, a restriction coefficient ri,j is defined, which
describes the attenuated movement of chemical entities through the
region described by the grid point.
Using a forward difference in time and central difference in space

Equation (2) is approximated using a five-point stencil:

ðx � Δs; yÞ; ðx þ Δs; yÞ; ðx; y � ΔsÞ; ðx; y þ ΔsÞ 2 Ω: (6)

Moreover, cni;j denotes a mesh function that estimates c(xi, yj, tn), such that
the discretized function can be written as,

cnþ1
i;j � cni;j

Δt
:¼ D

Δs2
ri�Δs;j � ðcni�Δs;j � cni;jÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

left

þ riþΔs;j � ðcniþΔs;j � cni;jÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
right

0
BBB@

þ ri;j�Δs � ðcni;j�Δs � cni;jÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
up

þ ri;jþΔs � ðcni;jþΔs � cni;jÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
down

1
CCCA

(7)

and finally

cnþ1
i;j ¼ cni;j þ

DΔt
Δs2

f ðtn; cni;jÞ (8)

where f ðtn; cni;jÞ denotes the operator that estimates the central difference
at cni;j in space and time tn.

Reaction kinetics. The dynamic behavior of chemical entities in the system
is further determined by chemical reactions. The equations are applied at
every grid point, depending on the current concentrations at every time
step. The ordinary differential equations are derived from the law of mass
action. The law of mass action describes, that the rate of the reaction is
directly proportional to the product of the activities of the substrates. The
reaction order is defined by the number of concentrations that influence
the reaction rate. In general, the resulting reaction is denoted as:

A!k P

the appropriate reaction rate v is described by:

v ¼ � 1
a
� dcðAÞ

dt
¼ 1

p
� dcðPÞ

dt
¼ k � cðAÞ (9)

where the stoichiometric coefficients are described by the lowercase letter
of the entity and dc/dt is its change in concentration. Generally, the
resulting reaction rate is experimentally determined using a rate constant k
whose unit is specified by the reaction order. In principle, all chemical
reactions are reversible. Many reactions reach a state of equilibrium, where
the rate of production of new products is equal to the rate of products
degrading to substrates. The following rate reaction scheme describes this
kind of reaction:

AÐk1
k�1

B

Here, the actual reaction rate is a combination of a forward reaction rate k1
and a backward reaction rate k−1. Therefore, the rate equations are as
follows:

vðAÞ ¼ dcðAÞ
dt

¼ �k1 � cðAÞ þ k�1 � cðBÞ (10)

vðBÞ ¼ dcðBÞ
dt

¼ k1 � cðAÞ � k�1 � cðBÞ (11)

where vA=− vB. Whenever the backward or forward reaction rate is
negligibly small, the reaction may be assumed to be irreversible and
treated with the kinetics of nth order. A special case for this treatment is
the Michaelis–Menten rate equation for enzyme kinetics.
The Michaelis–Menten kinetics assumes that the first step of the reaction

of an enzyme and a substrate forms an enzyme-substrate complex
according to the law of mass action. Furthermore, the subsequent second
reaction is assumed to be effectively irreversible.

Eþ AÐk1
k�1

EA!k2 Eþ P

Historically, most publications on the reaction kinetics of enzymes record
the key parameters Vmax or kcat and km or kd that are associated to
Michaelis-Menten kinetics, since they are relatively easy to measure.
Additionally, they can be used for an analytical approximation of the
trajectory of the system. For the analytical treatment, the mentioned
parameters only apply in certain situations and are not generally valid if
some properties of the system do not match the assumptions. The first
restriction is that the enzyme concentration c(E) in the solution is much
less than the substrate concentration C(A):

cðEÞ � cðAÞ (12)

The corresponding reaction rate of the system can be calculated by

v ¼ dcðPÞ
dt

¼ kcat � cðEÞ � cðAÞ
kd þ cðAÞ (13)

where kcat has the properties of a first-order reaction rate and describes the
capacity of the enzyme-substrate complex to produce product P. The
Michaelis constant km describes the affinity of the enzyme and the
substrate km ¼ k�1þk2

k1
.

Further, it is assumed that the concentration of the intermediate
complex does not change on the timescale of product formation, since all
enzymes are bound to a substrate molecule (the result of Assumption (13)).
This so-called quasi-steady-state approximation is therefore only valid if:

cðEÞ0
cðAÞ0 þ km

� 1 (14)

where c(E)0 and c(A)0 are the initial enzyme and substrate concentrations.
In situations where neither of the models is applicable, more complex
modeling approaches are taken. In general, such reactions are split into
smaller sub reactions, which are then solved with reversible reaction
kinetics. The downside is that more parameters are required, which are
often hard to resolve experimentally. In this work, Michaelis–Menten
kinetics are only used if no other alternative could be determined. If
applied, the assumptions under which Michaelis–Menten treatment is valid
are discussed.
In general, the change in concentration resulting from reaction r∈ R and

chemical entity e ∈ E is determined by

cnþ1
i;j ¼ cni;j þ Δt

X
r2R

f ðr; e; tn; cni;jÞ (15)

where f ðr; e; tn; cni;jÞ is the change in concentration resulting from reaction r
regarding entity e, at time tn and grid point cni;j .

Numerical error handling. The numerical solution ~cΔtΔs is an approximation
of the actual solution c. In general, there are two ways to ensure sufficient
accuracy of a numerical method:

● Reduce the step sizes Δt and Δs or,
● increase the methods’ convergence order p.

The numerical method is of convergence order p, if there is a number H
independent of Δt, such that

j~cΔt � cj � HΔtp (16)

for small Δt. The constant H depends on the actual solution of the problem.
A decrease in the time step has a more drastic effect on the accuracy of the
solution if p is large. If H is known, the order of the solution can be
determined by evaluating the ratios of the errors between, c � ~cΔt and
c � ~cΔt=2

log2
~cΔt � c

~cΔt=2 � c

����
���� ¼ pþOðΔtÞ (17)

A similar approach is used to evaluate the accuracy of methods with
unknown H. This approach is progressively comparing differences at Δt
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and Δt/2 with Δt/2 and Δt/4, which also leads to an estimation of the
convergence order p.
To improve the convergence order, the midpoint method with

embedded step width adjustment was implemented. Using an embedded
method allows estimating the local truncation error of a single numerical
step and provides leverage to control the local error with an adjustment of
the step width.
The midpoint method is a simple Runge–Kutta method, a family of

methods that increase the accuracy of the solutions by considering an
estimated slope at subintervals of the current time step. In general, the
consideration of more subintervals increases the convergence order, but
results in more function evaluations per time step. The midpoint method is
defined as follows:

cnþ1
i;j ¼ cni;j þ f tn þ Δt

2
; cni;j þ

Δt
2
f ðtn; cni;jÞ

� �
: (18)

The error of the first-order approximation Δ1cΔti;j ¼ f ðtn; cni;jÞ (Euler’s
method) can be estimated by comparing it to the second-order
approximation Δ2cΔti;j ¼ f ðtn þ Δt=2; cni;j þ Δt=2f ðtn; cni;jÞÞ. Since both
approximations need to be calculated regardless, no additional function
evaluation is necessary. The resulting adaptive Butcher tableau is:

ð19Þ

During simulation, the local truncation error enþ1
local can be calculated at

every step:

eΔtlocal ¼ Δ1cΔti;j � Δ2cΔti;j (20)

The concentration at each grid point (i, j)∈Ω is subject to change. This
change can be the result of chemical reactions, transport, and diffusion
processes. Furthermore, vesicles move across Lx × Ly and carry chemical
entities at their surfaces. This changes the concentration of key molecules
that are able to react in each grid point and time step, and even introduces
reactions that would not occur otherwise.
Concentration-based modules encapsulate the concentration change

that results from any process that creates and/or consumes chemical
entities. Each module calculates ΔcΔti;j for a chemical entity involved in the
process. Furthermore, the local error is evaluated for each module
individually. Since the changes span different timescales, the error is not
evaluated absolutely as described in Equation (21) but relatively:

εΔtlocal ¼ log10
Δ1cΔti;j
Δ2cΔti;j

�����
�����

 !
(21)

Increasing divergences between the solutions of Δ1cΔti;j and Δ2cΔti;j result
in values larger than 0. A user-defined threshold confines the accuracy of
the solutions. The local error will be calculated for every grid point (i, j)∈Ω
and chemical entity involved in the process. After all errors are calculated,
the largest local error is determined:

εΔtlocalðmÞ ¼ max
e2Em ;ði;jÞ2Ω

εΔtlocalðe; i; jÞ (22)

The error of the module m∈M is the maximal error for each grid point
(i, j)∈Ω and entity e ∈ Em referenced in the module. A local numerical error
is acceptable, if it is smaller than a user defined threshold τlocal. Hence, the
time step is decreased, if 9mðεΔtlocalðmÞ> τlocalÞ. Further, a module is defined
as critical, if εΔtlocalðmÞ> τlocal � θlocal, where θlocal < 1 is the local tolerance.
Whenever 8mðεΔtlocalðmÞ< τlocal � θlocalÞ the time step is increased to
decrease computation time. A maximal local error of 5% can be achieved
by setting the threshold to τlocal= log(0.05). A tolerance θlocal= 0.5 would
result in an increased time step, if the computed local error εΔtlocalðmÞ is
smaller than 2.5%.
In addition to the local εΔtlocalðmÞ error, the total error εΔttotalðmÞ is

evaluated. The total error is determined by transferring the previous idea
of error calculation. Instead of determining the error based on the module,

the total influence of all modules on the concentration of an entity is
evaluated. Therefore, the local error is optimized first and the total change
in concentration is calculated per entity and grid point.

Δtotalc
Δt
i;j ðeÞ ¼

X
m2M:e�Em

ΔcΔti;j ðeÞ (23)

Using the reasoning from the midpoint method, a scaffold concentra-
tion is calculated that can be used to determine the influence of the time
step

c
nþ1

2
i;j ðeÞ ¼ cni;jðeÞ þ

1
2
Δtotalc

Δt
i;j ðeÞ (24)

Henceforth, c
nþ1

2
i;j ðeÞ is used to calculate cnþ1

i;j ðeÞ by determining
ΔtotalcΔti;j ðeÞ at tnþ1

2
. The resulting total truncation error is

eΔttotal ¼ Δnþ1cΔti;j � Δnþ1
2cΔti;j (25)

The total error is calculated using the same approach as chosen for the
local error:

εΔttotal ¼ log10
cnþ1
i;j

c
nþ1

2
i;j

������
������

0
@

1
A (26)

A total numerical error is acceptable, if it is smaller than a user defined
threshold τtotal. Hence, the time step is decreased, if 9m 2 M : εΔttotalðeÞ> τtotal .
Further, the current time step is defined as critical, if εΔttotalðeÞ> τtotal � θtotal ,
where θtotal < 1 is the local tolerance. Whenever 8m 2 M : εΔttotalðeÞ< τtotal �
θtotal the time step is increased to decrease computation time. This procedure
is time-consuming, since four function evaluations are required per time step.
Two for the initial computation of the local error and two more for the
computation of the total error. In practice, the total error is primarily required
at the beginning of the simulations, when there are large differences in
concentration that are subject to diffusion or fast reactions. Two approaches
were designed to reduce the number of calculations required.
The first approach considers the type of parallelization and

optimization of local errors. The computation is parallelized on module
level. In each time step, each module computes its local updates and
errors individually. If any module encounters, εΔtlocalðmÞ> τlocal the
computation is interrupted. The interrupting module keeps requesting
decreases in the time step. With each request, the new εΔtlocalðmÞ is
calculated, but only for the grid point (i, j) where the error originally
occurred, until εΔtlocalðmÞ< τlocal. The non-interrupting modules clean their
previously calculated deltas. After Δt was determined, all modules run
again with the decreased time step. Again, if any module is above the
error threshold, it is optimized individually. This procedure, prevents
unnecessary optimization of non-critical modules and additionally saves
time by only optimizing the most critical grid point at a time. This
approach is valid if two conditions are satisfied. First, a decrease in time
step leads to an increase in accuracy. If the most inaccurate module is
optimized, accuracy of the other modules improves as well. Second, the
optimization of the most critical region leads to a proportional accuracy
gain in less critical regions. If the most critical region is below the error
threshold, less critical regions would be as well. To keep both
assumptions, the functions implemented by each module need to be
continuous and differentiable.
A second concept implemented to decrease calculations per time

step is total error skipping. The total error is said to be negligible, if it is
smaller than the negligibility threshold ν: εΔttotalðeÞ<ν � τtotal, whereby ν
is small in comparison to τtotal. If this is the case, calculation of the
global error will not be performed until the following criteria are met:

● The time step was increased as a result of step width optimization, or
● A number of time steps have been performed since the last total error

was calculated.

The calculation of the local error is performed at any time step,
regardless of the global error. If the time step decreases during
local error calculation, the already small global error would
decrease even more and computation is not necessary. Alter-
natively, if the local error calculation allows for an increased time
step, the global error needs to be considered again. As a backup,
the total error is additionally computed after a fixed amount of
time steps without evaluation. Empirically, it was determined that
the global error is primarily relevant for the initial time steps.
Concentration changes are rapid in the beginning of the
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simulation, depending on the initialization of the system. After
some equilibrating time, the global error decreases and does not
affect the time step. Nevertheless, the negligibility threshold
should be chosen with care. In practice, a default value of ν ≈ τtotal/
10,000 provides a good trade-off between computation time and
secured accuracy.

Rule-based reaction creation. In complex biochemical systems, the
enumeration of all reactions that might occur can be cumbersome at
least or impossible at worst. Especially, proteins with multiple post-
translational modification sites are hard to model with classical
approaches, since a protein with n modification sites can exist in 2n

different states. The interaction of protein complexes with modifications
further aggravates the number of possibilities and quickly leads to
thousands of chemical entities and reactions113. Rule-based modeling
allows for the specification of so-called reactive motifs to avoid the
enumeration of all possible reactions114. Several approaches exist that
allow the creation of reaction networks using reaction rules to condense
the number of specifications that have to be made to describe the system.
A comprehensive collection of tools has been compiled elsewhere115. The
most important tool from a cell signaling perspective is BioNetGen114. The
BioNetGen approach allows for the specification of chemical entities,
kinetics, and rules in a domain-specific notation, as well as the subsequent
simulation of the generated reaction network. Graphs rewriting is used to
track connections and states of the involved molecules, with the goal of
creating a reaction network with all the required reactions and
components116. The work of Faeder and colleagues was used as a basis
and inspiration for a modified approach. Mainly, two considerations drove
the choice for an adaptation.
We wanted to explicitly distinguish between transport and reaction

phenomena to improve the modularization of a system. BioNetGen uses
states in reaction rules to represent transport between different
compartments in a system. The definition of compartments in an explicitly
spatial system we used in this study is not captured by the state-based
approach. We define reactions strictly as the structural transformation of
one entity to another. Transport on the other hand only considers the
movement of structurally identical chemical entities and is performed by
dedicated modules. The compartmentalization is done in another step of
the modeling process, and therefore untangling both levels results in a
higher degree of reusability and encourages the design of faithful models.
Furthermore, the reaction network becomes less complex since additional
compartments do not result in additional rules and generated reactions.
This approach requires a more mechanistic approach to modeling, which
can be troublesome for poorly understood systems, but also provides the
possibility to increase understanding by elevating some complexity.
Another consideration is the definition of binding sites and molecule

states. Molecules very rarely have different states, if they have the same
structure. Therefore, in our approach, states are also represented as the
actual addition or removal of a chemical entity (for example a
phosphorylation reaction adds phosphate to a chemical entity). Again,
this reduces modeling ambiguity and encourages mechanistic approaches.
This leads to more complex graph structures, but removes states and
therefore reduces the complexity of the actual representation. Further-
more, it provides flexibility when designing binding sites. During reaction
definition, it is possible to specify a binding site, or let the network
generation automatically assign a binding site.
In conclusion, the modified rule-based definition of reactions abolishes

states of chemical entities, and provides a more flexible way to define and
modify systems of rules. Although it is possible to gain computational
efficiency by removing states, it comes at the cost of more complex
chemical entities that need to be considered.

Reaction definition: Reaction rules are combinations of basic reactors in
so-called reaction chains. The basic reactors are:

● ADD, add a component B to another component A, resulting in one
component A-B. Only A needs to be available as a reactant.

● BIND, adds a component A to another component B, resulting in one
component A-B. Both A and B need to be available as reactants.

● REMOVE, removes a component B from another component A−B,
resulting in component A. B is not a product of the reaction.

● RELEASE, splits component A−B to A and B. Both A and B are products
of the reaction.

While ADD, BIND, and REMOVE can be concatenated freely, RELEASE is
always a terminating basic reaction, since there are two resulting products.

Before the application of a reactor, a set of implicit and explicit filters is
applied to the candidate molecules to determine which candidates
participate in the reaction (for a detailed description, see Supplementary
Table 16). Additionally, explicit conditions describe hypotheses for the
requirements of each reaction to occur. For example, in order to
phosphorylate AQP2, PKAC needs to be bound to AQP2. To describe
reaction chains, a step-wise builder pattern was employed and imple-
mented. Step-wise builders are a design pattern that allows to shift of
some expression validation from run time to compile time. Effectively, the
step-wise builder describes a formal grammar for the generation of
reactions. The grammar restricts the number of possible combinations of
words, provides feedback upon definition, and with modern integrated
development environments even guides the process of creation.

Entity and network generation: All reaction chains are used to generate
a reaction network. The fundamental entity of any reaction is the simple
chemical entity (SE). Simple entities v∈ V can be combined with complex
chemical entities G. This is done using a graph representation, where the
nodes v ∈ V are SE that are connected by edges. The connection is only
possible if a binding site S= (v1, v2) is specified. A binding site is a pair of
names SE. Only if a binding site (v1, v2) exists, an edge can be created
between two nodes v1 and v2 in the complex entity. The binding site can
be referenced by its name in reaction definitions. A SE is considered either
a small molecule or a multi-site molecule. Small molecules are considered
to have one binding site and can be only bound to one molecule at a time
(e.g., ATP). Additionally, a SE can be specified to be membrane-bound. If a
reaction involves any membrane-bound entity, the resulting complex
entity will be also considered membrane-bound, if not explicitly specified
otherwise.
The description of interactions and their modification is described by

reaction rules. During network generation, a reaction chain takes from a set
of candidate reactants, applies the next basic reaction in a reaction chain,
and creates an intermediate product. The elementary “reactors" use the
intermediate products and apply additional filter criteria to further specify
a reaction. To generate the full reaction, the substrates and intermediate
products are gathered in a set of stack data structures, called tracks. A track
represents the transformations necessary to produce a specific product.
The entities that are on top of the stack are the final products of the
reactant, and the entities at the bottom are the original substrates. The
products of each reaction are added to the pool of candidates for the next
application of the network generation (see Fig. 9 and Supplementary
Algorithm 1).

Definition of macroscopic components
The simulation space represents a pseudo-three-dimensional slice of a
biological system with arbitrary width and length, but a fixed height.
Initially, the simulation space is compartmentalized into a rectangular
mesh to prepare for the subsequent application of finite-difference
methods. Hereby, the total area of simulation is segmented into a
predefined amount of rows and columns. The tiling is further subdivided to
compartments by membranes (see Fig. 7). A membrane can be placed at
the border between two grid points. A single compartment is assigned to
each grid point that is not bordered by a membrane, whereas two
compartments are assigned to grid points adjacent to a membrane. As a
consequence, one compartment represents the concentration of entities in
the membrane, whereas the other represents the concentration in the
remaining space. Each compartment contains a set of chemical entities
that are assigned a floating-point number based on their concentration in
this space. Each compartment is considered well mixed. The space can be
set up using raster images (e.g., PNG files), where each pixel represents a
grid point and colors represent different compartments. Areas of the same
color are automatically surrounded by a membrane.
Macroscopic entities are modeled as agents that are able to interact

with each other and with the reaction spaces (see Fig. 7). The interactions
are defined by a set of conditions that have to be met before associated
actions are performed. We classified macroscopic entities in the cell into
four types: sphere-like, line-like, surface-like, and volume-like based on
their relevant dimensionality. We reason that small membrane-enclosed
entities such as transport vesicles, lysosomes, and peroxisomes can be
categorized by their approximately spherical shape and their ability to
move actively or passively through the cell. Membrane-enclosed
compartments that are non-spherical and basically stationary due to
their size can be represented by area-like agents. Area-like agents are
connected two-dimensional regions that delineate compartments, such
as the nuclear envelope or the cell membrane. Line-like agents are
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approximately two-dimensional line segments that represent the
different kinds of cytoskeletal filaments. Line-like agents have the ability
to grow or shrink and act as scaffold for the active transport of sphere-
like agents. Volume-like agents are sections of the cell that are able to
represent different environmental conditions. Diffusive reduction in
certain areas of the cell was implemented using volume-like agents, but
other applications such as different pH values or temperatures are
thinkable. Those abstract agent types act as blueprints that are
implemented with specific parameters and behaviors based on the
application. A vesicle possess a state, a position, a radius, and two
compartments. The compartments represent the internal cargo and the
membrane surface. The state of a vesicle determines how it is processed
by modules. Since vesicles move, they have to change their neighboring
compartments dynamically during simulation. This entails that each
vesicle is referenced to up to four additional compartments. If a vesicle is
on the border between a number of grid cells, the area of the intruding
membrane section is calculated and used to scale the exposed
concentrations of chemical entities. Apical and perinuclear membranes
are implementations of area-like agents, made up of membrane
segments. Each segment is represented by an area between two
membranes separated grid points. This allows for the calculation of the
membrane area per compartment and is for example used to scale the
number of reactants available to reactions. Microtubules and actin
filaments are line-like agents for the directed transport of vesicles. They
are composed of multiple segments and possess a positive and a
negative end to indicate a direction. This directionality is used for the
transport of vesicles that are attached via molecular motors.
The introduction of macroscopic components requires further compart-

mentalization of the system to account for chemical entities carried by
vesicles or associated with membranes. The subdivision achieved by the
numerical treatment of the simulation space during diffusion discretion is
reused and further refined. Topological descriptors are introduced, such
that each agent has a set of concentrations cða; u; s; tÞ 2 R, if the agent is
associated with at least one topological descriptor. The concentration is
uniquely identified by the combination of agent a∈ A, topological
descriptor u∈ U, and entity e ∈ E. Each combination of topological
descriptor and agent, defines a new compartment, where reactions are
able to apply changes in concentration.

Sphere-like agents. are defined by a position p, a radius r, a state s∈ S and
two topological descriptors for membrane and cargo. For the context of
this work, sphere-like agents have been implemented for vesicles and
endocytotic pits.

Line-like agents. are defined by a set of positions with P= {(x1, y1), (x2, y2),
…, (xn, yn)}, with two consecutive positions (xi, yi), (xi+1, yi+1) representing a
line segment. Line-like agents have no topological descriptors and
therefore also no compartment with associated chemical entities. Line-
like agents are used as guides for displacement-based modules that move
vesicles along cytoskeleton filaments. Filaments are initialized using a 2D
adaptation of the microtubule growth algorithm as presented by25.

Surface-like agents. are defined by a set of positions with P= {(x1, y1), (x2,
y2),…, (xn, yn)}, with two consecutive positions (xi, yi), (xi+1, yi+1) represent-
ing a surface segment. The area of a surface segment can be determined
by multiplying the length of the segment (xi, yi), (xi+1, yi+1) with the spatial
step width Δs. The spatial representation r of a grid point (x, y) can be
represented by a square with vertices (x− Δs/2, y− Δs/2), (x− Δs/2, y+ Δs/
2), (x+ Δs/2, y+ Δs/2), (x+ Δs/2, y− Δs/2). Surface segments must be
defined at the interface of two neighboring grid points, and therefore
along the edges of the spatial representations of grid points. It follows that
the set of positions P is constrained by the vertices that arise from all grid
points. Surface-like agents have one topological descriptor that defines a
compartment. Membranes are implementations of surface-like agents.

Volume-like agents. Volume-like agents are defined by a set of points P=
{(x1, y1),…, (xn, yn)}. The points define the vertices of a polygon, and two
consecutive positions (xi, yi), (xi+1, yi+1) represent a volume border seg-
ment. Additionally, the starting point (x1, y1) and the last point (xn, yn) are
always connected. Volume-like agents specify areas of the simulation
system where a distinct set of modules or features should be applied. For
example, the cell cortex can be defined as a volume-like agent close to the
cell membrane. Modules are used to recognize vesicular movement into
the volume, and a specific action for the entering vesicle can be assigned.
Volume-like agents define no compartments.

Agent behavior. Displacement-based modules are used to change the
position of sphere-like agents. A modulem 2 M is a function applied to an
agent a∈ A and results in a change in position m(a, Δt)= Δp(a, Δt) scaled
to the current time step width Δt. The state and/or the concentration of
chemical entities in the compartment associated with the agent a can be
used to determine the displacement. The next position pnþ1

a ¼ pða; tnþ1Þ of
the agent a∈ A is determined by summation of all displacements, Δp(a, Δt)
denoted as ΔpΔta .

pnþ1
a ¼ pna þ

X
m2M:kmða;ΔtÞk>0

ΔpΔta (27)

Fig. 9 Reaction network generation. Reactions can be specified by a description of the reaction process. Basic reactors are concatenated to
chains that are processed during the reaction network generation. Additionally, conditions allow for further specification of the reaction
process.
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∥ ⋅ ∥ denotes the euclidean norm. The displacement must not be too large,
otherwise the simulation could experience numerical instabilities when-
ever concentrations change rapidly. A similar concept to the numerical
error is used to determine if the displacement is appropriate. The total
displacement is determined by:

Δtotalp
Δt
a ¼

X
m2M:kmða;ΔtÞk>0

ΔpΔta (28)

should also not be too small to ensure efficient computation. Hence, a
reference distance dref is used to evaluate the displacement. Usually, this
reference distance is given as a fraction of the spatial step width Δs.
The deviation of the displacement is calculated by:

DðaÞ ¼ log10
kΔtotalpΔta k

dref

� �
(29)

and compared to two thresholds θþdisp and θ�disp. The time step can be
decreased, if, 9a 2 A : DðaÞ>θþdisp and increased if 8a 2 A : DðaÞ<θ�disp.
The final position p(t+ 1) is only applied if the target position is not

already occupied by other agents, and if no membranes need to be
crossed to arrive at that position. Three different methods can be used
to determine the updated position if any collision should happen: a
ballistic reflection, a recalculation (if there is a randomized component
to any update, the calculation can be repeated until a valid position is
found), or simply discarding the update by setting pt+1 = pt. It was
found that the different methods produce only marginally different
outcomes117 in sparse setups. For this work, the last method was
chosen, and collision detection has been implemented as described in
Supplementary Algorithm 2. To increase the efficiency of the collision
detection algorithm, only local interaction partners are considered. This
can be achieved using a spatial indexing approach. A spatial grid has
already been created using the numerical grid. This indexing will also
be used to reference vesicles to the respective regions in the
simulation system and vice versa. Supplementary Algorithm 3 performs
indexing and additionally defines, which amount of surface area is
associated with each grid point. The association is repeated in each
time step, after the displacements have been calculated. The procedure
is only valid, if the radius r of any vesicle a is smaller than the spatial
step width Δs.

Vesicle diffusion: The diffusion of vesicles is modeled as described by
Klann24. The position of the vesicle changes scaled by its diffusivity:

ΔpΔta ¼
ffiffiffiffiffiffiffiffi
2Dv

p
� ξ! (30)

where the change in position Δp(Δt) is calculated by a random Gaussian
vector ξ with mean 0 and variance 1. The diffusion coefficient was
determined from literature95. A volume-like agent can be used to add
collision boundaries to the collision detection algorithm and therefore
hinder the diffusion of the vesicle.

Filament-guided transport: Directed vesicle transport happens at line-
like agents. The displacement delta is calculated by:

ΔpðΔtÞ ¼ vm � û (31)

where vm is the average velocity of the attached molecular motor and û is
a unit vector that points in the direction specified by the pulling motor,
along the cytoskeleton filament. Whether the vesicle is attached to a
filament is determined by a qualitative state-changing module. This
module sets the state of the vesicle and the line segment (xi, yi), (xi+1, yi+1)
it will be attached to. The calculation of the movement is described in
Algorithm 6.
The transport speed scaled by a number of specified molecules present

in the coat of the vesicle. The actin boost vesicles experience after they
have been scissioned by clathrin-mediated endocytosis118 was implemen-
ted using directed, unguided transport. In this implementation, the unit
vector û points orthogonal to the membrane segment the vesicle spawned
from. The velocity vm is calculated by vm= vb ⋅ cs, where s is the scaling
entity (clathrin) and vb is the base velocity given in [space]/[time] ⋅
[concentration].

State-changing modules: Vesicles can change their state in a variety of
cases:

1. position is close to an area-like agent,
2. position is close to a line-like agent,
3. position is inside a volume-like agent,
4. concentration of a chemical entity reaches a threshold, and
5. by chance.

These conditions have been implemented as qualitative modules. State-
changing modules are initialized with a list of states where the module is
applied and the test criteria that specifies the condition that should be
met. In cases 1 and 2, the closest segment of the specified agent is
determined and the distance between the vesicle membrane and the
closest point of the segments is evaluated. In case 3 the centroid of the
vesicle is evaluated using the even-odd rule algorithm119. In case 4 the
concentration currently in the cargo or membrane compartment of the
vesicle is evaluated. A state change by chance is also interesting, for
example when a vesicle is transported along a cytoskeletal filament, the
vesicle can spontaneously detach from the filament. The possibility of a
state change happening is given as a frequency and is scaled with the time
step. If the probability that the event happens in a single time step is larger
than 1 the time step is reduced and recalculated.

Endocytosis. The algorithm implemented for endocytosis can be
reviewed in Supplementary Algorithm 4. The module manages the
creation of clathrin-coated pits, an implementation of sphere-like agents.
Furthermore, it manages the creation of clathrin-coated vesicles, after the
pit passes a concentration checkpoint and maturation. Initially, a pit
formation rate kp pit formation rate in 1/[time] ⋅ [space]2 determines how
often clathin-coated pits are spawned. In each successful time step, cargo
molecules are added to the pit with a cargo addition rate ka from
associated membranes using a concentration-based module.
The cargo absorption module is a specialized reaction. The addition of

cargo to the pit is scaled by inhibiting and catalyzing chemical entities. The
actual cargo addition rate is calculated by:

kc ¼ ccat
ccat þ cinh

� kb; (32)

where ccat is the concentration of the catalyzing entity, cinh is the
concentration of the inhibiting entity and kb base cargo addition rate. It
follows that the maximal applicable rate maxðkcÞ ¼ kb and decreasing
amounts of the catalytic entity or increasing amounts of the inhibiting entity
scale the applicable rate linearly. The amount of cargo that is moved from the
membrane-associated with the pit is calculated by Δcnþ1

cargo ¼ kc � cncargo .
The assembling pit exists until a maximal time tcp that is determined upon

vesicle creation. If the pit does not reach the required concentration ccp of
specified cargo entities Ec until this time, the pit is aborted and the
concentrations in the pit are moved back to the associated membrane.
Otherwise, the pit reaches the required cargo concentration and enters a
maturation phase that ends in time tm with the creation of a new vesicle, the
cargo molecules, and a set of predefined additional cargo molecules including
the clathrin coat.

Fusion. The algorithm implemented for fusion can be reviewed in
Supplementary Algorithm 5. Parameters that influence this module are the
fusion time tf, attachment distance da, two chemical entities, one for the
Q-SNARE SQ and one for the R-SNARE SR, as well as the minimal number of
snare pairs np. The fusion time tf is used to determine the total length of
the fusion process until the vesicle fully fuses and transfers its contents.
The attachment distance is the minimal distance between the vesicle and
membrane that is required to initiate the fusion process. If a vesicle is close
enough to any membrane, it is checked if np fusion pairs can be formed
from the Q-SNARES in the target membrane and R-SNARES in the vesicle
membrane.
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