
Citation: Kim, S. Study on the

Characteristics of the Dispersion and

Conductivity of Surfactants for the

Nanofluids. Nanomaterials 2022, 12,

1537. https://doi.org/10.3390/

nano12091537

Academic Editors: Ting Zhang and

Peng Jiang

Received: 14 April 2022

Accepted: 29 April 2022

Published: 2 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Study on the Characteristics of the Dispersion and Conductivity
of Surfactants for the Nanofluids
Sedong Kim

German Engineering Research and Development Center LSTME Busan Branch, Busan 46742, Korea;
sedong.kim@lstme.org

Abstract: Given the importance of nanofluid dispersion and stability, a number of approaches
were proposed and applied to the nanofluid preparation process. Among these approaches, the
noncovalent chemical process was intensively utilized because of its effective dispersion ability.
For the noncovalent dispersion method, polymers and surfactants are typically used. In order to
find an effective noncovalent dispersion method, several types of solutions were prepared in this
study. The widely used naturally cellulose nanocrystal (CNC) aqueous solution was compared
with several surfactant aqueous solutions. The dispersion characteristics of the prepared fluids
were examined by UV/VIS spectroscopy at operating wavelengths ranging from 190 to 500 nm.
Furthermore, the heat capacity and the electrical and thermal conductivity of the fluids were analyzed
to evaluate their heat transfer performance and conductivity. The Lambda system was utilized for
thermal conductivity measurement with operation at proper temperature ranges. The electrical
conductivity of the fluids was measured by a conductivity meter. This experimental study revealed
that the cellulose nanocrystal was an effective source of the noncovalent dispersion agent for thermal
characteristics and was more eco-friendly than other surfactants. Moreover, cellulose aqueous
solution can be used as a highly thermal efficient base fluid for nanofluid preparation.

Keywords: nanofluid; surfactant; heat transfer performance; dispersion; cellulose

1. Introduction

Nanofluid has been studied over the past decades and has a great potential to improve
heat transfer properties [1]. However, unless the nanoparticles of the nanofluid are well
dispersed, enhanced thermal performance [2,3] cannot be expected [4]. For this reason,
two methods are generally applied for the well dispersion of nanofluids [5]; one is a
mechanical method, and the other is a chemical method. However, the ultrasonic excitation
and grinding of the mechanical method can leave too many fragments in a nanofluid
when CNTs are used as nanoparticles. Therefore, it is not good to reduce the aspect ratio
for the degree of dispersion stability [6]. This mechanical method is time-consuming
and inefficient.

Unlike the mechanical method, covalent and non-covalent chemical methods [7–10]
can avoid the aggregation of nanoparticles. The covalent methods have been functionaliza-
tion with many chemical moieties to enhance the solubility of solvents; however, strong
chemical synthesis at high temperatures causes defects on the carbon nanotube (CNT)
surface, changing the electrical characteristics of CNT. On the other hand, the noncovalent
method involves the adsorption of the chemical moieties onto the CNT surface, either
through π-π stacking interactions, such as in DNA; uncharged surfactants; or the Coulomb
attraction in the case of charged chemical moieties. The noncovalent method is effective
in the sense that it does not alter the π-electron cloud of graphene, in turn protecting the
electrical characteristics of nanotubes. For instance, polymers and surfactants are widely
used for CNT dispersion through non-covalent methods.

Among those for CNT dispersion, cellulose is the richest polymer in nature. Over
the past few years, the development of cellulose-based materials for CNT dispersion has
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been reported [11,12]. Cellulose nanocrystals (CNCs) have become widespread in many
studies [13,14]. They are rod-shaped nanoparticles obtained from the acid hydrolysis of
cellulose. They are about 10 to 100 nm in diameter and 100 to 1000 nm in length, depending
on the cellulose source and the hydrolysis conditions.

CNC strongly interacts with the water molecules through hydrogen bonding be-
cause of the hydroxyl groups on the cellulose molecules [15,16]. Surfactants are classified
into cationic, anionic, nonionic, and amphoteric depending on the charge of the head
group [17–20]. In ionic surfactants, the surfaces of the particles have the same charge,
which can generate electrostatic repulsion. Strong electrostatic repulsion between nanopar-
ticles promotes the stable dispersion of nanofluid [21].

Many kinds of surfactants are used with nanoparticle suspensions, such as sodium
dodecyl sulfate (SDS), sodium dodecyl benzenesulfonate (SDBS), and lauryl betaine (LB),
to increase the dispersion and stability of nanofluids [22,23]. In order to choose the proper
surfactant for a particular application, it is very important to conduct a systematic study
of different parameters, such as stability and concentration [24–28]. Yurekli et al. [29]
and Hertel et al. [30] studied changes in the phase behavior of CNTs on the basis of the
concentration and the type of interaction of the surfactants. However, there have been
fewer systematic studies on the different, proper parameters of cellulose [31–33] influencing
the nanoparticle dispersion of a base fluid.

In this study, the noncovalent process was conducted to maintain conductivity and
enhance the nanoparticle dispersion for a base fluid, and [34,35] the heat capacity was also
compared with that of other surfactants according to previous studies. It was found that
cellulose is not only hydrophilic and eco-friendly, but it is also more thermally efficient
than other surfactants. From these results, it can be confirmed that this study will make a
significant contribution to the heat transfer technologies related to nanofluids because it
shows good dispersion and stability to avoid nanoparticle agglomeration and identifies the
stable thermal and electrical characteristics of a base fluid.

2. Materials and Methods
2.1. Materials

Demineralized water (DW) was prepared using a membrane-type DW device, which
can produce DW with water quality of under 10 ppm of total dissolved solids (TDS).
The cellulose nanocrystal (CNC) used in this research was extracted from the western
hemlock plant and was supplied by SKB Tech, South Korea. Sodium dodecyl sulfate (SDS,
CH3(CH2)11OSO3Na) with a 288.38 relative molecular mass (Junsei Chemical Co., Ltd,
Tokyo, Japan); sodium dodecyl benzene sulfonate (SDBS, C18H29NaO3S), hard type, with a
348.48 relative molecular mass (Chemical Industry Co., Ltd, Tokyo, Japan), and dodecyl
betaine (DB, C16H33NO2) with a 271.44 relative molecular mass (Avention Co., Ltd., Seoul,
Korea) were used for the dispersants.

2.2. Methods

The electrical conductivity meter (Model CM-25R) used a contacting-type conduc-
tivity sensor, which consists of an electrode. The titanium–palladium alloy electrode was
specifically sized and spaced to provide a known “cell constant”. A UV/Visible Spectropho-
tometer (X-ma 3000 Series Spectrophotometer, Human Co., Ltd., Seoul, Korea) was used to
measure the dispersibility of the aqueous solution. The LAMBDA system measured the
thermal conductivity of the aqueous fluids according to ASTM D 2717 by hot wire methods
(evaluation of thermal conductivity of liquids). The heat capacities of all samples were
measured by applying a constant heat source at the same time, and a comparison of the
temperature of each surfactant was made. For all the measurements, tests were recorded
at the same time, and each was carried out three times in the same way. In the repeated
measurements, no significant differences were found.
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2.3. Preparation of Samples

Garg et al. [36] experimentally studied the sedimentation and dispersion properties
of nanofluid dispersed in a multi-walled carbon nanotube (MWCNT) over time. They
reported that nanofluid treated with ultrasonic treatment for 40 min had a maximum
thermal conductivity improvement effect.

Figure 1 shows the sedimentation of the MWCNT nanofluid [37]. Following Garg et al.,
the cellulose and surfactants were dispersed with DW, and the excitation frequency and
period were 42 kHz and 40 min, respectively. CNC was heated to temperatures ranging
from 50 to 90 ◦C because CNC solution is not easily dispersed well without heating
according to Molnes et al. [38]. All samples were prepared at a concentration of 0.1 wt%.
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Figure 1. Sedimentation of the CNT nanofluid over time. (1) After sonication, (2) after 7 days, (3) after
30 days. Reprinted from ref. [37].

3. Results and Discussion
3.1. Structures of CNC

As seen in Figure 2, the morphological analysis of the cellulose was performed by
Transmission Electron Microscopy (TEM, Technai 128 FEI). Figure 2A shows the agglom-
erations of nanocellulose formed as bundles by the strong hydrogen bonds between the
single cellulose crystallites. However, Figure 2B,C show that the agglomerated particles
consist of multiple single particles, which gathered together and formed the large aggre-
gates. Through the TEM investigation, it can be seen that nanocellulose was formed by the
aggregation of small rods.
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3.2. Electrical Conductivity of Solution

In the area of electromechanical microelectronics, the property of electrical conductivity
is an important factor. Some devices need electrical conductivity, while other devices do
not need conductivity because of electrical interference. For instance, it is required for the
probe to have a high thermal conductivity but low electrical conductivity.

Therefore, this study investigated the electrical conductivity of several factors. The
calibration was performed with a potassium chloride standard (1.41, 12.86 µS/cm) solution
before the measurement.

As seen in Figure 3, the electrical conductivity of the CNC solution was lower than
that of other surfactants. In the case of CNC, its electrical conductivity was not severely
changed with the temperature variation, as shown in Figure 4, which means that CNC has
the characteristic of low electrical conductivity regardless of the temperature variation.
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In general, as the temperature increases, the electrical conductivity also increases in an
aqueous solution because of fast ion diffusion. Therefore, most insulators can be combined
with CNC regardless of temperature. It can be also applied in industrial fields in which
the electrical conductivity of a working fluid can potentially be a threat to a system and
its surroundings.

3.3. Dispersibility of Solution

In order to investigate the light absorbance characteristic of a solution in accordance
with wavelength, a UV/VIS spectrophotometer was used. The UV/VIS spectrophotometer
can measure the light absorbance of wavelengths ranging from 190 to 500 nm, which shows
the light absorbance characteristics of the solutions.
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The UV/VIS spectrophotometer is generally used for two purposes in nanofluid stud-
ies, which are the investigations of the concentration and the dispersion of nanoparticles.
As the concentration of nanoparticles increases, the light absorbance increases. Addi-
tionally, the better the dispersion, the higher the light absorbance if the concentration of
nanoparticles is the same.

Figure 5 presents the experimental results showing the light absorbance characteristics
through the UV/VIS when each material was independently mixed with DW. Since each
of the three surfactants and CNC were mixed with DW alone, Figure 4 provides the
information on how the three surfactants affected the light absorbance when they were
used for a well dispersion of nanoparticles.
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Figure 5. UV/VIS spectra of each surfactant.

Figure 5 shows that SDS does not absorb the lights over the measurement range of
UV/VIS, which means that SDS is transparent in a solution and that SDS does not affect the
light absorbance of a nanofluid. In the cases of SDBS and LB, some peaks were observed
from 200 to 280 nm; however, those peaks fell into the range of ultraviolet rays. Therefore,
they are also transparent when mixed with DW. Therefore, if three surfactants are used
for a better dispersion of nanoparticles, the investigation of the visible light absorbance
can be the index of a well dispersion, which means that the well dispersion can be roughly
evaluated with the naked eye.

When CNC was independently mixed with DW, its light absorbance gradually de-
creased as the wavelength increased. Especially, it should be noticed that CNC has very low
absorbance characteristics in the ultraviolet range compared with other surfactants, such as
SDBS and LB. These results have an important physical meaning when making nanofluids.

The CNC has smooth absorbance characteristics over the whole UV/VIS wavelength,
which indicated that CNC could provide more detailed information on the dispersion and
concentration. If SDBS and LB are used as the surfactants for the dispersion, it is difficult to
use light absorbance in the ultraviolet range for the evaluation criteria of dispersion and
concentration. Figure 6 shows the UV/VIS measurement for the Al2O3 nanofluid, which
was previously performed by the author [5]. As seen in Figure 6, the smooth absorbance
clearly provides the concentration variation, which means that CNC is a good surfactant to
evaluate the dispersion and concentration of nanoparticles.
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3.4. Thermal Conductivity of Solution

The thermal conductivities were measured by the LAMBDA measuring system to
investigate each solution.

The LAMBDA system is based on the hot-wire method, and a platinum wire with a
0.1 mm diameter was applied as the hot wire. The detailed principles of this can be found
in the previous research [39].

Figure 7 shows the thermal conductivities according to the concentration of CNC and
the temperature variation. It can be seen that the thermal conductivity of CNC nanofluid
decreased when the content of cellulose increased. It was reasonable to compare each
surfactant at a concentration of 0.1% because when the CNC concentration was 0.1%, the
value of thermal conductivity was high. Therefore, all samples were set at the proper
concentration of nanofluid of 0.1 wt%.
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As seen in Figure 8, CNC showed the highest thermal conductivity, followed by LB,
and SDS and SDBS had similar values of thermal conductivity. Generally, when a surfactant
is used in the preparation of a nanofluid, the thermal conductivity is degraded [15], and
thus it may be seen that a good thermal conductivity value of cellulose is excellent for the
preparation of a nanofluid.
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3.5. Heat Capacity of Solution

Each sample was prepared for the same amount of solution and was constantly heated
by a hot plate and magnetic stirrer, and the liquid temperatures were measured by thermally
insulated T-type thermocouples. Each sample was measured for 20 min at the same initial
temperature and same magnetic RPM. Temperatures were recorded in the data logger.

Figure 9 shows the result of the temperature variation of samples during the heating
process. It is known that the heat capacity C of a sample is represented by the formula:

C =
Q

∆T
(1)

where Q is the heat supplied to the samples, and ∆T is the temperature variation during the
heating process. It is possible to grasp the difference in heat capacity from the temperature
variation in the samples. The measured heat capacities were the orders of SDS, SDBS, DB,
and CNC, as seen in Figure 9. The fact that cellulose has a higher temperature increase rate
than other surfactants shows that the heat transfer rate is more excellent than that of the
others. It is concluded that CNC can be a good option as a dispersant for nanofluid because
of its superior properties to other surfactants.
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4. Conclusions

The importance of dispersion and stability in the application of nanofluid in industries
is becoming more prominent. Accordingly, this study investigated an approach to the
nanofluid manufacturing process.

Among these methods, effective dispersion ability was shown by intensively utilizing
non-covalent methods rather than strong chemical methods. In this paper, cellulose and
surfactants were generally used as non-covalent dispersion methods.

(1) The structure analysis of nano callouses was conducted by the TEM method. It
showed rod-shaped nanoparticles acquired from the acid hydrolysis of callouses. The
size of the CNC was about 100 nm in diameter and 1000 nm in length. It is shown in
Figure 1 that CNC can interact with water strongly by hydrogen bonding because of
the hydroxyl group on the molecule.

(2) The electrical conductivity of solutions was studied to figure out the electrical interfer-
ence in the application of base fluid in industry. CNC had the lowest value of electrical
conductivity compared with other surfactants. Furthermore, it was found that, unlike
other surfactants, the electrical conductivity of CNC did not change with temperature.

(3) The absorbance of samples was investigated using a UV/VIS spectrophotometer.
When other surfactants were used for dispersion, it was hard to use the light ab-
sorbance in the ultraviolet range for the evaluation criteria of dispersion and con-
centration. However, it was revealed that CNC has a stable value across different
wavelengths, which indicates that CNC could provide more detailed information on
the dispersion and concentration.

(4) The thermal conductivities were examined by the LAMBDA system. First, it was
found that the low concentration had high thermal conductivity by comparing the
thermal conductivity according to the CNC concentration. As the cellulose content
increased, the thermal conductivity of the CNC nanofluid decreased. Overall, CNC
had the highest thermal conductivity, followed by LB, and SDS and SDBS had similar
thermal conductivity. Moreover, the heat capacity also had a similar value to thermal
conductivity, as shown by acquiring the data on differences in temperature when the
same quantity of heat was applied.

Therefore, in this study, it was found that cellulose is not only hydrophilic and eco-
friendly, but it is also more thermally efficient than other surfactants. These data could be
widely used for the base fluid for making nanofluids and in other industries.
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