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Abstract: Spinal cord stimulation has seen unprecedented growth in new technology in the 
50 years since the first subdural implant. As we continue to grow our understanding of spinal 
cord stimulation and relevant mechanisms of action, novel questions arise as to electrical 
dosing optimization. Programming adjustment — dose titration — is often a process of trial 
and error that can be time-consuming and frustrating for both patient and clinician. In this 
report, we review the current preclinical and clinical knowledge base in order to provide 
insights that may be helpful in developing more rational approaches to spinal cord stimula-
tion dosing. We also provide key conclusions that may help in directing future research into 
electrical dosing, given the advent of newer waveforms outside traditional programming 
parameters. 
Keywords: neural dosing, pharmacology, neuromodulation, spinal cord stimulation, 
electrical dosing

Introduction
For pain medicine, optimizing the dosage of pharmaceuticals means that the 
medication choice and amount, route of administration, and frequency are carefully 
titrated to maximize efficacy while minimizing side effects.1–3 Generally, this 
means using the lowest effective dose. In intrathecal drug delivery, this concept 
has gained traction in that an equivalent or perhaps superior clinical outcome can be 
achieved with a substantially lower daily dose of drug.4

Spinal cord stimulation (SCS) is a medical option within interventional pain 
medicine. Although used clinically for more than 50 years, SCS has gained a great 
deal of interest in recent years, as it represents a drug-free option for ongoing 
management of chronic pain, such as back pain, radicular pain, complex regional 
pain syndrome (which includes causalgia), peripheral neuropathies, and other 
neuropathic pain conditions.5–7 Traditionally, for SCS therapy, electrodes are 
implanted in the epidural space overlying the portions of the dorsal column of the 
spinal cord that somatotopically correspond to the painful dermatomes of the body. 
An electrical current is then delivered to the electrodes by means of an implanted 
pulse generator that often includes an implanted battery. The electricity induces 
changes in the electrical potential of the cell membranes of axons in the spinal cord, 
in many cases generating action potentials that propagate anti- and orthodromically 
to modulate neurons in the gray matter of the spinal cord, as well as brain sites. On 
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a basic level, this is thought to modulate neural function 
within pain pathways in various ways depending on the 
pattern of stimulation to help mask or relieve pain. SCS is 
often considered successful when pain is reduced by 50% 
or more. Importantly, SCS can reduce pain severity suffi-
ciently to allow some pain patients to reduce their use of 
medications and break free of opioid dependence.8,9 

A landmark randomized controlled trial comparing SCS 
with conventional medical management showed that the 
former provided better leg pain relief, quality of life, and 
functional capacity and could be sustained through 24 
months.10

In the last decade, innovations in SCS have led to the 
development of new electrical waveforms. Where SCS 
was once limited to square pulses delivered in 
a consistent stream at a set frequency (2–1,200 Hz), 
pulse width (1–1,000 microseconds), and amplitude (0– 
20 mA), these programming parameters are still com-
monly used today, but are now often referred to as “tradi-
tional tonic stimulation.” New stimulation patterns and 
frequencies now include burst SCS (pulsatile packets of 
stimulation with different charge recovery strategies) and 
high-frequency SCS, the definition of which is conten-
tious: some claim it to have a low range of 1kHz, while 
others claim it needs to be >1.2 kHz, the traditional upper 
limit of most commercially available implantable pulse 
generators, yet others claim it refers only to stimulation 
of 5–10kHz. Examples are shown in Figure 1. High- 
density or high-dose SCS, in which longer pulse widths 
and/or higher frequencies are used, has also shown clinical 
utility.11–14 Beyond just programming parameter changes, 
devices that target novel anatomical structures, such as the 
dorsal root ganglion, have been approved by regulatory 
bodies all over the world.15,16 Multiple detailed 
reviews have been published on putative mechanisms of 
action specific to these various approaches.17–20 With this 
range of interventions and programming strategies avail-
able, clinicians must stay abreast of the comprehensive 
body of literature supporting each therapeutic approach 
to guide selection of the most appropriate therapy for 
a given patient. Once a therapy is chosen, similar to 
pharmacological treatment, the appropriate electrical 
dosage must be prescribed/titrated by programming the 
device with the correct number and polarity of active 
electrodes along with the appropriate settings for pulse 
width, frequency, amplitude, and duty cycling (the percen-
tage of “stimulation-on” time).21 This concept is summar-
ized in Figure 2.

Clinical observations and studies have emerged from 
the SCS industry and the implanter community that clini-
cally meaningful pain relief and avoidance of side effects 
may be achieved by minimizing the electrical charge that 
is delivered to the neural interface. Clearly, this mirrors the 
approach for pharmaceuticals. Unfortunately, the field of 
SCS has yet to adequately describe an electrical equivalent 
of pharmacokinetics/pharmacodynamics that can be used 
as a guide for dosing. Instead, dosing decisions are usually 
empirical, based on observations in the programming 
clinic and feedback from the patient. Programming adjust-
ments — dose titration — are often a process of trial and 
error that can be time-consuming and frustrating for both 
patient and clinician. In this report, we review the current 
preclinical and clinical knowledge base to provide insights 
that may be helpful in developing more rational 
approaches to SCS dosing. We also provide key conclu-
sions that may help in directing future research into elec-
trical dosing.

Insights Gained into Dosing from 
Preclinical Research
Tonic Paresthesia-Based SCS
While initially discussed within the context of the gate- 
control theory of pain, there have been significant 
advances in understanding the mechanisms of action of 
paresthesia-based SCS. Among the best-studied 
mechanisms is attenuation of the activity of wide dynamic 
range neurons (pathologically activated in chronic pain 
states) via increased activity of inhibitory interneurons 
through both spinal and supraspinal mediators.22 These 
mediators include GABA, glycine, serotonin, and 
norepinephrine.22–24 Yakhnitsa et al demonstrated that fol-
lowing paresthesia-based SCS in an animal model of pain-
ful mononeuropathy, there was a reduction in dorsal horn 
neuronal hyperexcitability that corresponded with 
improvement in tactile allodynia.25 An additional proposed 
mechanism is the reduction of glial cell activation at the 
level of the spinal cord. An animal-model study completed 
by Sato et al examined the use of paresthesia-based SCS 
utilizing sham, 4 Hz, or 60 Hz treatment of varying dura-
tions and amplitudes in rats with peripheral nerve injury.26 

They found that greater analgesia was seen with 6 hours of 
60 Hz than 30 minutes, and that not at 90% amplitude of 
motor threshold (energy level at which motor activation 
occurs) was significantly more efficacious than 75%. Of 
note, 50% of motor activation saw no changes in paw- 
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Figure 1 Top: Waveforms for tonic (A), burst (B), and high-frequency (C) SCS, allowing comparison of relative pulse widths, frequencies, and amplitudes. Reprinted with 
permission from Reprinted with permission from Taylor and Francis. Ahmed S, Yearwood T, De Ridder D, Vanneste S. Burst and high frequency stimulation: underlying 
mechanism of action. Expert Rev Med Devices. 2018;15(1):61–70.67 Bottom: Schematic illustrating pulse width, frequency, and burst variables (A and, B), as well as factors 
that create the electrical properties of a single pulse within a waveform (C). Reproduced from Reproduced from Caylor J, Reddy R, Yin S, et al. Spinal cord stimulation in 
chronic pain: evidence and theory for mechanisms of action. Bioelectron Med. 2019;5(1):12. Creative Commons license and disclaimer available from: http://creativecom 
mons.org/licenses/by/4.0/legalcode.38
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withdrawal threshold, essentially equivalent to sham treat-
ment. The authors also found that there were robust reduc-
tions in microglial and astrocyte activation markers 
following both 4 Hz and 60 Hz paresthesia-based stimula-
tion. These results have recently been replicated in 
a spared nerve injury model in rodents using 60 Hz stimu-
lation, again showing reductions in microglial activation 
and pain responses with application of either minocycline, 
a glial inhibitor, or SCS.27

Burst SCS
Burst SCS utilizes a paradigm of pulse trains of high 
frequency (typically 500 Hz) stimulation in five 1-milli-
second pulses at an overall interburst frequency of 40 
Hz.28 This therapy was born of observations that many 
neurons in the nervous system fire in phasic or burst 
patterns.29 Intracellular recordings of these burst/phasic 
firing neurons have shown that the burst firing typically 
rides on a plateau of slow calcium-mediated depolariza-
tion. Snider et al examined burst signaling within the 
visual cortex of a cat model and found that spatially 
optimal longer bursts were more effective in eliciting 
neuronal responses than shorter spatially nonoptimal 
bursts.30 Crosby et al investigated the parameters involved 
in burst SCS in a rat model with cervical nerve root injury 
and neuropathic pain, and found that pulse number, pulse 
width, and amplitude were significantly correlated with 
suppression of neuronal firing.31 A comparison to par-
esthesia-based SCS in an animal model was done by 
Gong et al.32 Rats with spared nerve injury were implanted 
and treated with sham, 16 Hz, 60 Hz, and 140 Hz par-
esthesia-based frequencies and four burst therapies with 
varying burst frequency, pulse frequency, and pulse width. 
They found that all but sham and 16 Hz SCS had statisti-
cally significant improvement in paw withdrawal 

threshold, and that burst parameters of 2, 3, and 4 were 
statistically superior to 60 Hz. Within the burst paradigms, 
there was no difference between stimulation frequency, 
pulse width, or pulse frequency.

Unique to the targeting of burst SCS to the mediotha-
lamic and limbic components of pain processing is 
improvement in the affective and emotional components 
of pain. Although difficult to study, this has been partially 
demonstrated by Meuwissen et al using a rat model com-
paring paresthesia-based and burst SCS.33 This study sug-
gested that more than paresthesia-based SCS, burst did in 
fact modulate the affective–emotional components of pain. 
At this time, the effect of burst SCS on the biochemical 
mediators of the pain pathway, such as serotonin, norepi-
nephrine, or opioids is unknown.

High-Frequency SCS
As opposed to traditional paresthesia-based SCS, paresthe-
sia-free SCS uses significantly higher-frequency electrical 
impulses (10 kHz) and lower amplitudes, with ultimately 
no sensations felt by the patient.34 This combination of 
high pulse width and low amplitude ultimately increases 
the duty cycle. While overall understanding of the 
mechanism of action of paresthesia-free SCS is lacking, 
there have been several proposed mechanisms. Linderoth 
et al proposed a neuronal blockade, desynchronization of 
neural signals, and membrane integration leading to the 
equivalent of temporal summation.35 Neuronal blockade 
has been somewhat supported by Lee et al, in which an ex 
vivo patch clamp of spinal cord neurons demonstrated 
suppressed firing with high-frequency stimulation.35 It 
has also been theorized that the temperature increases 
related to the higher power of high-frequency SCS deliv-
ered into the tissue may also be a mechanism of action, or 
at the least a factor in lead positioning and programming. 

Figure 2 Key parameters in dose programming for dorsal column stimulation.
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Energy delivery that is sufficient to induce heating (ie, as 
may be observed in kilohertz-frequency waveforms) may 
modulate spinal activity to harness the gate-control theory 
of pain control via a novel heat mechanism.36,37 Although 
theoretical, heating-based SCS therapy would be influ-
enced by the percentage of stimulation-on time and tissue 
impedance. Changes in complex cerebrospinal fluid 
(CSF)–temperature homeostasis can alter cellular function 
and metabolism, in addition to vascular function. 
Furthermore, it has been hypothesized that temperature 
changes affecting heat shock protein that then modulate 
neuroinflammation may be an additional mechanism of 
action.36,38 The supraspinal effect of paresthesia-free 
SCS is unknown at this time, but has been hypothesized 
to be negligible, due to the primarily superficial neuronal 
tracts affected.34

Insights Gained into Dosing from 
Clinical Studies
Subperception SCS
Thompson et al demonstrated significant clinically 
equivalent pain reduction compared to baseline at 
sequentially decreasing frequencies from 1,000 Hz to 10 
Hz.39 At the same time, the pulse width of the stimulating 
waveform was increased, maintaining subparesthesia sti-
mulation therapy. This study also suggested that high 
frequencies are not needed to produce noteworthy sub-
paresthesia analgesia in SCS. The clinical results are 
compelling, but they are due not so much to frequency 
per se, but profoundly more to the technique of field 
application, incorporating both area distribution enhance-
ment and field vector orientation. Pain relief was 48%– 
52% with all frequencies.39

Burst SCS
In nonlinear burst, charge accumulates over exposed tis-
sue, increasing incrementally with each successive stimu-
latory phase, and is maintained at that level by the 
prolonged interphase delay. Some of this charge tends to 
drift, especially within the CSF, significantly increasing 
the effective pulse width of the compound stimulatory 
waveform. As the charge accumulates, it spreads prefer-
entially along the surface of the spinal cord much more 
than it penetrates the surface to deeper levels, as it follows 
the path of least resistance. This effectively enlarges the 
surface area of the applied field and affects a much larger 
volume of neural elements in the process, thus having 

a larger field of tissue engagement. These multiple depo-
larizations, sequentially increasing in number and intensity 
throughout the burst train, have powerful global influence 
in both orthodromic action potentials to cortical areas and 
antidromic action potentials to the dorsal horn and 
beyond.40 An early report in patients who had previously 
received tonic SCS showed incremental improvements 
when using burst stimulation.41 Later, a randomized con-
trolled trial showed that 60% of participants had at least 
30% pain relief in response to burst SCS vs 51% with 
tonic SCS.42

Work by Vesper et al employed the use of duty cycling 
in what came to be termed microdosing.43 In these 5 
seconds on–5 seconds off and 5 seconds on–10 seconds off 
doses, it was concluded that therapy was not compro-
mised, and less total energy was required. This work was 
expanded by Deer et al, albeit with more nuanced duty 
cycle interval programming that involved alternating 30 
seconds on with up to 360 seconds off.44 After 6 months, 
nearly half the patients selected the 30:360 ratio of stimu-
lation and had good therapeutic outcomes.

In these studies, the concept of dosing using the least 
possible exposure to SCS therapy built on previous con-
cepts described by Miller et al in their attempts to define 
neural dosing in terms of total charge delivery per -
second.21 The authors for both the aforementioned 
microburst studies chose their settings somewhat arbitra-
rily, and considerations of optimal number of pulses per 
burst, optimal amplitudes, and intraburst and interburst 
frequencies were lacking; however, the underlying 
effects on human neurophysiology are being explored 
and have been described in recent studies utilizing neu-
romonitoring as an objective proxy for postsynaptic 
neural effects.45,46 These variables affect both the 
device’s battery life and the biological impact of the 
applied electrical field, and while some of these neural 
effects are being uncovered using human neurophysiolo-
gical measures, future studies will continue to build on 
this knowledge.

High-Frequency SCS
The literature supports the notion there are minimal 
supraspinal effects of high-frequency SCS.47 Specifically, 
there is no evidence that evoked compound action poten-
tials (ECAPs) are produced by this stimulatory waveform, 
and to date there have been no reported PET studies that 
would indicate direct supraspinal mechanisms playing 
a measurable role.
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Recently, al-Kaisy et al described the use of cascade 
programming for high-frequency SCS at their clinic in the 
UK.48,49 Specifically, cascade programming is based on 
duty cycling sequentially through four bipole contact con-
figurations using all eight contacts of the lead (1–2, 3–4, 
5–6, and 7–8). Each bipole of one anode and one cathode 
is activated for 5 seconds and then deactivated as the next 
bipole in the sequence is activated for 5 seconds. As such, 
the entire lead is covered in 20 seconds, during which time 
each bipole is active for 5 seconds and inactive for 15 
seconds. This design mitigates against small lead migra-
tion, long reprogramming sessions to search for optimal 
targeting, and potential overstimulation. Every 20 seconds, 
32 mm is treated in this manner. The choice of a 5-second 
activation time was based on in vitro studies of astrocyte- 
depolarization times during external electrical 
stimulation,50 and this fits within the framework of focus-
ing on glial cell dynamics as part of the overall stimulation 
paradigm. Built within this programming paradigm is the 
duty cycling concept such that no region of the cord is 
exposed to >5 seconds of stimulation every 20 seconds. 
Using cascading in the study, >50% pain reduction was 
achieved in back pain for 57% of patients at 6 months and 
56% at last follow-up, and 60% or patients with leg pain at 
6 months and 59% at last follow-up.48,49

Provenzano et al reported a retrospective review over 
the first 12 months after implantation of 42 patients with 
a high-frequency SCS device for treatment of neuropathic 
pain from a large variety of pain conditions.51 

Interestingly, despite impressive trial successes with 
a trial:implant ratio of 89%, only 39% of patients contin-
ued to have their best pain relief at the same contact 
configuration as used in the trial. Additionally, 73% of 
patients who used duty cycling (switching between on 
and off for set durations) were considered treatment 
responders. One patient was noted to have responded 
equally well at both the T9/10 and T10/11 disk spaces, 
while others required stimulation of multiple areas within 
the programming paradigm to achieve suitable relief. Of 
note, the recharge burdens reported in this study were 
substantial, with an average of 2.1 hours daily. This level 
of energy use is a hallmark of high-frequency stimulation 
programming strategies, with reported recharge times from 
45 minutes to >2.5 hours per day.13,52

ECAP-Controlled Closed-Loop SCS
The ability to measure ECAPs is a more recent advance-
ment within the field of neuromodulation that allows for 

both the study and modification of the delivery of SCS; 
however their use in neuromodulation devices goes back 
to the late 1990s in the cochlear implant field. ECAPs are 
the population response of nerve fibers.53 This is achieved 
through the measurement of the electrical field created by 
the movement of ions across the membrane of the nerve 
axon during an action potential from the initial stimulus.54 

The neurophysiological recordings can then be used to 
determine the recruitment of a subset of fibers in response 
to dorsal column stimulation by utilizing nonstimulation 
recording electrodes to measure ECAPs. Animal studies 
initially demonstrated this in 2012, confirming the theory 
that SCS primarily recruits large-diameter Aβ fibers and 
that the ECAP amplitude increases with increasing current 
level.55 This has also been shown in a human model.56 The 
prospective open-label AVALON study using a closed- 
loop SCS device for patients with chronic back and/or 
leg pain was published in 2018 and with follow-up in 
2020, showing excellent pain relief that was durable over 
time.53,57 Importantly, this demonstrated that the device 
was able both to deliver treatment and measure ECAP to 
adjust therapy by adjusting dorsal column–fiber recruit-
ment levels. A randomized controlled study comparing 
ECAP-controlled closed-loop SCS with open-loop SCS 
by Mekhail et al showed that pain outcomes were better 
in the closed-loop group after 3 and 12 months of treat-
ment (72% overall VAS reduction at 12 months in the 
closed-loop group and 56% reduction in the open-loop 
group). Furthermore, patients in the closed-loop group 
had ECAP amplitudes that were within the therapeutic 
range a much greater proportion of the time than patients 
in the open-loop group; however, the proportion of 
increased time spent in this paresthesia-inducing window 
(12 months closed loop 95%, open loop 48%) did not 
equate to an equivalent ratio of pain relief.58 This discre-
pancy will need to be explored in future studies.

Dosing in SCS: The Mechanisms
The dose of an administered electrical field to a neural 
target is a very complex combination of variables: polarity 
of the electrical field; frequency; amplitude; shape of the 
stimulatory waveform; effective impedance of spinal tis-
sue and impedance of internal elements of the device, both 
implantable pulse generator and leads; effective pulse 
width; distribution of charge over the targeted area; instan-
taneous rate of change of this charge distribution; three- 
dimensional vector properties of the field; and mass and 
complexity of neuronal tissue exposed to applied electrical 
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fields. In addition, the stimulation-on vs -off ratio, CSF 
thickness and other complex spinal anatomy, circulation of 
CSF, lead encapsulation, lead positioning, and electrode 
configurations affect how much stimulus is delivered to 
the spinal target.21,59–64 Changes in any one variable may 
affect overall dosing. An anatomically realistic computa-
tional model of SCS has been developed and can help 
researchers understand the interactions of complex tissue 
compartments in terms of impedance.62 It has also been 
noted that actual stimulation output may be lower than the 
as-programmed stimulation:37 a “governor” function 
established by regulatory requirements to maintain safe 
levels of electrical stimulation. If unaware of this, clini-
cians could dramatically misinterpret the implications of 
their programming choices.

The field polarity is either negative (cathode) or posi-
tive (anode), and the applied field voltage repels the nega-
tive charge from the anode toward the cathode where it 
accumulates simultaneously with the positive charge accu-
mulating under the anode. This interphase delay is 
the period when no electrical charge is moving relative 
to the lead contacts of the device. This certainly does not 
mean the charge is not undergoing tissue penetration or 
slight dispersion in the CSF at the surfaces of exposed 
tissue. We have yet to fully understand exactly how the 
charge accommodates itself along the surface(s) of the 
biological tissue to which it has been applied.59

The shape of the stimulatory waveform represents this 
instantaneous variation in field intensity. The recruitment 
of neurons under the influence of a sinusoidal waveform 
will be quite different from the recruitment expected under 
a square waveform. Both these waveforms will recruit 
different-size axons or glial elements in a manner different 
from an exponential stimulatory phase or a randomly 
applied series of square waves of randomly generated 
frequencies and amplitudes. It is reasonable to think that 
various waveforms could achieve differential tissue 
responses in neurons and glial cells. To prove the point, 
a very simplistic set of waveforms was applied by Vallejo 
et al in an animal model of chronic neuropathic pain.65 

They then examined the genomic consequences of these 
various waveforms in different types of glial and neuronal 
cells to determine differences in transcription and produc-
tion of proteins caused by the waveforms that showed 
clear differences. While this work helped expand knowl-
edge in this field, the glial and neuronal structures exam-
ined resided directly below the applied electric fields, and 
typical SCS-electrode placement in the spinal canal (T7– 

T10) is not located above the corresponding neuronal and 
glial cells’ receptive fields for low-back and leg pain 
(lumbar enlargement, T12–L2). This anatomical distance 
between electrical field and target tissue must be explored 
and accounted for before these preclinical results can be 
generalized to the clinical population. The prevalent theme 
in work across multiple SCS waveforms is that higher 
doses of electricity significantly increase the surface area 
of the spinal cord covered by the stimulatory waveform. 
Together with the biological and clinical status of the 
targeted field, this can greatly influence the efficacy of 
the therapy.

PET CT or MRI have been used to image activated 
microglia with radioligands targeting the transporter pro-
tein TSPO in the spinal cord, and may provide a guide to 
determining optimal field targeting for paresthesia-free 
stimulatory waveforms.66 The maximal area of neuroin-
flammation in the spinal cord may not be located at the 
anatomical site determined by paresthesia-guided target-
ing. The area of neuroinflammation in the cord of greatest 
concern for neuropathic pain is within the gray matter of 
the dorsal horn. This is where the multiple areas of neural 
circuitries involved in central sensitization and wind-up 
phenomena are most likely to occur. Because all SCS is 
a surface-related phenomenon, sensory fibers must gain 
dorsal exposure to be recruited by the applied electrical 
field, and this may require as much as the width of a whole 
vertebral body in the lower area of the thoracic spinal 
cord. The sensory perception of paresthesia-guided target-
ing over the dorsal columns is often removed at a distance 
from the region of the dorsal horn where neuroinflamma-
tory processes associated with neuropathic pain are con-
centrated, as noted previously.

Briefer exposure has a lower risk of overstimulation. 
This may explain why the outcomes of the Sunburst study 
were not as robust as had been expected and did improve 
with decreasing target amplitudes.42 Further studies are 
under way to more fully evaluate the use of this technique 
and other techniques to reduce stimulation dose. The use 
of on–off stimulation patterns has now become prevalent 
in all the paresthesia-free waveforms as a means to avoid 
potential overstimulation.

Another theme has been to incorporate a global therapy 
by combining both orthodromic and antidromic SCS ther-
apy. The bursting paradigm creates orthodromic modula-
tion at the cortical level, capable of affecting both the 
discriminative and affective components of chronic neuro-
pathic pain. On the other hand, 10 kHz SCS has not 
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specifically demonstrated any direct neurophysiological 
supraspinal activity,47 its effects appear to be much more 
local, and there is a trend within the industry to promote 
the blending of paresthesia-based sensory stimulation with 
paresthesia-free stimulation. Because stimulation can be 
incremental, with periods of stimulator activation alternat-
ing with periods of inactivity (“off” periods), there is 
ample time to add a bit of paresthesia-based sensory sti-
mulation to distract pain awareness in the hope of bringing 
on more rapid pain relief. Paresthesia-free stimulation 
tends to be notoriously slow in onset, especially if its 
primary modus operandi is local, as it should be for 
purposes of safety and durability of therapy. However, in 
an industry that developed during the age of paresthesia- 
based sensory stimulation, it can be culturally burdensome 
to wait for the onset of efficacy. There is no rigorous 
medical evidence to pursue this approach. Instead, there 
is evidence to the contrary. Subjects exposed to conven-
tional paresthesia-based therapy fared less well with sub-
sequent paresthesia-free therapy during a crossover 
clinical trial.42 It should also be noted that blending these 
stimulation modalities is at odds with the concept of lower 
neural doses, as they often use much higher levels of 
energy to interleave or simultaneously stimulate at multi-
ple frequencies, pulse widths, and amplitudes. These stra-
tegies should not be confused with strategies that attempt 
to lower the electrical energy applied to the target tissue. 
Another significant difficulty with the concept of blending 
paresthesia-free therapy with paresthesia-based therapy is 
the inability to separate the true responders from the pla-
cebo responders using this programming paradigm. Also, 
the effects of antidromic stimulation from paresthesia- 
based therapy could drastically counteract the effects of 
paresthesia-free therapies, as these interactions have not 
been adequately studied. Additionally, the combination of 
therapies could result in overstimulation, due to neuroplas-
ticity and higher energy use. As such, until the nature of 
cognitive distraction, potential for placebo response, and 
counterproductive potential of paresthesia-based treat-
ments if blended with paresthesia-free therapy are under-
stood, this integrated trend requires more research.

Each of these trends impact considerably on our 
notions of “neural dosing” and must be considered as we 
further develop a neural dosing approach to therapy.
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