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ABSTRACT

N6-methyladenosine (m6A) is the most abundant
form of mRNA modification and controls many as-
pects of RNA metabolism including gene expres-
sion. However, the mechanisms by which m6A reg-
ulates cell- and condition-specific gene expression
are still poorly understood, partly due to a lack of
tools capable of identifying m6A sites that regulate
gene expression under different conditions. Here we
develop m6A-express, the first algorithm for predict-
ing condition-specific m6A regulation of gene ex-
pression (m6A-reg-exp) from limited methylated RNA
immunoprecipitation sequencing (MeRIP-seq) data.
Comprehensive evaluations of m6A-express using
simulated and real data demonstrated its high pre-
diction specificity and sensitivity. When only a few
MeRIP-seq samples may be available for the cellu-
lar or treatment conditions, m6A-express is partic-
ularly more robust than the log-linear model. Using
m6A-express, we reported that m6A writers, METTL3
and METTL14, competitively regulate the transcrip-
tional processes by mediating m6A-reg-exp of dif-
ferent genes in Hela cells. In contrast, METTL3 in-
duces different m6A-reg-exp of a distinct group of
genes in HepG2 cells to regulate protein functions
and stress-related processes. We further uncovered
unique m6A-reg-exp patterns in human brain and in-
testine tissues, which are enriched in organ-specific
processes. This study demonstrates the effective-
ness of m6A-express in predicting condition-specific
m6A-reg-exp and highlights the complex, condition-

specific nature of m6A-regulation of gene expres-
sion.

INTRODUCTION

N6-methyladenosine (m6A) is the most abundant methyla-
tion in mRNA, found in >25% mRNAs in mammalian cells
and forms an important regulatory circuitry that controls
many aspects of RNA metabolism (1–8). It is enriched in
regions close to the stop codon with a consensus RRACH
motif (R = G or A; H = A, C, or U) (9). Unlike DNA
methylation, m6A is highly dynamic (10); it is catalyzed
by ‘writers’ or m6A methylases, including METTL3 and
METTL14 (11), and can be removed by ‘erasers’ such as
ALKBH5 (12) and m6A demethylases (FTO) (10). m6A has
been shown to influence diverse cellular and biological pro-
cesses including dopaminergic midbrain circuity (13), cir-
cadian period (6,14), fertility (7,14) and sex determination
(15,16), development (1,2,14), cell reprogramming (17–19)
and meiosis (20). Evidence of m6A’s involvement in different
diseases, especially cancer, is accumulating. FTO is shown
to promote leukemic cellular transformation and leukemo-
genesis (14,21). The breast cancer stem cell phenotype is in-
duced by hypoxia in an ALKBH5-dependent manner, and
knockdown of ALKBH5 in MDA-MB-231 breast cancer
cells significantly reduces their capacity for tumor initiation
(22,23). METTL3 promotes growth, survival and invasion
of human lung cancer cells by facilitating the translation
initiation of certain cancer mRNAs (24). METTL14 and
ALKBH5 form a positive feedback loop to regulate breast
cancer growth and invasion (25). Also, m6A is found to be
involved in viral infection of HIV (26,27), hepatitis C virus
(28), Zika virus (29) and Kaposi’s sarcoma-associated her-
pesvirus (KSHV) (30,31). While m6A’s close involvement in
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many processes and diseases is clear, specific mechanisms
by which m6A regulates downstream processes and pheno-
types in different conditions are still elusive.

Under different conditions, m6A can mediate different
stages of mRNA metabolism including translation, nuclear
export, splicing and mRNA degradation (32) by recruiting
different ‘reader’ proteins including YTH family proteins
and their cofactor RNA-binding proteins (RBPs). Among
many processing stages controlled by m6A, the primary
mode of m6A post-transcription regulation is mRNA sta-
bility regulation. While all YTHDF1-3 selectively bind to
m6A sites to promote mRNA decay (33), YTHDF2 has the
strongest affinity to degrade the targeted mRNAs (34). In
contrast, readers IGF2BP1-3 stabilizes mRNA by interact-
ing with cofactors HuR and MATR3 (35). These readers
recognize distinct m6A sites in CDS and 3’UTR and ex-
hibit condition-specific binding density (35). Here, we refer
to condition-specificity as either the specific cell conditions
such as stress and viral infection or different cell types. This
m6A regulation of gene expression is also highly condition-
specific, partly due to the dynamic expressions under differ-
ent cell types, cell conditions and divergent cellular local-
ization of m6A effectors (writers, erasers and readers). This
condition-specific regulation provides the unique ability for
m6A to tune gene expressions. However, the highly dynamic
nature of m6A regulation of gene expression complicates
our understanding of the mechanisms by which m6A reg-
ulates its downstream functions.

The widespread adoption of high-throughput m6A pro-
filing methods, especially methylated RNA immunopre-
cipitation sequencing, or MeRIP-seq (9,36) and rapid ad-
vances in machine learning provide an opportunity to com-
putationally predict condition-specific m6A regulation of
gene expression (m6A-reg-exp). There is a large collec-
tion of algorithms devoted to predicting m6A sites from
mRNA sequences (37–43). They are useful in assessing
condition-independent methylation potentials of a candi-
date site, but they nevertheless do not inform condition-
specific m6A modifications. Informatics tools for MeRIP-
seq-based m6A peak detection [exomePeak (44,45), MeT-
Peak (46) and deep-m6A (47)], differential m6A analysis [ex-
omePeak, MeTDiff (48), QNB (49) and RADAR (50)] and
visualization [Guitar (51)] have also been developed. They,
particularly exomePeak, are now widely adopted to iden-
tify condition-specific m6A methylations in many studies
(35,52–58). As the focus of m6A research shifts from dis-
covery to functional studies, computational tools that fa-
cilitate the prediction of m6A functions have also emerged.
m6A-Driver (59), hot-m6A (47) and FunDMDeep-m6A (60)
were developed to predict m6A driver genes and networks
from MeRIP-seq. Both hot-m6A and DRUM (61) are tools
for predicting m6A disease associations. A co-methylation
network approach was also established in (62) and identi-
fied a set of cell-specific m6A co-regulating RBPs. However,
none of these tools can be used to infer condition-specific
m6A-reg-exp.

In this paper, we developed m6A-express, the first tool for
predicting condition-specific m6A-reg-exp from MeRIP-
seq (See Supplementary Table S1 for comparison with other
tools). m6A-express is based on a log-linear relationship be-
tween m6A intensity and gene expression, found enriched

in genes harboring m6A sites that regulate gene expres-
sion. However, a common challenge in studying condition-
specific m6A regulatory functions is the limited MeRIP-seq
replicates. To combat this limitation and enable robust pre-
diction, m6A-express adopts a hierarchical Bayesian formu-
lation. We comprehensively validated m6A-express’s perfor-
mance using both simulated and real MeRIP-seq datasets.
We showed that m6A-express significantly improved the ro-
bustness of predicting m6A-reg-exp and estimating the reg-
ulation strength over the commonly used log-linear model
under small samples and other experimental settings, and
it achieved higher prediction specificity, precision and sen-
sitivity. We applied m6A-express to predict METTL3- and
METTL14-mediated m6A-reg-exp in HeLa cells and re-
vealed a competitive transcription regulation. Compar-
ing METTL3-mediated m6A-reg-exp between Hela and
HepG2 cells, we observed a distinct condition-specific (or
cell-specific) m6A regulation with distinct gene sets and
regulation functions. We further applied m6A-express to
MeRIP-seq samples of human brain and intestine tissues
and observed clear condition-specific (or organ-specific)
m6A-reg-exp that involved in distinct, organ-related func-
tional pathways. Taken together, m6A-express is a powerful
data-driven, hypothesis-generating tool that can accelerate
the investigation of the mechanistic roles of m6A in mediat-
ing gene expression and downstream biological processes.

MATERIALS AND METHODS

Overview of the m6A-express framework

We consider a scenario where transcriptome-wide m6A un-
der different conditions (treated/disease versus control; dif-
ferent tissues/infection stages) are profiled by MeRIP-seq.
Note that m6A-express is not restricted to MeRIP-seq but
can be applied to any high-throughput methods such as
MAZTER-seq or nanopore sequencing (63,64) that quan-
tify m6A stoichiometry. We assume that for an m6A site that
regulates mRNA expression, the change of its m6A level is
predictive of the change in the expression level of the methy-
lated gene, where the m6A level is quantified by MeRIP-seq
IP reads and the expression is measured by MeRIP-seq In-
put reads. m6A-express is an algorithm designed to assess
the degree to which such a predictive relationship exists be-
tween m6A levels and gene expressions for the specific con-
ditions under consideration.

Before applying m6A-express, m6A peaks are first identi-
fied from each MeRIP-seq sample using exomePeak (Fig-
ure 1 and Supplementary Figure S1). The m6A intensity
for each gene that harbors m6A peaks is computed (Peak
Calling and Quantifying Subsection; Supplementary Fig-
ure S1). We then select candidate genes based on the fol-
lowing criteria: when two conditions (treated versus con-
trol) are considered, candidate genes are differential expres-
sion genes that harbor differential m6A peaks (or DE-DM
genes); otherwise, when there are more than two conditions
(multiple tissue types or time points), candidate genes are
those that contain highly variable m6A peaks (Supplemen-
tary Figure S1). Afterward, m6A-express is applied to all
the candidate genes. m6A-express uses a negative binomial
regression model to assess the regulatory impact of m6A
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Figure 1. Overview of m6A-express prediction pipeline.

intensity (MeRIP-seq IP) on the expression level (MeRIP-
seq Input) for each candidate gene. A key model param-
eter β1 represents the mode (positive or negative) and the
strength of the m6A regulation of gene expression. Once
the model parameters are inferred, the Wald test is used
to test if the m6A intensity of a candidate gene could reg-
ulate its gene expression. The candidate genes test signif-
icant for FDR < 0.05 by the Wald test are termed m6A-
reg-exp genes, whose m6A intensities are predicted to reg-
ulate their gene expressions. Among the outputs of m6A-
express are a list of m6A-reg-exp genes, their associated reg-
ulatory mode and strength (β1), the methylation intensi-
ties and the gene expression levels. m6A-express is imple-
mented as a python/R package and is freely available at
https://github.com/Yufei-Huang-Lab/m6Aexpress.

Sample normalization

INPUT and IP samples were normalized to reduce the
bias such as outliers, sequencing library size variations and
sample-wise IP efficiency difference. For the INPUT sample
normalization, we adopted the median-of-ratio method for
INPUT sample normalization; this method is similar to the

size factor normalization in DESeq (65), which was shown
to be robust against gene expression outliers. For the IP
samples, to reduce the bias from sequence depth and over-
all IP efficiency, all the peaks’ reads count was first summed
up to obtain an IP library size. Then, the median-of-ratio
method was applied for IP sample normalization.

Peak calling and quantifying the methylation intensity

For concerned conditions, m6A peaks were called from all
the replicates using the exomePeak R package (44). Then,
the methylation intensity of the k-th peak of gene i in sample
j , Mkij, was computed as the log of the normalized IP read
counts divided by the normalized INPUT read counts

Mki j = log2

(
CI P,ki j/SI P, j

CI NPUT,ki j/SI NPUT, j

)

where CI P,ki j and CI NPUT,ki j are the read counts of in
the paired IP and INPUT sample, respectively, and SI P, j
and SI NPUT, j are the sample size factors for the paired IP
and INPUT sample obtained during normalization, respec-
tively. The effective methylation intensity xi j for gene i in
sample j is then computed as the weighted average of the
peak intensities, i.e.,

xi j =
∑K

k=1 xki j

K
, xki j = Mki j e−(dki /d0)

where K is the number of peaks in gene i , Mki j is the methy-
lation intensity of peak k, dki is the distance between the
center of peak k, and the stop codon and d0 is a decay coef-
ficient, set by default as the 75% quantile of all distances be-
tween the peaks and their corresponding stop codon (Sup-
plementary Figure S3) but can be defined by the user. The
exponential term in xki j models two factors: (i) m6A sites
that regulate mRNA stability are enriched near the stop
codon (34), and (ii) the regulatory effect of m6A intensity
is scaled down for peaks away from the stop codon.

Quantifying gene expression and differential expression

The gene expression was quantified by the reads count from
INPUT data using featureCounts function, which is part of
R/Bioconductor package Rsubread (66) under the default
setting. Differential expression analysis was performed us-
ing DEseq2 (67) (R/Bioconductor), and significant differ-
entially expressed genes (DEGs) were selected with FDR <
0.05.

Identifying candidate genes

For the treated versus control cases, the candidate genes are
differentially expressed genes with differential m6A peaks.
Differential m6A peaks were identified by QNB (49) un-
der the default setting as the peaks showing significant dif-
ferences in peak fold enrichment with P-value < 0.05. For
cases with multiple sub-conditions (i.e. different time-points
or different tissues), the candidate genes are those contain-
ing highly variable peaks (HVPs), which were defined as
peaks having a high coefficient of variations (CVs), or CVs
> 0.3 as suggested in (62) and demonstrated in Supplemen-
tary Figure S4, where CV was computed as the standard

https://github.com/Yufei-Huang-Lab/m6Aexpress
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deviation of the methylation intensity divided by the mean
of the methylation intensity across samples from multiple
conditions.

The m6A-express model and predicting m6A-reg-exp genes

The log-linear relationship between gene expression and m6A
intensity. To investigate the relationship between m6A
level and gene expression, we predicted the m6A peaks using
exomePeak in the MeRIP-seq dataset of METTL3 knock-
down (KD, n1 = 2) and wildtype (WT, n2 = 2) HeLa cells
(GSE46705). We first inspected FOXM1 and CREBBP,
two cancer target genes whose mRNA stability was shown
to be regulated by m6A in cancer (34,68). We found that
their normalized gene expression could be regressed by the
intensities of their associated m6A peaks by a log-linear
model (Supplementary Figure S5). To verify this relation-
ship at a larger scale, we consulted the mRNA lifetime
data of METTL3 KD and WT HeLa cells (GSE98856).
Because m6A induces mRNA decay, METTL3 KD would
increase lifetime among its target mRNAs (69), thus in-
fluencing a change in gene expression. We identified 258
genes whose mRNA lifetime increased and significantly up-
regulated after METTL3 KD (FDR < 0.05); these genes are
high confidence candidates for genes whose mRNA stabil-
ity is regulated by m6A. Furthermore, we found that among
the genes whose m6A levels regulate their mRNA stabil-
ity, those whose normalized gene expressions could be re-
gressed by their m6A intensities with a log-linear model are
significantly enriched (P-value = 7.56 × 10–16; odds ratio =
34.2; Fisher’s exact test; Supplementary Table S2).

The hierarchical Bayesian negative binomial (NB) regres-
sion model for limited samples. However, due to limited
MeRIP-seq replicates used in most studies (often as few as
two or three replicates per condition), the conventional log-
linear model lacks the power and sensitivity to predict m6A-
reg-exp. To address this limitation, m6A-express employs a
Bayesian negative binomial (NB) regression model to model
the relationship between the read count (expression level)
yi j and m6A intensity xi j of a candidate gene i in sample j

yi j ∼ NB
(
Sjμi j , αi

)
; log

(
μi j

) = βi0 + βi1xi j (1)

where Sj is the sample size-factor of the INPUT sample
obtained from the normalization process, αi is the disper-
sion parameter of gene i , μi j is the normalized expression
of gene i in sample j, which is modeled as a log-linear func-
tion of xi j in Equation (1), with the parameters βi0 modeling
the baseline log gene expression and βi1, the key parameter,
denoting the mode (positive or negative) and degree of in-
fluence of m6A methylation on gene expression. To enable
robust estimation of model parameters with limited sam-
ples, m6A-express implements a hierarchical Bayesian strat-
egy (Supplementary Figure S2) to imposes a set of prior
distributions on βi1 and other model parameters, which
are shared across genes. The shared prior model distribu-
tions allow m6A-express to pool information across genes
to improve individual genes’ prediction power and robust-
ness over the log-linear model that separately considers each
gene’s prediction. More details on the model inference and

m6A-reg-exp gene prediction are given in Supplementary
Methods, where maximum a posteriori (MAP) estimates
of model parameters (βi0, βi1) are derived [Supplementary
Methods, Equation (10)] and obtained using a custom im-
plemented empirical Bayes method.

Predicting m6A-reg-exp genes and assessing the significance.
Because βi1 = 0 would suggest that m6A has no impact on
the expression of gene i , once the model parameters are in-
ferred, the Wald test is applied to test whether a candidate
gene i is an m6A-reg-exp gene by

H0 : βi1 = 0 vs. H1 : βi1 �= 0.

The Benjamini-Hochberg (BH) (70) procedure will be ap-
plied to obtain the FDR value for each gene, and m6A-reg-
exp genes will be selected by FDR < 0.05.

The simulated datasets

To evaluate the performance of m6A-express and assess the
impact of experimental factors on the inference and pre-
diction performance, we applied m6A-express to the simu-
lated datasets of two conditions. The simulated datasets in-
clude paired gene expression level and methylation intensity
(both in read count unit) for genes under two conditions.
To mimic the real scenarios, we utilized the MeRIP-seq
dataset of METTL3 knockout (KD) and wild-type (WT)
HeLa cells (M3-KD-HeLa; GSE46705) to build our simu-
lation of read counts and methylation intensities for repli-
cates of each condition. We first applied the QNB pack-
age (49) to detect the differential peaks in METTL3 KD
versus WT conditions. For genes containing these differen-
tial m6A peaks, we used DEseq2 to assess their differential
expression. The genes significantly differentially expressed
(FDR < 0.05) and differentially methylated (DE-DM) were
selected as candidate genes.

We further assumed the methylation intensity xi j of gene
i in sample j following a Gaussian distribution, i.e. xi j ∼
N (x̄i , σi

2) and we used methylation intensities of the can-
didate genes to estimate the parameters x̄i and σi

2 for each
gene i (Supplementary Methods S1.4 and Supplementary
Figure S6). Using x̄i and σi

2, we simulated methylation in-
tensity for the Gaussian distribution for each gene in each
replicate under two conditions. Next, given the read count
of the INPUT samples and methylation intensity of these
DE-DM genes, we fitted the log-linear model to estimate the
regression coefficients βi0 and βi1 for each gene separately
(Supplementary Methods S1.5 and Supplementary Figure
S7). To assess the impact of different m6A regulation levels
on m6A-express performance, we stratified the regulation
levels based on the empirical distribution of βi1 into three
categories, i.e. weak ( μβ1 = −0.3), medium ( μβ1 = −0.6)
and strong ( μβ1 = −1.28) regulatory strength (Supplemen-
tary Methods S1.5). We estimated hyper-parameters of the
normal prior of βi0 and βi1 for three different regulation lev-
els based on the destructions of βi0 and βi1 estimated from
the real data. Then, for a given regulation level, the coeffi-
cients βi0 and βi1 for gene i were simulated from their corre-
sponding normal priors βi1 (Supplementary Methods S1.5).
We simulated both genes whose expression is regulated by
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m6A or m6A-reg-exp genes and those with no regulation
or non-m6A-reg-exp genes. When simulating non-m6A-reg-
exp genes, we set βi1 = 0.

After generating the methylation intensity xi j and regres-
sion coefficients βi0 and βi1 for each gene, the normalized
expected gene expression μi j and dispersion αi were calcu-
lated and the read count yi j of gene i in j th sample was
simulated from the negative binomial distribution (Supple-
mentary Methods S1.6).

Identifying genes with increased RNA half-life

The mRNA lifetime data of METTL3 KD versus Con-
trol and YTHDF2 versus Control were processed accord-
ing to the pipeline in (69). Briefly, for each gene, the RNA-
degradation rate was determined as the log2 fold-change in
RNA abundance (quantified by RPKM) at 3 or 6 h versus
0 h after transcription inhibited. Then, the average degra-
dation rate of 3 and 6 h was used to calculate the RNA
half-life per gene in each condition (METTL3/YTHDF2
KD or Control). The fold-change of RNA half-life between
two conditions (e.g. METTL3 KD versus Control) were
used to quantify the difference of RNA half-life. We deter-
mined the genes with consistent fold-change > 1.1 in single
(for METLL3 KD) or two replicates (for YTHDF2 KD) as
those with increased half-life.

Identifying YTHDF2 binding clusters

YTHDF2 binding clusters were identified from PAR-CLIP-
seq data (GSE49339) by PARalyzerV1.1 with default set-
tings (71).

MeRIP-seq datasets

We selected three case studies to assess m6A-express pre-
dictions. The first two examines METLL3/METTL14-
mediated m6A-reg-exp in cancer cell lines and the last study
investigates global m6A-reg-exp in human brain and intes-
tine tissues. They are summarized as follows.

MeRIP-seq data from human cancer cell lines. The
MeRIP-seq dataset from the HeLa cell line (GSE46705)
includes two replicates of IP and INPUT samples from
METLL3 KD, METTL14 KD and WT HeLa cells. The sec-
ond dataset derived from the HepG2 cell line (GSE102620)
consists of two replicates of IP and INPUT samples from
METTL3 KD and WT HepG2 cells. Raw sequence data
from both datasets were download from the Sequence Read
Archive (SRA, NCBI) and corresponding metadata from
the Gene Expression Omnibus (GEO, NCBI).

MeRIP-seq data from the human brain and intestine tis-
sue. The MeRIP-seq samples from different human brain
and intestine tissues (CRA001315) were collected from the
Genome Data Archive (China National Center for Bioin-
formation) (72). The brain tissue samples (N = 6) include
one sample each from the hypothalamus and brainstem
(from donor #5), two cerebellum samples (from donors
#5 and #6) and two cerebrum samples (from donors #5

and #7). The intestine tissue samples (N = 8) include two
duodenum samples (donors #5 and #3), two jejunum sam-
ples (from donors #4 and #5), two appendix samples (from
donors #3 and #5) and two rectum samples (from donors
#4 and #5).

mRNA lifetime and YTHDF2 PAR-CLIP-seq datasets

mRNA lifetime data from HeLa cells include one
set of METTL3 KD versus Control (GSE98856)
and two replicates of YTHDF2 KD versus Control
(GSE49339). YTHDF2 PAR-CLIP-seq data from HeLa
cells (GSE49339) include three replicates with overexpres-
sion of flag-tagged YTHDF2. Raw data were downloaded
SRA and corresponding metadata from the GEO.

RESULTS

Performance of m6A-express

m6A-express is robust against the regulation strength, num-
ber of m6A-reg-exp genes and small number of replicates.
We first assessed the impact of experimental factors on the
inference and prediction performance of m6A-express using
the simulated datasets. We first investigated the estimation
of regulatory strength, β1, from the data generated based on
different regulatory strengths (weak, medium and strong)
and different sample replicates (two, three and four) where
we simulated 2000 m6A-reg-exp genes for each experimental
condition. We compared the normalized root mean square
errors (NRMSEs) of estimated β1 from m6A-express and
the conventional log-linear model. m6A-express obtained
much smaller NRSMEs for all these different experimental
conditions and the improvement is especially pronounced
for estimating weak regulations with fewer replicates (Fig-
ure 2A and Supplementary Table S3). For two replicates
with the weak strength, m6A-express achieved >12-fold re-
duction in NRMSE compared with the log-linear [0.3492 ±
0.0118 (m6A-express) versus 4.4849 ± 0.4378 (log-linear)].
Also, for the log-linear, we observed that NRMSEs drop
quickly with more replicates or regulation strength. In con-
trast, thanks to the hierarchical Bayesian model, m6A-
express maintained low NRMSEs across different regula-
tory strengths and sample replicates with much smaller
standard deviations in NRMSEs. We further evaluated the
impact of the number of m6A-reg-exp genes on the estima-
tion of β1. We simulated three replicate data sets generated
from 600, 800 and 1200 m6A-reg-exp genes with different
regulatory strengths. We noticed that the number of m6A-
reg-exp genes had little impact on m6A-express and log-
linear model’s performance, but the log-linear model has
higher NRSME and variation than m6A-express (Figure
2B). Taken together, these results demonstrate that m6A-
express has a much better performance for estimating β1
than that from the log-linear model, and its performance
is also more robust than the log-linear model against the
regulation strength, replicates and the number m6A-reg-exp
genes.

We then evaluated the performance of m6A-express for
detecting m6A-reg-exp genes (Figure 2C). Again, we first
tested for the different number of replicates and regulatory
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Figure 2. Performance of m6A-express and the log-linear evaluated using the simulation data. (A) Normalized root-mean-square error (NRMSE) of
estimating β1 for different regulatory strengths with different replicates. (B) NRMSE of estimating β1 for different numbers of simulated m6A-reg-exp
genes with three replicates. (C) AUCs of detecting m6A-reg-exp genes under different regulatory strengths with different replicates. (D) AUCs of detecting
m6A-reg-exp genes for different numbers of simulated m6A-reg-exp genes under different regulatory strengths with three replicates.

strengths. For each condition, we simulated 1000 m6A-reg-
exp genes and 1000 non-m6A-reg-exp genes (β1 = 0). We
applied both m6A-express and the log-linear model to esti-
mate the regulation coefficient β1 of these 2000 genes and
predicted m6A-reg-exp genes. We used the area under the
receiver operating characteristic curve (AUC) to measure
the prediction performance. Similar to the results for β1 es-
timation, m6A-express significantly outperformed the log-
linear model for all regulation strengths (Figure 2C and
Supplementary Table S4). We observed that with only two
replicates, m6A-express could achieve 91.08% and 96.25%
AUC for the medium and strong strength (Supplementary
Table S4). Specifically, m6A-express achieved the highest

AUC improvements (11% AUC for the weak and 12% AUC
for the medium strength) over the log-linear model for two
replicates. Even though the improvement tapered with the
increase of replicates and regulatory strength, m6A-express
still reported ∼6% improvement for four replicates under
the strong the weak strength. We further investigated the
influence of different numbers of m6A-reg-exp genes (600,
800 or 1200 m6A-reg-exp genes out of 2000 simulated genes)
on the predictive power of m6A-express under three regu-
latory strengths (Figure 2D and Supplementary Table S5).
Again, both m6A-express and the log-linear model’s AUCs
increased with higher regulatory strength with m6A-express
achieved 6–8% AUC improvement over the log-linear. Due
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mainly to the hierarchical Bayesian model, the performance
of m6A-express especially improved with a higher num-
ber of m6A-reg-exp genes at weak and medium regulatory
strength. In contrast, the number of regulatory genes has
no impact on the performance of the log-linear model. Col-
lectively, our results show that m6A-express has robust per-
formance under different regulatory strengths and sample
sizes.

m6A-express produces higher specificity, precision and sen-
sitivity in real MeRIP-seq data. We further assessed the
performance for m6A-express using three real MeRIP-seq
datasets: METTL3 KD and WT HeLa cells (M3-KD-
HeLa; GSE46705, n = 4), METTL14 KD and WT HeLa
cells (M14-KD-HeLa; GSE46705, n = 4), and METTL3
KD and WT HepG2 cells (M3-KD-HepG2; GSE102620,
n = 4). For each dataset, we first detected 1401 (in M3-
KD-HeLa), 900 (in M14-KD-HeLa) and 433 (in M3-KD-
HepG2) DE-DM candidate genes, which were subject to
the prediction of m6A-reg-exp by m6A-express and the log-
linear model. To evaluate the specificity of the two models,
we adopted a similar strategy as (50): gene expression read
counts and methylation intensities were randomly shuffled
separately (for each gene) among different samples indepen-
dently. The permutated expression read count and methyla-
tion intensity of each gene were then used as the input data
to m6A-express and the log-linear to assess the false-positive
rate. We observed much fewer genes with small P values
close to zero for m6A-express than the log-linear in all three
datasets (Figure 3A), demonstrating a much lower false-
positive rate and thus higher specificity for m6A-express.
Particularly, at the significant level of P value = 0.05, m6A-
express committed only ∼1/3 of the false positive predic-
tions by the log-linear (Figure 3B).

We next assessed the prediction precision of the two mod-
els. Because the precision could be estimated as 1 − Np/No,
where Np and Noare the numbers of significant genes in
the permuted data (false positives) and the original data
(predicted positives), respectively, we applied both models
to the original data and prediction P values for each gene
(Figure 3C) and then evaluated prediction precisions for 3
data sets (Supplementary Table S6). m6A-express has higher
precisions (0.921–0.967) than the log-linear (0.667–0.852) at
the significant level of 0.05, outperforming the log-linear for
∼10–26% (Supplementary Table S6).

Next, we evaluated the prediction sensitivity from the
original data by the two models. To control the false dis-
covery rate, we computed FDRs using the BH method.
Due to a lack of ground truth of m6A-reg-exp genes, we
examined the numbers of detected m6A-reg-exp genes at
FDR < 0.05. Specifically, m6A-express detected 739 (for
M3-KD-HeLa), 491 (for M14-KD-HeLa) and 84 (for M3-
KD-HepG2) more significant m6A-reg-exp genes than the
log-linear (Figure 3D,E). Because m6A-express has higher
precision, this result implies that m6A-express also had a
higher sensitivity than log-linear in all three real datasets
(Figure 3D). Taken together, these assessments using the
real datasets verified again that m6A-express could achieve
higher specificity and precision while maintaining a greater
sensitivity than the log-linear model.

Distinct m6A regulation of gene expression in different cancer
lines

METTL3 and METTL14 competitively regulate transcrip-
tion by mediating different m6A-reg-exp in Hela cells. To
understand the role of human m6A methyltransferase
METTL3 and METTL14 in mediating m6A-reg-exp, we
predicted m6A-reg-exp in M3-KD-HeLa and M14-KD-
HeLa using m6A-express. Out of 1401 (in M3-KD-HeLa)
and 900 (in M14-KD-HeLa) candidate DE-DM genes,
m6A-express identified 813 and 529 significant (FDR <
0.05) m6A-reg-exp genes, respectively (Figure 4A). Among
them, 710 (87.33%) in M3-KD-HeLa and 475 (89.79%) in
M14-KD-HeLa were predicted to have negative β1 (Fig-
ure 4A and Supplementary Figure S8), suggesting that both
METTL3 and METTL14 mediated mostly m6A-dependent
down-regulation of gene expression. Several of these pre-
dicted negative regulations are also reported in the m6ADD
(73) and m6A2Target (74) databases (Supplementary Ta-
ble S7). This result supported m6A’s key role in promoting
mRNA decay (34).

We next examined the m6A peaks in these m6A-reg-exp
genes and found an average of ∼1.5 peaks per gene (1054
peaks in 813 genes in M3-KD-HeLa and 835 peaks in
529 genes in M14-KD-HeLa). Meta-gene analysis of peak
loci using Guitar (51) showed that these peaks were en-
riched near the stop codon and in the 3’UTR for both
cases (Supplementary Figure S9A,B). This enrichment is
more pronounced in m6A-reg-exp genes than in DE-DM
genes (Supplementary Figure S9A,B), echoing the finding
that m6A sites that regulate mRNA stability are enriched
near the stop codon (34). Next, we examined the mRNA
turnover of predicted m6A-reg-exp genes in M3-KD-HeLa.
Because METTL3 KD reduces m6A methylation level and
YTHDF2 KD depletes binding of YTHDF2, both KDs
would lead to increased mRNA lifetime of m6A-reg-exp
genes. Therefore, we used the mRNA lifetime datasets of
METTL3 KD (GSE98856) and YTHDF2 KD (GSE49339)
in HeLa cells. Out of 521 hypo-methylated m6A-reg-exp
genes (DM m6A-reg-exp genes with positive peak fold en-
richment) after METTL3 KD, 332 (63.7%) showed in-
creased half-life (Figure 4B). In contrast, 98 out of 211
(46.4%) hypo-methylated non-m6A-reg-exp genes had in-
creased lifetime after METTL3 KD (Figure 4B). This result
demonstrates that the predicted m6A-reg-exp genes are sig-
nificantly enriched with increased lifetime after METTL3
KD (P-value = 1.336 × 10–5; odds ratio = 2.023; Fisher’s ex-
act test). Mechanistically, m6A promotes mRNA decay by
recruiting the ‘reader’ proteins including YTH family pro-
teins and among them, YTHDF2 has the strongest affinity
to degrade the targeted mRNAs (33,34,75). Therefore, we
further examined the enrichment of YTHDF2 binding us-
ing the PAR-CLIP-seq dataset that profiled YTHDF2 bind-
ing in HeLa cells (GSE49339). Among these 332 genes, 289
(87%) contain YTHDF2-binding clusters that overlap with
hypo-m6A sites in at least one replicates of the YTHDF2
PAR-CLIP-seq data (Figure 4B and Supplementary Fig-
ure S10). We also found that 255 (88.2%) of these 289
m6A-reg-exp genes with YTHDF2-binding sites showed in-
creased half-time in the siYTHDF2 lifetime data, consis-
tent with the fact that YTHDF2 is the key reader that the
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Figure 3. Assessing the specificity, precision, and sensitivity of m6A-express and log-linear on three real datasets. (A) Histograms of the P values obtained
by m6A-express (red) and the log-linear (blue) from the three permuted datasets. (B) The numbers of false-positive predictions for P values < 0.05. (C) Each
panel shows the histograms of P values obtained by m6A-express and the log-linear from the permuted datasets (blue) and the original datasets (red). (D)
Histograms of FDRs obtained by m6A-express (red) and the log-linear (blue), respectively, from the three datasets. The dashed line represents a significant
level of FDR = 0.05. (E) The numbers of predictions at the significant level of FDR = 0.05.

m6A-dependent decay. In contrast, 68 (69%) out of 98 non-
m6A-reg-exp genes with increased lifetime contain hypo-
methylated peaks that overlap with YTHDF2 binding sites
in at least one YTHDF2 PAR-CLIP-seq replicates (Figure
4B and Supplementary Figure S11). This result shows that
these 332 predicted m6A-reg-exp genes with increased life-
time are also significantly enriched with YTHDF2 binding
than non-m6A-reg-exp genes (P-value = 0.0053; odds ra-
tio = 2.054; Fisher’s exact test). To further investigate of
the difference predicted m6A-reg-exp and non-m6A-reg-exp
genes, we checked log2 expression fold-change of the subset
of m6A-reg-exp and non-m6A-exp genes with increased life-
time and found that lifetime-increased m6A-reg-exp genes
are significantly more up-regulated than non-m6A-reg-exp
genes after METTL3 KD (P-value = 3.696 × 10–9, t-test;
Supplementary Figure S12). This result suggests that some
predicted non-m6A-exp genes might be regulated by m6A
due to increased lifetime, but they are likely associated with
less effect on gene expression regulation than predicted
m6A-exp genes.

Next, we sought to understand the functions associated
with METTL3- or METTL14-mediated m6A-reg-exp in
HeLa cells predicted by m6A-express. We first performed
the functional enrichment analysis of m6A-reg-exp genes
using the biological process (BP) terms in Gene Ontology
(GO). Given that only 86 genes overlap between METTL3-
or METTL14-mediated m6A-reg-exp genes (Figure 4C),
we expected that METTL3 or METTL14 likely induced
highly specific and different functions. To our surprise, both
METTL3- and METTL14-mediated m6A-reg-exp genes
were enriched mostly in the same set of transcription and
RNA processing associated processes (Figure 4D,E). Par-
ticularly, transcription by RNA polymerase II was one of
the most enriched processes in both cases. METTL3- and
METTL14-mediated m6A-reg-exp genes were also enriched
in the opposite modes of regulations of transcription-
related processes (gene expression, RNA metabolic process,
DNA-templated transcription and nucleic acid-templated
transcription), with METTL3 associated with the nega-
tive and METTL14 with the positive regulations (Fig-
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Figure 4. Condition-specific m6A-reg-exp mediated by METTL3 and METTL14 in cancer cell lines. (A) The numbers of genes predicted by m6A-express to
have positive and negative m6A-reg-exp in the three datasets. (B) Enrichment of an increased lifetime and YTHDF2 binding in m6A-reg-exp genes. (C) Venn
diagram showing the overlaps of m6A-reg-exp genes between three datasets. (D) Top 10 enriched Gene Ontology Biological Processes in M3-KD-HeLa.
(E) Top 10 enriched Gene Ontology Biological Processes in M14-KD-HeLa. (H) Top 10 enriched Gene Ontology Biological Processes in M3-KD-HepG2.
(F) Top 20 enriched KEGG pathways in M3-KD-HeLa. (G) Scatterplot of differential methylation intensity versus different expression of m6A-reg-exp
genes in the top cancer pathways.
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ure 4D,E, in red-colored font). Among the genes in these
four processes, 112 and 80 of them are METTL3- and
METTL14-mediated m6A-reg-exp genes, respectively and
between them, only 7 genes are common. We further exam-
ined the differential expression of these m6A-reg-exp genes
and found that 87 out of 112 and 71 out of 80 of them were
up-regulated (Supplementary Table S10). This finding sug-
gests that METTL3 and METTL14 may competitively reg-
ulate these transcription-related processes by mediating dis-
tinct groups of m6A-reg-exp genes. To further understand
the mechanism by which METTL3 and METTL14 may tar-
get these transcription-related processes, we examined the
enrichment of transcription factors (TFs) in these m6A-reg-
exp genes by using TF and TF co-factors in HumanTFDB
(76) database. We found a significant enrichment of co-
factors in both METTL3-mediated m6A-reg-exp genes (46
out of 112 genes; P-value = 2.967 × 10–3; Fisher’s ex-
act test) and METTL14-mediated m6A-reg-exp genes (33
out of 80 genes; P-value = 1.223 × 10–3; Fisher’s exact
test; Supplementary Figure S13). This result suggests that
METTL3 and METTL14 may regulate these transcription-
related processes by preferentially targeting m6A-reg-exp of
largely different sets of TF co-factors. We further queried
the UniProtKB webserver (77) or the molecular function
to determine if a transcription factor was a repressor or
an activator. We found more repressors among METTL3-
associated m6A-reg-exp genes and more activators among
METTL14-associated ones (Supplementary Table S11).

Interestingly, 6 out of 7 common m6A-reg-exp genes be-
tween the two sets were also TFs including CUX1, ZFHX3,
NFIC, FOXM1, RELA and SPEN. Also, the predicted
β1s of three genes (CUX1, ZFHX3 and NFIC) had dif-
ferent signs between M3-KD-HeLa and M14-KD-HeLa,
suggested that METTL3 and METTL14 may mediate op-
posite modes of m6A-dependent regulation of their ex-
pressions (positive versus negative regulation) (Supplemen-
tary Table S8). Given that their expressions are all up-
regulated in METTL3 KD or METTL14 KD versus WT
HeLa cells, this result implies that METTL3 and METTL14
may also collaboratively down-regulate the expression of
these TFs in HeLa cells by inducing a competitive m6A-
dependent regulation of gene expression. Taken together,
these results suggested METTL3 and METTL14 may com-
petitively regulate transcription in HeLa cells by mediating
m6A-dependent down-regulation of gene expression of dif-
ferent sets of TFs and co-factors.

Besides these competitively regulated transcription-
related processes, cell cycle processes were uniquely en-
riched for METTL3-mediated m6A-reg-exp genes. Sev-
eral lines of existing research supported the involve-
ment of METTL3 in the regulation of the cell cycle.
METTL3 has been shown to inhibit cell cycle progres-
sion by regulating m6A-dependent degradation of cyclin D1
(CCND1) mRNA. Consistent with this finding, CCND1
is predicted by m6A-express to have a negative regula-
tion (FDR = 0.021, β1 = −0.34) with up-regulated ex-
pression [log2(Fold-Change) = 0.28] after METTL3 KD.
In contrast, diverse processes including RNA processing,
ncRNA metabolic process, peptidyl-lysine modification, ri-
bonucleoprotein complex biogenesis and ribosome biogen-
esis, were uniquely enriched in METTL14-mediated m6A-

reg-exp genes and the involvement of METTL14 in many of
these processes have also been linked in the literature. For
instance, TAR RNA-binding protein 2 (TARBP2), an im-
portant component of the RNA-induced silencing complex
(RISC), was shown to recruit m6A methyltransferase com-
plex to methylate target transcripts and promote their de-
cay (78). Here, we found that METTL14 could also methy-
late TARBP2 directly to regulate its expression (FDR =
0.0016; β1 = −0.37). Also, AGO2 was another METTL14-
mediated m6A-reg-exp gene (FDR = 1.82 × 10–5; β1 =
−0.44). AGO2 is a key protein of RISC that is recruited
by microRNAs to silence their target mRNAs. The sta-
bility of AGO2 transcripts was shown to be regulated by
both METTL3 and METTL14 in an m6A-dependent man-
ner (79). Taken together, these results underscore the com-
plex influences of m6A-reg-exp mediated by METTL3 and
METTL14 on the metabolism of transcriptome and other
processes (75,80).

We next performed the enrichment of Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways in these
m6A-reg-exp genes mediated by METTL3 and METTL14.
We found no enriched pathways for METTL14 but signifi-
cant enrichment for METTL3 in several cancer pathways, a
variety of cancers, viruses, and viral carcinoma (Figure 4F).
This is consistent with the prevailing evidence that showed
proto-/oncogenic role of METTL3 in regulating all these
enriched cancer pathways [pathways in cancer, MAPK sig-
naling pathway, proteoglycans in cancer, thyroid hormone
signaling pathway and cell cycle (81–83)] and enriched can-
cers [hepatocellular carcinoma, non-small/small cell lung
cancer, prostate cancer, leukemia, melanoma and glioma,
and renal cell carcinoma (80,84,85)]. Among the genes in
these enriched cancers and cancer pathways, 62 of them are
m6A-reg-exp and the participation of 10 genes (FOXM1,
NCOR2, E2F1, JUNB, BCL2L1, CTBP1, MZF1, IGF1R,
AKT2, RELA, MYC; Figure 4G) in cancers has also been
verified in recent studies (86–89). For instance, METTL3
regulates the epithelial-mesenchymal transition through
m6A-dependent destabilization of JUNB (90) (FDR =
5.083 × 10–5, β1 = −1.025). A key mechanism of m6A’s
participation in regulating various cancer is by regulat-
ing the gene expressions of cancer-related genes through
changing the status of m6A methylations in their mRNAs
(89). We consulted TSGene (91) and confirmed that out
of 813 METTL3-mediated m6A-reg-exp genes in Hela cell,
67 are tumor suppressors (Supplementary Table S12). In-
terestingly, 14 of 62 m6A-reg-exp genes in cancer-related
pathways are tumor suppressors, yet another evidence of a
key mechanism by which METTL3 regulates cancer maybe
through mediating m6A-reg-exp of tumor suppressors. We
also examined the differential expression versus differential
methylation intensity of these 62 m6A-reg-exp genes (Fig-
ure 4G) and found that most of them have decreased m6A
intensity after METTL13 KD, which is accompanied by up-
regulation in gene expression. All of marker genes’ expres-
sion have been regulated by methylation in a negative form
(Figure 4G).

METTL3 induces different m6A regulation of gene expres-
sion in HeLa and HepG2 cancer cells. Because METTL3
is found to have highly context-specific roles in regulat-
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ing different processes and different types of cancer (92),
we sought to understand the context-specific nature of
METTL3-mediated m6A-reg-exp. We applied m6A-express
to the M3-KD-HepG2 MeRIP-seq data and predicted 85
significant (FDR < 0.05) m6A-reg-exp genes. Compared
with METTL3-mediated m6A-reg-exp genes in HeLa cells,
the number is much smaller and only nine genes are com-
mon (Figure 4C). Although a majority of these genes (50
out of 85) were predicted to have negative regulations or
negative βs, the percentage (58.82%) is much lower than that
(86.27%) in HeLa cells. While the metagene distributions
of m6A peaks on the predicted m6A-reg-exp genes showed
an enrichment near the stop codon (Supplementary Figure
S9C), similar to that from Hela cells, the distinct m6A-reg-
exp genes in HeLa and HepG2 cells imply that METTL3-
mediated m6A-reg-exp is likely cell-specific.

To understand the relationship between the enriched
biological functions of METTL3-mediated m6A-reg-exp
in these two cancer cell lines, we performed the over-
representation analysis using both BP terms in GO and
KEGG pathways. No KEGG pathway was enriched, but
highly different biological processes from those for HeLa
cells were enriched for HepG2 cells (Figure 4H). Most of
these top enriched processes are related to the endoplas-
mic reticulum (ER) stress-related processes (response to ER
stress, intrinsic apoptotic signaling pathway and cellular re-
sponse to glucose starvation). They are in stark contrast
to the enriched transcription and RNA processing-related
processes in HeLa cells. Cancer cells are known to cause an
accumulation of unfolded proteins, resulting in ER stress,
during which transcription and translational reprogram-
ming are tightly regulated (93). The top 2 enriched pro-
cesses suggested an m6A-dependent regulation of transcrip-
tion in response to ER stress and some of the involved
m6A-reg-exp genes include CEBPB (FDR = 1.09 × 10–3,
β1 = −1.326), HSPAS (FDR = 3.27 × 10–5, β1 = 1.012),
ATF4 (FDR = 7.44 × 10–4, β1 = −1.267) and XBP1 (FDR
= 5.083 × 10–5, β1 = −0.616). Regulation of ER stress
through m6A-reg-exp has yet been reported and our pre-
diction may point to an undiscovered mechanism of m6A-
dependent regulation of ER stress. Overall, this result high-
lights the context-specific nature of METTL3 mediated
m6A-reg-exp.

Organ-specific m6A regulation of gene expression in human
tissues

Recent studies have profiled m6A epitranscriptome in adult
human tissues and revealed both conserved and tissue-
specific m6A methylome (72,94). A key observation re-
ported in (72) is that ubiquitously expressed genes are more
likely to be m6A regulated, and among them, the m6A epi-
transcriptome of brain tissues is highly specific. To extend
this finding, we investigated the dynamic m6A methylations
within the tissues of different human organs. We hypothe-
sized that these dynamic m6A methylations could regulate
gene expression and m6A-reg-exp is organ-specific. To test
this hypothesis, we re-analyzed MeRIP-seq samples of adult
human tissues (CRA001315, Beijing Institute of Genomics
Data Center) and examined the m6A epitranscriptome of
brain and intestine tissues, two organs with the largest num-

ber of tissue samples, including those from the cerebrum,
hypothalamus, cerebellum and brainstem for the brain and
the duodenum, jejunum, appendix, rectum and colon for
the intestine. Using exomePeak, we identified 20 006–21 357
peaks in different brain tissues and 14 690–17 741 peaks
in different intestine tissues (Figure 5A). Among them, we
identified 10 151 conserved peaks in 6248 genes in brain tis-
sues and 7074 conserved m6A peaks in 4797 genes in intes-
tine tissues. This result is consistent with the previous find-
ing that m6A is most abundant in brain tissues. We con-
firmed that these m6A peaks were enriched near the stop
codon and the meta-gene distributions of m6A were simi-
lar among all tissue samples (Supplementary Figure S14).
We also examined the intensities of these m6A peaks and
found that their distributions were similar within brain and
intestine tissues but with slightly lower mean intensity in
brain tissues (Figure 5B). Next, we focused on conserved
m6A peaks that are also highly variable within the brain or
intestine tissues. For each conserved peak, we calculated the
coefficient of variations (CVs) of their intensities (Materials
and Methods section) and selected those with CV > 0.3 as
highly variable peaks (HVPs). We obtained 3634 and 3503
HVPs in the brain and intestine tissues, respectively, and
among them, 609 are shared (Figure 5C). Compared to the
conserved stable peaks (CV < 0.3), these HVPs were more
organ-specific, with a lower percentage of shared peaks be-
tween the brain and intestine (Figure 5C). Consistent with
the finding in (72), we also found that intestine tissues’ CV
values were higher than those in brain tissues (Supplemen-
tary Figure S4). Next, we performed the GO enrichment
analysis of the genes with these HVPs and found that HVPs
in both tissues were most enriched in the same set of gen-
eral transcription-related pathways (Figure 5D, large gene
ratio), along with some tissue-specific pathways (Figure 5D,
small gene ratios). This result indicates that even though
HVPs are more organ-specific, they are mostly associated
with tissue-independent generic transcription pathways.

Then, we applied m6A-express to the genes with HVPs
and identified 143 m6A-reg-exp genes in brain tissues and
401 m6A-reg-exp genes in intestine tissues. The Guitar plots
showed that the peaks on these m6A-reg-exp genes centered
around the stop codon more than HVPs and the peak dis-
tributions in brain and intestine tissues were similar (Sup-
plementary Figure S15). We also found that these m6A-reg-
exp genes are markedly organ-specific, with only 13 genes
common between the brain and intestine (Figure 5E). Be-
sides, m6A was predicted to down-regulate gene expression
(i.e. negative β1) for all except one m6A-reg-exp gene (Fig-
ure 5E), consistent with m6A’s key role in promoting mRNA
decay. Examining methylation intensities and gene expres-
sions of m6A-reg-exp genes further confirmed this over-
whelming negative regulatory relationship (Supplementary
Figure S16). Among brain tissues, m6A-reg-exp genes ex-
hibit the highest methylation intensities (and thus lowest
expressions) in the hypothalamus but the lowest methy-
lation intensities (and highest expression) in the cerebel-
lum (Supplementary Figure S16A). In contrast, m6A-reg-
exp genes showed less variation in both methylation in-
tensity and gene expression in intestine tissues. One excep-
tion is the duodenum, where highly divergent methylation
and expression levels were observed for m6A-reg-exp genes
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Figure 5. m6A-reg-exp predicted in the brain and intestine. (A) The number of peaks in each brain and intestine tissue. (B) Boxplot shows the distribution of
peak methylation intensity in each brain and intestine tissues. (C) Venn diagrams of high variable peaks (HVPs) and stable peaks in the brain and intestine.
(D) Top enriched Reactome pathways in HVP genes of brain and intestine tissues. (E) The number of m6A-reg-exp genes with negative and positive
regulation and the Venn diagram of m6A-reg-exp genes in the brain and intestine. (F) Top enriched Reactome pathways from 143 and 401 m6A-reg-exp
genes of the brain and intestine (middle section). Heatmaps show the methylation intensity and expression of m6A-reg-exp in these enriched processes of
the brain (right-hand side panel) and intestine (left-hand side panel).
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(Supplementary Figure S16B). Further inspection of the
regulatory coefficients β1 revealed an overall stronger m6A
regulation in intestine tissues (Supplementary Figure S17).
Next, we conducted the Reactome Pathway enrichment
analysis (95) of these m6A-reg-exp genes and found highly
organ-specific pathways enriched in the brain and intestine
(Figure 5F). For the brain, the neuronal system and the
pathways related to neuron ion channels including potas-
sium channels and voltage-gated potassium channels were
the most enriched. We found 14 m6A-reg-exp genes in these
top enriched pathways for the brain (Figure 5F and Sup-
plementary Table S13). Particularly, m6A-dependent regu-
lation of GRM1 for cerebellar development has been con-
firmed (96). The involvement of m6A in regulating brain
development and neurophysiological functions including
plasticity and learning has been demonstrated (97). Yet, reg-
ulating the expression of ion channel-associated genes in
an m6A-dependent manner has not been comprehensively
studied (96). We found that these 14 genes showed distinct
expression patterns in different brain tissues, being barely
expressed in the hypothalamus but highly expressed in the
cerebrum and cerebellum (Figure 5F, right panel heatmap).
We further confirmed these expression patterns using the
GTEx database (Supplementary Figure S18). Consistent
with the predicted negative regulation by m6A, the m6A
methylation intensity is most pronounced in the hypotha-
lamus but significantly decreased in the cerebrum and cere-
bellum (Figure 5F). Taken together, this result shows that
genes involved in the neuronal system exhibit distinct m6A
intensity in different brain tissues and the m6A intensity
may dynamically control the neuronal system and especially
the function of potassium channels in different brain tissues
through m6A-dependent down-regulation of gene expres-
sions.

In contrast, the m6A-reg-exp genes in intestine tissues
were enriched in the immune system and metabolism-
related pathways (Figure 5F). Because the intestine is an
important digestive and immune organ for humans, these
enriched pathways are consistent with intestine tissues’ spe-
cific biological functions, further underscoring an organ-
specific m6A-regulation of gene expression. A total of 85
m6A-reg-exp genes were identified in the intestine’s top
pathways (Figure 5F, heatmap of left panel). Like in the
brain, diverse m6A intensities and gene expressions are ob-
served for these m6A-reg-exp genes across brain tissues but
they clearly present a negative relationship (Figure 5F), con-
firming the predicted m6A down-regulation of gene expres-
sion. Out of these 85 genes, 71 are in the immune system,
suggesting that the immune system may be the key process
that m6A regulates in the intestine (Figure 5F). Recent stud-
ies have recognized m6A as a crucial regulator of the innate
and adaptive immune response to bacterial and viral infec-
tion (26,98–101). Among the predicted genes (Supplemen-
tary Table S13), m6A-dependent regulation of SOCS3’s ex-
pression in controlling T-cell homeostasis (102) and that of
MYD88’s expression during inflammatory response in hu-
man dental pulp cells (103) have been confirmed. However,
m6A’s function in the intestine immune system has not been
reported. MYD88 functions as an essential innate immune
signaling adaptor in the interleukin-1 and Toll-like recep-
tor signaling pathways. MYD88 plays an important role

in maintaining intestinal homeostasis and gut-microbiome
interactions (104) and exhibits complex, cell-type specific
functions (105,106). Indeed, MYD88 showed considerable
variation in expression across these intestine tissues and
particularly under-expressed in the duodenum. Our result
suggests that m6A may regulate the expression of MYD88
to control the immune responses in the intestine.

DISCUSSION

Understanding condition-specific regulatory functions of
m6A is a key focus in the current epitranscriptome re-
search. Producing global, unbiased predictions of m6A
functions from widely used MeRIP-seq samples could pro-
vide testable targets and accelerate the functional discov-
ery. We presented here m6A-express, the first algorithm for
predicting m6A-regulation of gene expression from lim-
ited MeRIP-seq samples collected under specific conditions.
m6A-express adopts a Bayesian hierarchical model to enable
accurate learning of the regulatory relationship between
m6A intensity and gene expression from limited samples, a
practical constraint in many MeRIP-seq studies.

We extensively assessed the performance of m6A-express
using both simulated data and real MeRIP-seq samples.
Owing to a lack of experimentally validated m6A regula-
tion of gene expression, we simulated this regulation and
the resulting data for a treated-versus-control experimen-
tal setting using the m6A-express model. To closely mimic
the data from real experiments, we estimated the distribu-
tions of the model parameters and hyper-parameters in-
cluding the m6A intensity, the regulatory strength, and the
number of candidates from the real MeRIP-seq data and
used these distributions to guide the simulation. We simu-
lated the data for different replicates, regulatory strengths
(weak, medium and strong), and numbers of m6A-reg-exp
genes and evaluated m6A-express’s performance for esti-
mating the regulatory strength (β1) and detecting m6A-
reg-exp genes. The results showed that m6A-express sig-
nificantly outperformed the log-linear model in all simu-
lated cases and was robust against regulatory strength, the
number of m6A-reg-exp genes and especially small sam-
ple size. We further validated m6A-express’s performance
for detecting m6A-reg-exp genes using real MeRIP-seq
datasets from three treated-versus-control experiments. Us-
ing a gene-permutation strategy, we estimated the predic-
tion false-positive rate of m6A-express was only ∼1/3 of
that of the log-linear model. We also inferred the precision
and sensitivity of m6A-express in these three datasets and
showed ∼10–26% and >10-fold improvement in precision
and sensitivity, respectively, over the log-linear model. Us-
ing the RNA lifetime data, we further demonstrated that the
predicted m6A-reg-exp genes in HeLa cells were enriched
with genes of an increased lifetime after METTL3 KD. A
similar enrichment conclusion holds for YTHDF2 binding
in their peaks. Moreover, in all the predictions from these
three and the human tissue datasets, we observed an over-
whelming m6A down-regulation of gene expression; this
outcome is consistent with m6A’s main post-transcriptional
function to promote mRNA decay.

To demonstrate the utility of m6A-express, we exam-
ined METTL3- and METTL14-mediated m6A-reg-exp in
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Figure 6. Illustration of uncovered complex and condition-specific m6A regulation of gene expression. (A) Competitive regulation of transcription between
METTL3- and METTL14-mediated m6A-reg-exp in HeLa cells. METTL3 and METTL14 target different sets of m6A-reg-exp genes involved in processes
with opposite regulatory modes of transcription. YTHDF2 is the main reader protein that facilitates this m6A-reg-exp. (B) Organ-specific m6A-reg-exp in
the brain and intestine (shaded parts), where the dynamic m6A intensities of m6A-reg-exp are predictive of their expression changes.

HeLa cells. We found that METTL3 and METTL14 medi-
ated distinct sets of m6A-reg-exp genes. Intriguingly, these
genes were enriched in the opposite modes of regulations
of the same transcription-related processes, with METTL3
associated with the negative and METTL14 with the pos-
itive regulations. Because the expressions of both sets of
m6A-reg-exp were up-regulated in the respective KD cells
compared to WT cells, this result suggested a surprising
competitive regulation of transcription between METTL3-
and METTL14-mediated m6A-reg-exp (Figure 6A). Crys-
tal structural analyses have identified METTL3 as the cat-
alytic component of the METTL3-METTL14 heterodimer
but METTL14 as a critical member for recognizing the m6A

substrate (107–109). However, depletion of either METTL3
or METTL14 using CRISPR did not show complete re-
moval of m6A but instead generated different m6A pro-
files in several cell conditions (110–113). A large body of
functional studies has also pointed to the distinct roles
that METTL3 and METTL14 play in an m6A-dependent
manner in controlling normal physiological processes and
diseases. METTL14 has also been shown to form a feed-
back loop with demethylase ALKBH5 to control the m6A
methylation (25). These results suggest a complex rela-
tionship between METTL3 and METTL14 in modulating
m6A’s levels and exerting their functional influences. Our
finding provides a specific lead to a complex relationship
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between METTL3 and METTL14 in regulating transcrip-
tions through their mediated m6A-reg-exp.

m6A is also increasingly recognized as condition-specific,
with a subset of sites appearing dynamic in cell types, under
physiological conditions, and in response to stimuli (114).
Here, by using m6A-express, we showed that m6A-reg-exp
is also highly cell and tissue type-specific. We first found
that METTL13-mediated m6A-reg-exp genes in HeLa and
HepG2 cells were highly specific to the cell types and were
enriched in distinct biological processes. Then, we uncov-
ered markedly unique m6A-reg-exp in brain and intestine
tissues and further revealed that these m6A-reg-exp genes
were enriched in the processes important for their respec-
tive organ including potassium channels for the brain and
immune systems for the intestine. Previous studies high-
lighted the tissue specificity of m6A peaks in ubiquitously
expressed genes (72). Here, we underscore the importance
of dynamic relationships between m6A and gene expression.
We showed that both m6A intensity and expression levels
of m6A-reg-exp genes vary considerably across the tissue
samples. Intriguingly, we found that the dynamic changes
of m6A intensity alone did not constitute an organ-specific
trait, as genes with HVPs are enriched in general, tissue-
independent processes. In contrast, only a small subset of
HVPs, whose dynamic m6A intensities are predictive of
their expression changes by m6A-express, are organ-specific
and likely to be functional m6A peaks that regulate gene ex-
pression (Figure 6B). Moreover, these m6A-reg-exp genes
are enriched in unique organ-specific functions that are not
shared by those in differentially expressed genes (Supple-
mentary Figure S19), underscoring once again an m6A-
dependent, condition-specific regulatory circuitry.

Despite the demonstrated robustness and utility of m6A-
express, we noticed that a portion of predicted m6A-reg-exp
genes after METTL3 KD in HeLa cells are not associated
with an increased lifetime. This suggests that the predicted
m6A-reg-exp likely includes a mix of targets due to direct
and indirect m6A-induced mRNA decay, and it could also
capture expression changes due to other modes of m6A reg-
ulation of RNAs such as splicing and the co-transcription
between m6A and histone modification (115,116). In all the
METTL3 KD or METTL14 KD datasets, m6A-express also
predicted a small set of positively regulated m6A-reg-exp.
Although m6A can stabilize mRNA by recruiting the read-
ers IGF2BP1-3, such a mechanism could not be established
without additional evidence of binding in these predicted
genes by these readers. However, when other data that sur-
vey the bindings of different readers and their cofactors are
available, m6A-express could be extended to include them
to separate the targets due to secondary effect and further
delineate the specific mode of m6A regulation. This will be
a promising future direction for which we plan to improve
m6A-express.

In conclusion, m6A-express is a powerful and efficient
new tool that predicts condition-specific m6A regulation
of gene expression in the m6A methylome (running speed
shown in Supplementary Table S9). We demonstrated its
utility with real samples from experiments with a gen-
eral setup, which can survey global m6A-reg-exp for the
treated-versus-control experiments or interrogate the dy-
namic regulatory profiles across multiple experimental con-

ditions or tissue samples. Given the intense current interest
in condition-specific m6A functions, we believe that m6A-
express is a timely tool that will advance our understanding
of m6A’s regulatory mechanisms in particular and the m6A
research in general.

DATA AVAILABILITY

m6A-express is implemented as a python/R package and
is freely available at https://github.com/Yufei-Huang-Lab/
m6Aexpress. This package is based on the software R≥3.5
and python 3. The source code and the instruction of the
m6A-express package can be found at the website. The
sources of all real MeRIP-seq data are described in Materi-
als and Methods section.
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