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Abstract
Acute respiratory distress syndrome (ARDS) accounts for 10% of all diagnoses in the Intensive Care Unit, and
about 40% of the patients succumb to the disease. Clinical methods alone can result in the under-
recognition of this heterogeneous syndrome. The purpose of this study is to evaluate the role that big data
and machine learning (ML) have played in understanding the heterogeneity of the disease and the
development of various prediction algorithms. Most of the work in the field of ML in ARDS has been in the
development of prediction models that have comparable efficacies to that of traditional models. Prediction
algorithms have been useful in identifying new variables that may be important to consider in the future,
supplementing the unknown information with the help of available noninvasive parameters, as well as
predicting mortality. Phenotype identification using an unsupervised ML algorithm has been pivotal in
classifying the heterogeneous population into more homogenous classes. Big data generated from
ventilators in the form of ventilator waveform analysis and images in the form of radiomics have also been
leveraged for the identification of the syndrome and can be incorporated into a clinical decision support
system. Although the results are promising, lack of generalizability, “black box” nature of algorithms and
concerns about “alarm fatigue” should be addressed for more mainstream adoption of these models.
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Introduction And Background
Acute respiratory distress syndrome (ARDS) occurs in 10% of all Intensive Care Unit (ICU) patients and,
unfortunately, 40% of the patients with ARDS die [1]. ARDS has been defined according to Berlin’s
definition based on timing, chest imaging findings, the origin of edema, and oxygenation status [2]. This
diagnosis, similar to other diagnoses made in the present-day medical practice, is heavily dependent on
clinical expertise, medical imaging, and lab values of biofluids [3].

When clinical methods alone are employed for the detection of ARDS, it can be missed or delayed in a
significant proportion of patients [4]. Some patients with ARDS have a better prognosis than others: this
phenomenon can be partly explained by the differences in the subphenotype within the ARDS cohorts along
with other demographic factors such as age, race, and the difference in socioeconomic status and ventilatory
management factors [1]. Because prompt diagnosis and prevention play a decisive role in the treatment
outcomes of patients presenting with ARDS, clinical methods alone may not be sufficient in recognizing this
increasingly heterogeneous condition [1,5].

As we enter the age of digitalization, vast amounts of data are being created as a by-product of digital
devices at no additional cost. For example, the ventilators used in the ICU produce data, including pressure-
time, flow-time, and volume-time data, at no additional cost. When accumulated over a prolonged period,
this data becomes huge and is aptly called a type of big data. Although the innovations related to data
analytics have remained relatively limited in the clinical discipline, interest in big data and its potential
application in clinical care has substantially increased [6]. However, there is a gap between interest and
utilization. The data generated remain underutilized due to both new and experienced clinicians’ inability to
manage the enormous amounts of data [7]. Data science being the field of study devoted to the derivation of
knowledge from complex data is distinctly applicable in the critical care setting [8].

Traditional statistical interpretation of data has been around for centuries and forms the backbone of
current scientific medical researches. Although both machine learning (ML) and statistics can be used for
inference and prediction, ML is more focused on prediction and statistics has a long-focused
preference for inference [9]. ML refers to the field of study that centers around using computers for learning
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from available data and the development of algorithms that make this learning a reality [8]. ML models can,
however, give extreme results. On one hand, ML models can outperform traditional statistical models by
discovering the complex non-linear relationship between patient and disease state, while, on the other
hand, it can result in erratic predictions if used in situations beyond the stretch of training data [10].

In this article, we aim to explore the role of big data and ML in advancing our understanding of ARDS. We
also aim to investigate the opportunities that they may provide regarding triage of suspected patients, early
diagnosis, prediction of complications, and obstacles that lie ahead regarding the usage in the everyday
clinical scenario.

Review
Big data and machine learning: A brief introduction
Big data refers to large datasets that are generated at high volume, velocity, or variety that are too large for
the traditional data-processing systems and therefore require new technologies [11,12]. One example of such
large data is Medical Information Mart for Intensive Care III (MIMIC III), which contains de-identified
information from over 40,000 patients from the critical care unit of Beth Israel Deaconess Medical center
from 2001 to 2012 [13]. Another example would be ventilators that generate a large amount of pressure-time
and flow-time data per unit time. When data are collected even over a short period, this also becomes an
example of big data.

ML can be broadly divided into supervised and unsupervised learning. Supervised ML methods are used
when there are labeled input data and the output is known [14]. Suppose we need to create a prediction
model for predicting the mortality of the patients based on various parameters. In this case, the output is
“mortality” and the observations are labeled in the form of various parameters. This is a perfect use case
scenario for supervised ML models. On the other hand, unsupervised ML methods are used when there are
unlabeled observations and the output is unknown. For example, we supply the data to the machine and it
automatically groups the data into certain clusters based on the inherent characteristics. Figure 1 depicts a
simplified process of how supervised and unsupervised learning work.

FIGURE 1: The first flowchart depicts the process of supervised ML
algorithm used to create a prediction model. The second flowchart
depicts the use of unsupervised ML algorithm to create clusters based
on the inherent characteristics.
ML, machine learning

Applications of big data and machine learning in acute respiratory
distress syndrome
Prediction Models

The most widespread use of big data and ML algorithms in critical care has been in the development of
prediction models [8]. Models for predicting ARDS have been created either using the Electronic Health
Record (EHR) from the hospitals [15], available data from datasets like MIMIC III [13,16] and ARDS network
trials [17]. Rehm et al. developed a relatively cheap method to acquire large amounts of ventilator waveform
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data (vWD) using a low-cost microcomputer, Raspberry Pi, attached to the ventilator [18].

Algorithms used for the prediction of ARDS include mostly supervised ML algorithms including regression
[15], classification [17], decision trees [17,19], or neural network [20]. There have also been attempts to
identify ARDS with the help of unstructured data such as text from radiology reports using natural language
processing and ML [21]. Some models also utilize a combination of different methods known as ensemble
methods [5,19]. Ensemble methods are particularly useful in decreasing overfitting: where the model
performs well in the training data but the result is not replicated in the test data.

Identifying variables: ML algorithms have been used not only to identify whether a person will develop
ARDS but also to identify what variables might be important to consider in patients prone to developing
ARDS. For example, Ding et al. used the random forest approach to recognize the best set of predictors out
of 42 different variables measured on day one of admission in 296 patients admitted to the ICU [19]. The
model highlighted the importance of four new biomarkers: decreased minimum hematocrit, glucose,
sodium, and increased white blood cell count. This gives a better insight into which other variables may be
considered in the future for the development of a prediction scoring system.

Predicting Pao2/Fio2 (P/F) ratio using noninvasive physiological parameters: Berlin definition requires a P/F

ratio for the diagnosis and classification of ARDS. The calculation of the P/F ratio has its own set
of difficulties. One problem is that regular monitoring of blood gas requires indwelling catheters which are
difficult to care for daily and are not easy to operate in some distinct patients, such as newborns and elderly
patients [22]. In addition, conventional arterial blood gas (ABG) analysis cannot keep track
of the development of ARDS in patients in real time. This creates difficulty for clinicians to diagnose the
patients early and adopt suitable respiratory therapy strategies [23].

The model developed by Yang et al. (2020) showed that it is possible to predict the P/F ratio using
noninvasive physiological parameters [16]. This model has been demonstrated to be effective in categorizing
the oxygenation status P/F (≤300 or >300) using the parameters obtained from ventilators and physical
examination of patients without blood gas analysis. This type of model serves as a footprint for the
development of models that can be deployed in predicting the P/F ratio in real time without the need for
regular ABG analysis. Furthermore, the model also can be used in rural areas of low-middle-income
countries, where the equipment for ABG analysis may not be available.

Prediction of mortality: Prognostic evaluation of admitted patients is another area where ML algorithms
have been developed. There are existing prognostic models for predicting mortality in the ICU, the one used
relatively commonly includes Acute Physiology and Chronic Health Evaluation (APACHE) III [24] scoring,
which is relatively cumbersome to calculate [17]. Classification tree algorithm developed by Brown et al. uses
a simple rule to differentiate acute lung injury (ALI) patients according to the risk of hospital mortality using
four variables: age, minute ventilation or respiratory rate, blood urea nitrogen, and shock [17]. Furthermore,
it is claimed to be relatively easy to use and does not require mathematical operations. Another approach
using a genetic algorithm was developed by Zhan, who identified seven important variables (age, AIDS,
leukemia, metastatic tumor, hepatic failure, lowest albumin, and FiO2) for the prediction of mortality in

ARDS patients [20]. These approaches achieved comparable performance to widely used APACHE III scoring
in predicting mortality of patients in hospitals admitted with ARDS. Table 1 summarizes various studies
describing the prediction models in ARDS.

2021 Bhattarai et al. Cureus 13(2): e13529. DOI 10.7759/cureus.13529 3 of 7



Author(s) Dataset used
Size of

dataset
AUROC Conclusion of study

Brown et al.

(2011) [17]
ARDS network trial

(1,800,

222)

0.71 vs. 0.73

(APACHE III)

Simple classification rule was developed that stratified patients according to hospital mortality which was

comparable to widely used APACHE III

Afshar et al.

(2018) [21]

Data from the 533 patients admitted to certain wards of a

tertiary medical center
533 0.8 NLP and ML were used to build a computable phenotype of ARDS

Christie et al.

(2019) [5]
Observational cohort data 1,494 0.84-0.89

Superlearner fits provide versatile means of helping clinicians integrate big data on severely injured patients

into real-time, dynamic decision-making support

Ding et al.

(2019) [19]

ICU data of patients admitted to five different centers in

Beijing
296 0.82 A model for predicting ARDS was developed in Chinese patients which included 11 features

Zeiberg et al.

(2019) [15]
Single-center EHR data

(1,621,

1,122)
0.81 Feasibility of ML models to risk stratify ARDS patients solely based on EHR data was demonstrated

Zhang (2019)

[20]

Secondary analysis of two randomized controlled trials

conducted across 44 hospitals
1,071

0.821 vs. 0.665

(APACHE III)  

A model based on neural network using GA was developed which outperformed the conventional scoring

system for predicting mortality in ARDS patients

Yang et al.

(2020) [16]
MIMIC III

(6,601,

2,101)
0.9128 An algorithm based on patients’ noninvasive physiological parameters to estimated P/F ratio was developed

TABLE 1: Summary of the models created for prediction. AUROC of only the best performing
algorithm in each study have been included. The two values for studies in the size of dataset
column indicate training set and test set where applicable.
AUROC: area under receiver operating curve; ARDS: acute respiratory distress syndrome; APACHE III: Acute Physiological and Chronic Health
Evaluation III; NLP: natural language processing; ML, machine learning; ICU: intensive care unit; EHR: Electronic Health Record; GA: genetic
algorithm; MIMIC III : Medical Information Mart for Intensive Care III; P/F: PaO2/FiO2

Phenotyping

The unsupervised machine learning algorithm can help to identify clusters of the population that have
similar inherent characteristics. Due to some intrinsic difference, some patients are more likely to develop
complications and may differ in response to treatment. One of the landmark studies using latent class
analysis, which is an unsupervised ML algorithm, was performed by Calfee et al., who identified two distinct
subphenotypes of ARDS: hyperinflammatory and hypoinflammatory. These two phenotypes differed in the
severity of inflammation, presence of shock, and metabolic acidosis [25]. They were also found to have
different responses to treatment in positive end-expiratory pressure strategies. The two phenotypes were
further found to respond differently to a randomly assigned fluid strategy [26].

Cluster-based methods incorporate various analytical techniques that mainly focus on identifying clusters of
observations with similar characteristics [27]. Bos et al. found that it is possible to cluster the patient
population into two biological phenotypes: “uninflamed” and “reactive,” based solely on four biomarkers
(interleukin-6, interferon gamma, angiopoetin 1/2, and plasminogen activator inhibitor-1) with the help of
cluster analysis [28]. These studies have been deemed pivotal, especially in identifying groups of the
population that can be enrolled in various randomized control trials. As the research continues to grow in
the field of ARDS, new biomarkers have emerged to be informative in the past several years. New algorithms
developed in the future may identify these biomarkers to result in more comprehensive subphenotypes for
classification of ARDS [25].

Waveform Analysis

Patients with ARDS often need ventilatory support with lung-protective mechanical ventilation strategies
[29]. Patient-ventilator asynchrony can lead to worsening of the ventilation in already compromised lungs.
The flow, volume, and airway pressure data collected from the ventilators may help to grossly estimate the
respiratory system mechanics and track the effects of disease progression and various therapeutic
interventions [30].

Rehm et al. developed a relatively cheap method of collecting a large amount of vWD, which was then
utilized in different ML models to identify patients likely to develop ARDS using physiological signatures
and patient-ventilator dyssynchrony during ventilation [18]. One of the random forest classifier models used
was found to have superior performance than that reported by ICU physicians, with a specificity of 92% and
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area under receiver operating curve (AUROC) of 0.88. Sottile et al. also developed a model using various ML
algorithms to detect ventilator dyssynchrony in patients with or at risk of ARDS [31].

Adams et al. developed an open-source method to acquire vWD and then created a multi algorithmic
platform (ventMAP) for automatic recognition of off-target ventilation (OTV) in critically ill patients
[32]. The model was shown to accurately identify harmful forms of OTV, and that artifact correction was
achieved with the improvement of specificity of clinical event detection without a tradeoff of sensitivity.
These works are proof of concepts for the development of a clinical decision support system (CDSS) for
detecting ventilator dyssynchrony, which can be used to notify clinicians in real time when it occurs.

Image Analysis and Radiomics

Image analysis is a critical component of the diagnosis of ARDS. An ML-based approach developed by Solti
et al. was found to be comparable to physician-annotated chest X-ray reports for the classification of ALI
[33]. Radiomics refers to the process of conversion of digital medical images to usable high-dimensional
data, which is inspired by the concept that biomedical images contain information that depicts underlying
pathophysiology and that these relationships can be disclosed through quantitative image analyses
[34]. Chen et al. constructed a noninvasive ARDS existence monitoring model using quantitative and
radiomics analysis of chest computed tomography images for coronavirus disease 2019 patients [35]. The
radiomics model used a multistep process with least absolute shrinkage and selection operator regression
used to obtain the optimized subset of features to construct the final radiomics model [35].

Other “Omics” Data and Precision Medicine

“Omics” data refer to the data obtained from modern molecular techniques, including genomics,
transcriptomics, proteomics, metabolomics, and microbiomics [8]. These types of data in conjunction
with the big data analytics method have given rise to precision medicine, which has been proclaimed to be
unprecedented in the field of biomedicine [36]. Single nucleotide polymorphisms have been identified with
the help of targeted sequencing of candidate genes. Such polymorphisms are associated with either
favorable or unfavorable outcomes in ARDS [37]. An example of genomic analysis is gene expression
analysis done by Dolinay et al. in critically ill patients that yielded useful information about the strong
correlation of IL-18 with ARDS risk as well as indices of morbidity and mortality [38]. When the data related
to genomic analysis become more widespread and easily available, such analyses may become more
commonplace. This may help in finding out other useful clinical biomarkers that can be readily used at the
bedside.

Challenges, Limitations, and Way Forward

Clinical implementation of data-driven system requires the knowledge that the models that have been
developed and have significant impact in the population for which it is intended to be used [8]. As the
datasets used to create prediction models of ARDS were mostly from a single center [15,16], used stringent
exclusion criteria [17], and were from a certain ethnicity or age of patients [19,16], there is a concern that the
available models may not perform well in other institutions. Hence, due to the possibility of a lack of
generalizability, they need to be tested in the future. Furthermore, the method of documentation may not be
uniform across various institutions. This may lead to differences in EHR- based models [15]. The
advancement in the field of ML means that there will be increasing numbers of new algorithms developed in
the future. The inclusion of new algorithms in the models may improve prediction as well [5].

Although it may be tempting to look at the AUROC and p-values of the data-driven system and call it
effective, clinicians and researchers assessing such a system must be aware that the measure of effectiveness
goes beyond such measures of performance alone [8]. The prediction models described in the context of
ARDS have achieved comparable efficacies to traditional models. They have also been claimed to be easy to
use. However, most of the models are proof of concept and need to undergo refinement before integrating
them into real clinical practice.

While training a model, it may be difficult to label each case of ARDS accurately as it is a complex clinical
diagnosis. This may introduce label uncertainty in the models. There have been several attempts to reduce
this type of label uncertainty. Reamaroon et al. created a method tested on real-world data that
implemented with support vector machines (SVM) to account for such type of label uncertainty, which was
shown to provide a meaningful improvement in the algorithm compared to the traditional SVM algorithms
[39].

The general limitations of the use of ML in the field of medicine apply to the prediction models developed
for ARDS as well. ML models may have greater explanatory power than the linear statistical methods, but
when the models are used in situations that extrapolate beyond the scope of training data, they can give rise
to “black box” models that do not support clinical comprehension [10]. Careful choice of appropriate ML
algorithms and diligent and meticulous evaluation of models may help curb the problems [10]. Clinicians
also fear the possibility of “alarm fatigue” which creates an unsafe patient environment because a life-
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threatening event may be missed due to sensory overload created by alerts, especially in the ICU setting [40].
ML models created for integration into the CDSS should strive towards decreasing this problem and not
adding to it. There are concerns regarding the intrinsic inequities in the available data in healthcare. As the
ML models are built upon the existing data, such inequities are expected to be multiplied. Hence, the process
of algorithm development should include physicians and data scientists from diverse background so that
such inequities can be addressed appropriately [41].

Conclusions
ARDS is a heterogeneous syndrome with a high mortality rate. Acquisition of large amounts of data at
relatively low cost has opened up the possibility of exploration of big data in deciphering this complex
syndrome. Big data and ML have been used in identifying subphenotypes of ARDS which are different in
terms of clinical presentation and treatment responses. Prediction of the disease occurrence and mortality
have been done using various algorithms that have comparable efficacies to the existing traditional
models. Ventilator waveform analysis has the prospect of use in developing various CDSSs for real-time
notification to the treating physicians. Image analysis using ML approaches can be used in resource-limited
settings where the human resource for the evaluation of such images is unavailable. Although the progress
has been promising, there are impediments to the integration into real clinical practice. The “black box”
nature of the algorithms is likely to be met with skepticism from the clinicians. A further test of these
algorithms in various settings may probably overcome the fear of lack of generalizability. Furthermore,
“alarm fatigue” and “algorithmic bias” should be sufficiently addressed for wider acceptance of these
models. However, as these problems are solved, we can envision a future where patients with ARDS have a
different outcome when man and machine are working in tandem.
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