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Simple Summary: The SDF-1α/CXCR4 axis plays crucial roles in proliferation, survival, invasion,
dissemination, and drug resistance in multiple myeloma. This review summarizes the pleiotropic role
of the SDF-1α/CXCR4 axis in multiple myeloma and introduces the SDF-1α/CXCR4 axis-targeted
therapies in multiple myeloma.

Abstract: The C-X-C chemokine receptor type 4 (CXCR4) is a pleiotropic chemokine receptor that
is expressed in not only normal hematopoietic cells but also multiple myeloma cells. Its ligand,
stromal cell-derived factor 1α (SDF-1α) is produced in the bone marrow microenvironment. The
SDF-1α/CXCR4 axis plays a pivotal role in the major physiological processes associated with tumor
proliferation, survival, invasion, dissemination, and drug resistance in myeloma cells. This review
summarizes the pleiotropic role of the SDF-1α/CXCR4 axis in multiple myeloma and discusses the
future perspective in the SDF-1α/CXCR4 axis-targeted therapies in multiple myeloma.
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1. Introduction

Multiple myeloma (MM) is the second most common hematological malignancy.
The availability of new drugs (e.g., proteasome inhibitors, immunomodulatory drugs,
monoclonal antibodies, and histone deacetylase inhibitors (HDACi)) has greatly advanced
the treatment and improved the survival of patients with MM over the last two decades [1,2].
However, the disease eventually relapses in most of the patients. Thus, identifying novel
molecular targets and developing new therapeutic agents are urgently required to further
improve the prognosis of patients with MM.

Stromal cell-derived factor-1α (SDF-1α) is a homeostatic chemokine produced in bone
marrow stromal cells (BMSCs) [3]. SDF-1α was initially discovered as a pre-B cell growth
factor that is indispensable for homeostatic processes (e.g., lymphopoiesis and embryo-
genesis) [4]. Additionally, SDF-1α is an essential factor in physiological and pathological
processes, including embryogenesis, hematopoiesis, angiogenesis, and inflammation [5].
Consequently, SDF-1α is responsible for hematopoietic stem cells (HSCs) and progenitor
cells (HPCs) retention in the bone marrow (BM) [6,7]. It stimulates the migration and
homing of HSCs and HPCs via the G protein-coupled receptor C-X-C chemokine receptor
type 4 (CXCR4) [8]. SDF-1α or CXCR4 knockout mice are with embryonic lethality because
each gene knockout impaired hematopoiesis due to a defect in the trafficking of HSCs
from the fetal liver to the embryonic BM, defects in the heart and brain development,
and vascularization [4,9,10]. The SDF-1α/CXCR4 axis is also involved in physiological
processes including angiogenesis, metastasis, and survival in malignant tumors [11–13].

The SDF-1α/CXCR4 axis plays a pleiotropic role in the expansion and colonization of
MM cells in the BM [14] and in the homing, adhesion, invasion, migration, and mobilization
of MM cells out of the BM [14]. CXCR4 expression is present in approximately 60% of
primary MM cells from the BM and is associated with disease activity [15]. Moreover,
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elevated SDF-1α serum levels are correlated with an increased osteolytic disease [16]. A
deeper understanding of the roles of the SDF-1α/CXCR4 axis in MM is necessary for the
identification of novel molecular targets and the development of newer drugs and treatment
strategies. In this review, the pleiotropic role of SDF-1α/CXCR4 axis and SDF-1α/CXCR4
axis-targeted therapies in MM is summarized.

2. The Role of SDF-1α/CXCR4 in Hematopoiesis

SDF-1α and its CXCR4 receptor are involved in the hematopoiesis regulation at the
HSC and HPC levels. SDF-1α is a crucial ligand for homing, retention, and survival of HSCs
and HPCs in the BM microenvironment [6,17–19]. Hence, inhibiting the SDF-1α and CXCR4
interaction leads to enhanced mobilization of HSCs and HPCs to the blood. A specific
antagonist of SDF-1α binding to CXCR4, AMD3100 (plerixafor), has been clinically used for
inducing HSCs and HPCs mobilization in humans [20–24]. It synergizes with granulocyte
colony-stimulating factor (G-CSF) to greatly enhance G-CSF-induced mobilization of HSCs
and HPCs [25–27]. Moreover, adhesion molecules have been also implicated in homing
of HSCs and HPCs [28]. The integrin very late antigen (VLA)-4 mediates HPCs adhesion
to BMSCs by interacting with connecting segment-1 (CS-1)/fibronectin and vascular cell
adhesion molecule-1 (VCAM-1). SDF-1α rapidly and transiently upregulated the adhesion
of CD34+ BM cells to both CS-1/fibronectin and VCAM-1, and BM stromal cells, suggesting
that SDF-1α could modulate VLA-4-mediated CD34+ BM cell adhesion [28].

3. Role of SDF-1α/CXCR4 in MM

The SDF-1α/CXCR4 axis plays a critical role in proliferation, survival, invasion,
dissemination, metastasis, and drug resistance in MM cells [29]. Additionally, SDF-1α
levels in BM plasma and BM stromal cell culture supernatant were elevated in patients with
MM [30]. Binding SDF-1α to CXCR4 activates a variety of intracellular signaling pathways
that regulate these biological processes. Furthermore, SDF-1α induces MEK1/2, p42/44
MAPK, and AKT phosphorylation in MM cell lines and patient MM cells [30] and activates
nuclear factor-κB [31,32]. Hideshima et al. showed that SDF-1α induced modest increases
in proliferation in both MM cell lines and primary MM cells [30]. A previous study also
showed that SDF-1α did not affect proliferation and survival in lymphohematopoietic
cells [33]. SDF-1α is produced by not only BMSCs or vascular endothelial cells but also
circulating plasma cells (cPCs) in MM. Recently, Geng et al. demonstrated that SDF-1α was
abnormally upregulated in cPCs using single-cell transcriptome analysis [34]. Furthermore,
Martin et al. reported that high levels of SDF-1α produced by MM plasma cells promoted
osteolysis and bone marrow angiogenesis [16,35]. These findings suggest that tumor
cell-generating SDF-1 plays critical roles in osteolysis and angiogenesis in MM, and that
abnormal SDF-1 auto-secretion may contribute to cPC extramedullary translocation from
the BM. This section reviews the role of CXCR4 on mobilization, drug resistance, Notch
pathway, and dissemination in MM (Figure 1).
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Figure 1. Pleiotropic roles of Stromal cell-derived factor-1α (SDF-1α)/C-X-C chemokine receptor type 4 (CXCR4) axis in 
multiple myeloma cells. SDF-1α/CXCR4 axis plays pleiotropic roles in multiple myeloma (MM) pathogenesis including 
proliferation, survival, migration, homing, drug resistance, epithelial-mesenchymal transition (EMT), dissemination, and 
extramedullary disease (EMD) formation. 

3.1. Roles of SDF-1α/CXCR4 on Mobilization in MM 
High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) 

is a standard therapy in transplant-eligible patients with MM [36]. Furthermore, HSC mo-
bilization and collection have been performed via chemotherapy administration, hemato-
poietic growth factors administration (including G-CSF or GM-CSF), or chemotherapy 
plus hematopoietic growth factor [37–40]. Plerixafor, a small-molecule bicyclam, reversi-
bly binds to CXCR4 and antagonizes SDF-1α interaction. It was approved by the Food 
and Drug Administration in 2008 and widely used in several countries as a mobilizer for 
harvesting HSCs and HPCs [21–25]. Plerixafor is effective in the mobilization of peripheral 
blood stem cells when combined with G-CSF [41]. The AMD3100-3102 study was a mul-
ticenter randomized, double-blind, placebo-controlled trial, evaluating the safety and ef-
ficacy of plerixafor plus G-CSF versus placebo plus G-CSF in mobilizing HSCs in MM 
patients. The results showed that plerixafor and G-CSF were well-tolerated and signifi-
cantly more patients could harvest the optimal CD34+ cells/kg compared with G-CSF 
alone [41]. Plerixafor plus G-CSF has been widely used for harvesting HSCs in transplant-
eligible patients with MM based on these results. Consequently, the comobilization of MM 
cells following chemotherapy or growth factors has been documented [37,42–45]. There-
fore, the SDF-1α/CXCR4 axis and adhesion molecules play crucial roles in homing and 
mobilization of not only HSCs but also MM cells [46]. A significant decrease in SDF-1α 
plasma levels and CXCR4 expression on MM cells in the apheresis product compared with 
those in BM before mobilization was observed. Additionally, decreased VLA-4 expression 
was observed on MM cells in the apheresis product. These findings suggest that mobili-
zation of MM cells involves SDF-1α/CXCR4 signaling and downregulation of VLA-4 ex-
pression [46]. Alsayed et al. demonstrated that CXCR4 is expressed at high levels on the 
surface of MM cells in the peripheral blood compared with those in the BM. Furthermore, 
SDF-1α levels were markedly elevated in the BM of MM patients compared with those in 
the peripheral blood of MM patients and those in the peripheral blood and the BM sam-
ples of healthy controls, suggesting that CXCR4 is downregulated in the BM in response 
to high SDF-1α levels. Additionally, AMD3100 inhibited the migration and homing of 
MM cells in vitro and in vivo [14]. Moreover, Hideshima et al. showed that SDF-1α in-
duces migration of MM cells although the effect is modest [30]. Hence, CXCR4 functions 

Figure 1. Pleiotropic roles of Stromal cell-derived factor-1α (SDF-1α)/C-X-C chemokine receptor type 4 (CXCR4) axis in
multiple myeloma cells. SDF-1α/CXCR4 axis plays pleiotropic roles in multiple myeloma (MM) pathogenesis including
proliferation, survival, migration, homing, drug resistance, epithelial-mesenchymal transition (EMT), dissemination, and
extramedullary disease (EMD) formation.

3.1. Roles of SDF-1α/CXCR4 on Mobilization in MM

High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) is
a standard therapy in transplant-eligible patients with MM [36]. Furthermore, HSC mobi-
lization and collection have been performed via chemotherapy administration, hematopoi-
etic growth factors administration (including G-CSF or GM-CSF), or chemotherapy plus
hematopoietic growth factor [37–40]. Plerixafor, a small-molecule bicyclam, reversibly
binds to CXCR4 and antagonizes SDF-1α interaction. It was approved by the Food and
Drug Administration in 2008 and widely used in several countries as a mobilizer for
harvesting HSCs and HPCs [21–25]. Plerixafor is effective in the mobilization of periph-
eral blood stem cells when combined with G-CSF [41]. The AMD3100-3102 study was a
multicenter randomized, double-blind, placebo-controlled trial, evaluating the safety and
efficacy of plerixafor plus G-CSF versus placebo plus G-CSF in mobilizing HSCs in MM pa-
tients. The results showed that plerixafor and G-CSF were well-tolerated and significantly
more patients could harvest the optimal CD34+ cells/kg compared with G-CSF alone [41].
Plerixafor plus G-CSF has been widely used for harvesting HSCs in transplant-eligible
patients with MM based on these results. Consequently, the comobilization of MM cells
following chemotherapy or growth factors has been documented [37,42–45]. Therefore, the
SDF-1α/CXCR4 axis and adhesion molecules play crucial roles in homing and mobilization
of not only HSCs but also MM cells [46]. A significant decrease in SDF-1α plasma levels
and CXCR4 expression on MM cells in the apheresis product compared with those in BM
before mobilization was observed. Additionally, decreased VLA-4 expression was observed
on MM cells in the apheresis product. These findings suggest that mobilization of MM
cells involves SDF-1α/CXCR4 signaling and downregulation of VLA-4 expression [46].
Alsayed et al. demonstrated that CXCR4 is expressed at high levels on the surface of
MM cells in the peripheral blood compared with those in the BM. Furthermore, SDF-1α
levels were markedly elevated in the BM of MM patients compared with those in the
peripheral blood of MM patients and those in the peripheral blood and the BM samples
of healthy controls, suggesting that CXCR4 is downregulated in the BM in response to
high SDF-1α levels. Additionally, AMD3100 inhibited the migration and homing of MM
cells in vitro and in vivo [14]. Moreover, Hideshima et al. showed that SDF-1α induces
migration of MM cells although the effect is modest [30]. Hence, CXCR4 functions in the
mobilization of MM cells. Plerixafor may mobilize MM cells and contaminate MM cells in
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apheresis product, contributing to disease relapse after ASCT in the clinical setting. Nahi
et al. reported a randomized, phase II study evaluating MM cell mobilization and apheresis
product contamination in patients treated with G-CSF alone or plerixafor plus G-CSF [47].
The primary endpoint was the number of MM cells in the peripheral blood and apheresis
product after the administration of G-CSF + plerixafor versus G-CSF alone. Patients in
whom a partial response (PR) or better was obtained after induction therapy and those in
whom the percentage of MM cells in BM was <10% before mobilization was included in this
study. The threshold of myeloma cell contamination in the apheresis product was defined
as 4.5 × 105 MM cells/kg body weight because the value is considered to be sufficient
to restart the tumor growth when apheresing the CD34+ cells [48]. No patient with MM
cells in the peripheral blood up to day eight of G-CSF administration in either treatment
group was noted. Additionally, it was noted that no patients in the G-CSF + plerixafor
group and only one patient in the G-CSF group mobilized at least 4.5 × 105 MM cells in
the apheresis product up to day eight. G-CSF + plerixafor administration does not affect
the number of MM cells mobilized in patients who achieved at least PR and in whom BM
involvement was <10%. The plerixafor could be used safely because most MM patients
obtain a deeper response in the induction therapy era with novel agents. Therefore, further
study to elucidate the impact on survival in patients who received plerixafor as a mobilizer
is warranted.

3.2. Roles of SDF-1α/CXCR4 on Drug Resistance in MM

Almost all MM patients eventually relapse and become refractory to multiple drugs
despite recent advances in drug development and the introduction of novel agents [49,50].
The drug resistance mechanism is not fully elucidated although extensively studied. Cellu-
lar adhesion-mediated drug resistance (CAM-DR) is one of the underlying mechanisms of
disease relapse and refractoriness to antimyeloma therapy [51]. Elucidating the mechanism
of CAM-DR and developing the corresponding drugs are urgently required to improve
outcomes. MM cells express several mediators of cellular adhesion, including CD44, VLA-4,
and CXCR4 [52]. The SDF-1α/CXCR4 pathway plays an essential role in cellular adhe-
sion [46,53]. BMSCs produce several adhesion molecules, cytokines, and chemokines such
as SDF-1α which are necessary for the proliferation and survival of MM cells. These pro-
mote the adhesion between MM cells and BMSCs, thereby inducing drug resistance [54,55].
The coculture of MM cells with BMSCs increased the drug resistance and suppressed
the cell death of MM cells. Consequently, Liu et al. demonstrated that SDF-1α-induced
interleukin-6 (IL-6) upregulation-mediated drug resistance and apoptosis of MM cell lines
in the adhesion state [56]. The report mentioned that SDF-1α treatment-induced PI3K and
AKT phosphorylation in MM cells. Furthermore, several other signaling pathways includ-
ing MAP/ERK [14,57], Wnt3/RhoA/ROCK [58], and HMG-CoA/Rho/Rho-kinase [59]
are involved in CAM-DR of MM.

Bruton’s tyrosine kinase (BTK) is a regulator of myeloma stemness and senescence
and is related to MM progression and drug resistance [60,61]. Consequently, BTK expres-
sion was correlated with CXCR4 surface expression [62]. Additionally, ibrutinib, a BTK
inhibitor, could reduce the surface membrane levels of CXCR4 in chronic lymphocytic
leukemia and downregulate the migration of MM cells toward SDF-1 and homing to
the BM microenvironment [63,64]. Furthermore, Wang et al. recently demonstrated that
BTK induces CAM-DR through CXCR4 regulation degradation in MM [64], promoting
BTK expression induced MM cell adherence to the extracellular matrix and stromal cells
in vitro and in vivo and increased drug resistance to bortezomib and doxorubicin in MM
cells. Treatment with BTK inhibitor showed synergistic effects with bortezomib in mouse
models. Hence, BTK bound directly with CXCR4 and prevented its ubiquitination-induced
degradation, leading to CAM-DR maintenance. BTK plays a role in CAM-DR through the
regulation of CXCR4 degradation in MM cells and suggests that targeting therapy for the
BTK/CXCR4 interaction may be effective for reversing CAM-DR.
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Pan-HDACi panobinostat is clinically used in combination with bortezomib or lenalido-
mide and dexamethasone for relapsed and refractory MM [65,66]. However, panobinostat
lacks therapeutic activity as a single agent. Beider et al. found that sensitivity of MM cells
and primary MM cells to panobinostat was associated with decreased CXCR4 expression,
whereas CXCR4 overexpression increased their resistance to panobinostat [67]. Addition-
ally, CXCR4 overexpression led to mammalian target of rapamycin (mTOR) activation in
response to panobinostat treatment in MM cells, suggesting that mTOR pathway activa-
tion induces resistance to panobinostat. Combining panobinostat with mTOR inhibitor
everolimus was also shown to abrogate HDACi resistance and induced synergistic cell
death. These results provide the rationale for a novel treatment strategy to overcome
CXCR-4-mediated resistance to HDACi in MM. Waldschmidt et al. also evaluated CAM-
DR restoration using different antimyeloma agents and the CXCR4 inhibitor plerixafor [52].
Moreover, the plerixafor reduced the VLA-4 and CD44 expressions, both of which are
known as essential mediators of BM adhesion on MM cells. Consequently, the plerixafor
restored sensitivity to bortezomib and pomalidomide in stromal cell coculture.

The SDF-1α/CXCR4 pathway plays a crucial role in drug resistance in MM. Develop-
ing a therapeutic strategy against this pathway is required to improve MM outcomes.

3.3. Notch and SDF-1α/CXCR4 in MM

Notch plays a role in myeloma pathophysiology. Moreover, Notch receptors are
transmembrane proteins that are activated by specific ligands including Jagged-1,-2 and
Delta-Like-1,-3,-4 [68]. The binding of ligands to the receptors introduces the γ-secretase-
mediated release of the intracellular domain which in turn translocates to the nucleus
and activates target genes [69]. MM cells express Notch-1, Notch-2, and Notch-3 and
the ligands Jagged-1 and Jagged-2 [70–75]. Additionally, Notch signaling is activated by
their homotypic interaction in MM cells. Notch activation in MM cells leads to inhibition
of apoptosis, drug resistance, and increased osteolysis [76–78]. Moreover, Notch-1 and
Jagged-1 expression are related to disease progression from the monoclonal gammopathy
of undetermined significance to the MM [70]. Additionally, Jagged-2 is overexpressed
in MM patients [71,74,75]. However, the relationship between the Notch pathway and
SDF-1α/CXCR4 axis has not been fully elucidated. Mirandola et al. investigated the
association between Notch receptors and the SDF-1α/CXCR4 axis [79]. Notch was shown
to positively control not only CXCR4 but also SDF-1α expression and to function in
MM cell lines. Moreover, the inhibition of Notch signaling was found to prevent MM
cell migration, proliferation, and resistance to apoptosis through reducing CXCR4 and
SDF-1α levels. Colombo et al. recently demonstrated that myeloma cell-derived Jagged-
1 and Jagged-2 triggered Notch activity in BMSCs [80]. These Jagged ligands secrete
higher levels of SDF-1α in the BM microenvironment, increasing CXCR4 activation in
myeloma cells. Additionally, SDF-1α induced Bcl-2, survivin, and ATP binding cassette
subfamily C member 1 (ABCC1) expression. Moreover, the Jagged inhibition was shown
to cause a decrease in both myeloma-intrinsic and stromal cell-induced resistance to
antimyeloma drugs including bortezomib, lenalidomide, and melphalan. These findings
indicate that Notch may have a role not only in MM progression but also in drug resistance
through regulating the SDF-1α/CXCR4 axis and providing the proof of concept that
targeting strategy for Jagged/Notch pathway in MM cells and BM stromal cells could
restore drug resistance.

3.4. SDF-1α/CXCR4 in Extramedullary Disease

The proliferation of malignant plasma cells is restricted in the BM in most patients with
MM. However, extramedullary disease (EMD) occurs in a subset of patients. Generally, the
disease involves the soft tissue, cortical bone, and central nervous system. Approximately
7–18% of the patients have EMD at the time of initial diagnosis [81–84] and 20% of the
patients develop EMD later in the course of the disease [81,82,84]. The EMD development
was reported to be associated with poor prognosis in patients with MM [83–85]. However,
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these studies were performed before the introduction of novel agents. Lee et al. evaluated
the prognostic impact of EMD on newly diagnosed MM in the context of treatment ap-
proaches in the era of novel agents including ASCT and chemotherapy alone. The presence
of EMD at diagnosis was demonstrated to be associated with worse progression-free sur-
vival (PFS) and overall survival (OS) compared with those without EMD at diagnosis [86].
The presence of EMD at diagnosis was an independent prognostic factor for PFS and OS
in transplant-ineligible patients but not in transplant-eligible patients. Additionally, the
adverse impact of EMD observed in transplant-ineligible patients was attenuated among
the patients with bortezomib. These findings indicate that ASCT can overcome the negative
impact of EMD, and bortezomib has activity on EMD in transplant-ineligible patients [86].
Elucidating the mechanism underlying extramedullary spread and developing newer
treatment approaches is essential to improve outcomes of MM with EMD.

The possible mechanism of extramedullary myeloma spread has not been fully un-
derstood although proposed. In one possible EMD development mechanism, metastatic
MM cells initially exit the BM, translocate into the blood as clonal circulating plasma cells
(cPCs), and finally settle in the peripheral tissues and develop an EMD [87–89]. Vande
Broek et al. showed that the downregulation of chemokine receptors including CXCR4
has been observed in patients with active diseases compared with those with nonactive
diseases [15]. Additionally, Olivera et al. showed that thalidomide exposure induces
the downregulation of SDF-1α and CXCR4 in MM patients [90]. Consequently, thalido-
mide treatment could facilitate extramedullary spread and growth. Geng et al. explored
the transcriptomic differences between MM cells in BM and peripheral cPCs in each pa-
tient with EMD using single-cell RNA sequencing. SDF-1α and CXCL7, which is also
known as another BM attracting chemokine, are abnormally upregulated in cPCs and were
also found [34]. The findings suggest that both chemokines produced by MM cells may
contribute to the initial extramedullary translocation of cPCs from BM and the eventual
formation of EMD. Stessman et al. showed that bortezomib-resistant (BzR) cells displayed
a decreased affinity for the BM compartment compared with bortezomib-sensitive (BzS)
cells and more extramedullary spread in mouse models [91]. A loss in CXCR4 mRNA
expression in BzR cells was found compared with BzS cells. Low CXCR4 expression was
associated with poor outcomes in patients treated with bortezomib in both the APEX
trial [92] and MM total therapy 3 (TT3) trial [93]. These findings suggest that decreased
CXCR4 expression is associated with increased disease severity.

Epithelial–mesenchymal transition (EMT) plays a crucial role in both physiological
conditions and pathological settings [94,95], as well as cancer progression and metasta-
sis [96,97]. CXCR4 and SDF-1α have been reported to act as positive regulators of tumor
cell metastasis in solid tumors [98,99]. Roccaro et al. demonstrated that CXCR4 enhanced
the acquisition of an EMT-like phenotype in MM cells and induced higher bone metastasis
and EMD dissemination in vivo [100]. EMD- and BM-prone MM cells were generated by
in vivo selection approach. EMD-prone clone colonized BM niche and could be metasta-
sized to and engraft within extramedullary sites, whereas extramedullary infiltration of
the BM clone was not detectable. The transcriptional profile by RNA sequencing included
genes defining an EMT, hypoxia-associated genes, and TNFα/NF-κB response-related
genes. These findings indicated that EMT occurs not only in BM-disseminating MM cells
but also in MM cells colonizing EMD sites. Additionally, both BM- and EMD-prone clones
expressed higher surface CXCR4 compared with the parental cells. Moreover, the CXCR4
expression in the EMD-prone cells was relatively higher compared with the BM-prone cells.
CXCR4 enhanced the acquisition of an EMT-like phenotype in MM cells with a phenotype
conversion for invasion. Ulocuplumab, a monoclonal anti-CXCR4 antibody, suppressed
MM cell dissemination, suggesting the inhibition of EMT-like phenotype conversion of
MM cells by targeting CXCR4 [100]. These findings strongly suggest that SDF-1α and
CXCR4 play a central role in MM disease progression and EMD development.
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4. SDF-1α/CXCR4 Targeted Therapy in MM

Molecular-targeted antimyeloma drug candidates have been developed on the basis
of the molecular pathological findings of the SDF-1α/CXCR4 axis in MM. This section
introduces developing drugs targeting the SDF-1α/CXCR4 axis in MM (Table 1).

4.1. Plerixafor

Plerixafor, a small-molecule bicyclam, reversibly binds to CXCR4 and antagonizes
SDF-1α interaction. As previously described, this antagonist inhibits the migration and
homing of MM cells in vitro and in vivo. The plerixafor could be used as a chemosensitizer
in MM treatment because it disrupts their adhesion to the BM microenvironment and
reverses resistance to antimyeloma agents. Ghobrial et al. reported the results from a phase
I/II trial of plerixafor in combination with bortezomib as a chemosensitization strategy
in relapsed/refractory MM (RRMM; NCT00903968) [101]. Phases I and II studies aim to
assess the safety and maximum tolerated dose (MTD) and evaluate the treatment-related
adverse events and response rate of the combination. Moreover, 58 patients were enrolled
in this study. The median age was 63 years (range, 43–85 years). The MTD was plerixafor
(0.32 mg/kg) and bortezomib (1.3 mg/m2). The overall response and clinical benefit rates
were 48.5% and 60.6%, respectively. The median disease-free survival was 12.6 months.
Moreover, the effect of plerixafor and bortezomib on the mobilization of plasma cells and
HSCs in the peripheral blood was evaluated in this study. The CyTOF analysis showed
significant mobilization of plasma cells, CD34+ stem cells, and immune T cells in response
to plerixafor [101]. These results suggest that therapeutic targeting of the BM environment
may overcome therapy resistance.

4.2. Ulocuplumab, BMS-936564/MDX-1338

Ulocuplumab is a fully human IgG4 monoclonal antibody that specifically recognizes
human CXCR4 and effectively blocks SDF-1α binding to CXCR4 [102]. Ulocuplumab
induces the apoptosis of myeloma cell lines and inhibits tumor growth of MM xenograft
models [102]. The findings led to clinical trials in patients with RRMM. Ghobrial et al.
reported the results from a phase Ib/II trial of ulocuplumab plus lenalidomide or borte-
zomib plus dexamethasone in RRMM (NCT01359657) [103]. Furthermore, 46 patients were
enrolled (30 and 16 patients received ulocuplumab in combination with lenalidomide plus
dexamethasone (Arm A) and combination with bortezomib plus dexamethasone (Arm B),
respectively). The phase Ib/II study used a 3 + 3 design of that combination or the phase I
dose escalation part and a two-stage outcome design to assess the efficacy and tolerability
of ulocuplumab in combination with lenalidomide or bortezomib plus dexamethasone.
The primary endpoint of phases I and II studies was to evaluate the safety and MTD of the
combination therapies and determine the response rates of these combinations, respectively.
Furthermore, 30 and 16 patients were enrolled in Arm A and Arm B, respectively. The me-
dian age was 60 years (range, 53–67 years). Moreover, the median number of prior therapy
lines was three (range, 1–11). Ulocuplumab was administered at three dose levels (1, 3, and
10 mg/kg/dose). Consequently, no dose-limiting toxicity or MTD was identified. In most
common treatment-related adverse events, neutropenia and thrombocytopenia were seen
in 43.3% and 37.5% in Arm A and Arm B, respectively. No study on drug-related mortality
was observed. The response (PR or better) and clinical benefit rates were 55.2% and 72.4%
in Arm A, respectively. Both combination regimens were generally well-tolerated, with a
high response rate, especially in combination with lenalidomide plus dexamethasone in
patients with RRMM [103].

4.3. F50067

F50067 is a humanized monoclonal IgG1 anti-CXCR4 antibody and exerts antitumor
effects via reducing the interaction of MM cells with the BM microenvironment and in-
ducing antibody-dependent cellular cytotoxicity and compliment-dependent cytotoxicity.
Fouquet et al. reported a phase I dose escalation study of F50067 alone and in combination
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with lenalidomide and low-dose dexamethasone (Len-dex) in RRMM [104]. Moreover,
14 patients with RRMM were enrolled in the study. Consequently, 10 or 4 patients received
F50067 alone or in combination with Len-dex, respectively. Hence, MTD could not be
established. Thrombocytopenia and neutropenia were observed in 100% and 92.9% of
patients, respectively. The overall response and disease control rates were 66.7% and 33.3%
in the combination and single agent groups, respectively. The study was discontinued due
to hematological toxicities.

4.4. 177Lu- and 90Y-Pentixather
68Ga-pentixafor is a high-affinity CXCR4-targeted nuclear probe for positron emission

tomography (PET) imaging [105,106]. 68Ga-pentixafor PET provided images with excellent
specificity and contrast [106]. On the basis of such promising experiences, 177Lu- and
90Y-pentixather were developed [107,108]. Herrmann et al. reported the first in-human
experience in three patients heavily pretreated with intramedullary and EMDs of MM
who received CXCR4-directed endoradiotherapy [108]. Pretherapeutic 177Lu-pentixather
dosimetry was performed before pentixather treatment. Patients then received additional
chemotherapy and ASCT. A remarkable therapeutic effect was obtained in two patients.
Complete response of all extramedullary lesions was observed in one patient. No acute
adverse events occurred during or within one week after pentixather treatment. Hence,
CXCR4-directed endoradiotherapy is feasible and has a promising RRMM response; further
investigation of this therapy as a treatment option in heavily pretreated patients with MM,
especially with EMD, is warranted.

4.5. Olaptesed Pegol, NOX-A12

Olaptesed pegol is a pegylated L-oligoribonucleotide that specifically binds and neu-
tralizes SDF-1 [109]. Roccaro et al. showed that SDF-1 is highly expressed in active MM and
in BM sites of tumor metastasis [110]. Furthermore, the authors demonstrated that SDF-1
neutralization within BM niches leads to a microenvironment that is less receptive for MM
cells and reduces the homing and growth of clonal plasma cells and dissemination from
bone-to-bone in in vivo murine and xenograft mouse models [110]. Interestingly, olaptesed
pegol-dependent neutralization of SDF-1 inhibited MM tumor progression and prolonged
survival compared with AMD3100-treated mice. The authors also demonstrated that
olaptesed pegol chemosensitizes MM cells to bortezomib despite it having no single-agent
activity on the tumor cells. These findings indicate that olaptesed pegol represents an agent
that targets the interaction between BM niches and tumor cells, thereby disrupting BM col-
onization by MM cells. These results led to clinical trials evaluating the pharmacokinetics,
pharmacodynamics, safety, and efficacy of olaptesed pegol in patients with RRMM [111].
Combining SDF-1 inhibition with bortezomib and dexamethasone (VD) was investigated
in 28 patients with RRMM. Olaptesed pegol was given 1–2 h prior to bortezomib at doses of
1 mg/kg in cycle 1, 2 mg/kg in cycle 2, and 4 mg/kg in cycles 3–8. Bortezomib was given
on days 1, 4, 8, and 11 of each 21-day cycle at a dose of 1.3 mg/m2. Oral dexamethasone
(20 mg) was added on the day of and the day after bortezomib administration. The phar-
macodynamic effects were observed 1 h after administration of olaptesed pegol. CD38+
CD138+ plasma cells and CD38+ CD138+ CD56+ CD19– myeloma cells were mobilized up
to three-fold increases compared with baseline values in the peripheral blood [111]. The
response (PR or better) was obtained in 19 of 28 patients (68%), which was better than those
yielded in the clinical trials of CXCR4 inhibitors plerixafor [101] and ulocuplumab [103]
in combination with VD. The median PFS and OS were 7.2 months and 28.3 months, re-
spectively. On the other hand, treatment with olaptesed pegol was well tolerated and did
not result in relevant additional toxicity when combined with VD [108]. Further clinical
investigation of this novel inhibitor of SDF-1 is warranted.
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Table 1. Overview of some compounds targeting SDF-1α/CXCR4 axis in MM cells.

Compound Mechanism of Action References

Plerixafor CXCR4 antagonist
Inhibits migration and homing of MM cells [101]

Ulocuplumab

CXCR4 antagonist
Induces apoptosis in MM cells with high CXCR4

expression
Inhibits SDF-1α-induced migration

[102,103]

F50067

CXCR4 antagonist
Inhibits cell migration and proliferation

Antibody-dependent cellular cytotoxicity
Compliment-dependent cytotoxicity

[104]

177Lu- and 90Y-pentixather CXCR4-directed endoradiotherapeutic agent [108]

Olaptesed pegol
SDF-1 inihibitor

Neutralizes SDF-1
Inhibits colonization and dissemination of MM cells

[110,111]

5. Conclusions

Extensive basic, translational, and clinical research has uncovered the pivotal role
of the SDF-1α/CXCR4 pathway in myeloma biology. Drug resistance and temporal and
spatial tumor heterogeneity are closely associated with refractoriness of active myeloma.
A therapeutic approach targeting this pathway should be further explored because SDF-
1α/CXCR4 crosstalk between MM cells and BM microenvironment contributes to drug
resistance, migration, and dissemination of MM cells. Future studies regarding the devel-
opment of combined therapy with direct antimyeloma and inhibitory effects against tumor
cell dissemination are necessary.
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