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Abstract: The development of biological disease-modifying antirheumatic drugs (bDMARDs) and
target synthetic DMARDs (tsDMARDs), also known as small molecule inhibitors, represent a
breakthrough in rheumatoid arthritis (RA) treatment. The tsDMARDs are a large family of small
molecules targeting mostly the several types of kinases, which are essential in downstream signaling of
pro-inflammatory molecules. This review highlights current challenges associated with the treatment
of RA using small molecule inhibitors targeting intracellular JAKs/MAPKs/NF-κB/SYK-BTK signaling
pathways. Indeed, we have provided the latest update on development of small molecule inhibitors,
their clinical efficacy and safety as a strategy for RA treatment. On the other hand, we have highlighted
the risk and adverse effects of tsDMARDs administration including, among others, infections and
thromboembolism. Therefore, performance of blood tests or viral infection screening should be
recommended before the tsDMARDs administration. Interestingly, recent events of SARS-CoV-2
outbreak have demonstrated the potential use of small molecule inhibitors not only in RA treatment,
but also in fighting COVID-19 via blocking the viral entry, preventing of hyperimmune activation and
reducing cytokine storm. Thus, small molecule inhibitors, targeting wide range of pro-inflammatory
singling pathways, may find wider implications not only for the management of RA but also in the
controlling of COVID-19.

Keywords: small molecule inhibitors; tsDMARDs; COVID-19; rheumatoid arthritis; clinical trials;
JAK inhibitors; side effects

1. Introduction

Rheumatoid arthritis (RA) is an aggressive immune-mediated disease with a worldwide prevalence
of approximately 0.5–1% of population. RA is more common in women and may occur at any age,
with peak incidence occurring at 50–60 years of age [1]. RA is characterized by joint involvement,
high morbidity, progressive disability and increased mortality. In fact, more than 30% of RA patients
become work disabled after 10 years. In addition, RA patients have reduced life expectancy on average
by 5–10 years [2,3]. The estimated total costs of RA treatment are around 45 billion euro in Europe and
41 billion euro in the United States [4]. Therefore, RA results in a significant burden for patients and
healthcare systems. The underlying cause for RA is still unknown and current therapies are more or
less effective in controlling symptoms, but still fail to cure the disease.

The development of biological disease-modifying antirheumatic drugs (bDMARDs) represent a
breakthrough in RA treatment. Indeed, bDMARDs were pioneered by TNF inhibitor (TNFi), which was
first approved by Food and Drugs Administration (FDA) in 1998. Subsequently, other biologic agents
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blocking pro-inflammatory cytokines including IL-1, IL-6 or neutralizing antigens on the cell surface
such as CTLA-4 or CD20 were developed. Importantly, in 2012 FDA approved new class of targeted
synthetic DMARDs (tsDMARDs), which were developed to target a particular molecular structure.
This class of drugs is also known as small molecule inhibitors. The first FDA approved tsDMARD was
tofacitinib inhibiting Janus kinases (JAKs). This new class of drugs represent a large family of small
molecules targeting the several types of kinases including JAK, a mitogen-activated protein kinase
(MAPK), spleen tyrosine kinase (SYK)-Bruton’s tyrosine kinase (BTK) (SYK-BTK) or nuclear factor,
such as NF-κB. Recent American College of Rheumatology (ACR) and the European League Against
Rheumatism (EULAR) guidelines have recommend the use of bDMARDs and tsDMARDs to treat
patients with moderate-to-severe disease activity [5]. Unfortunately, these treat-to-target medicines are
usually recommended only for patients that do not respond to methotrexate or other conventional
synthetic DMARDs (csDMARDs), due to high cost of treatment. For instance, the annual cost of
upadacitinib (JAK inhibitor—JAKi) treatment reaches $59,860 [6]. Of note, all three FDA approved
inhibitors of JAKs for RA (tofacitinib, baricitinib and upadacitinib) are administered orally, which may
be preferable to patients compared to biologic agents which are administered intravenously or via
subcutaneous injection. Small molecules inhibitors have shorter half-life than bDMARDs and need to
be taken either once or twice a day. In general, small molecules inhibitors are also smaller (≤500 Da size)
compared to biologics (>1000 Da size). On the other hand, tsDMARDs offer wide protection against
pro-inflammatory cytokines, in opposite to bDMARDs which block specific extracellular molecules.

Importantly, recent event of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
outbreak suggests that some tsDMARDs, targeting JAK1 and bDMARDs targeting IL-1, IL-6, GM-CSF
are being investigated as potential therapies for coronavirus disease 2019 (COVID-19) in order to
block cytokine storm. On the other hand, RA patients with an immunocompresed system might be at
higher risk for developing severe form of COVID-19; thus, administration of tsDMARDs should be
rigorously monitored.

This review provided the latest update on development of tsDMARDs, their efficacy and safety
as a strategy for RA treatment. On the other hand, we have highlighted the risk and adverse events
(AEs) of tsDMARDs administration including infections and thromboembolism. Finally, we discussed
the latest guidelines and recommendations of tsDMARDs treatment in the light of pandemic event of
SARS-CoV-2 and subsequent COVID-19 illness.

2. tsDMARDs Based on JAKs/MAPKs/NF-κB/SYK-BTK-Targeted Therapy

2.1. Signaling of JAKs/MAPKs/NF-κB/SYK-BTK

Cellular exposure to cytokines, chemokines, growth factors, pathogen-associated molecular
patterns (PAMPs) or antigens results in receptor ligation on the cell surface [7]. Signaling cascades
that are subsequently initiated lead to altered expression of genes involved in inflammation and other
cellular processes mounting an adequate response to stimuli [7]. These pathways comprise of JAKs
together with Signal Transducers and Activators of Transcription (STAT) pathway, MAPKs pathway,
NF-κB pathway and SYK-BTK-signaling [7] (Figure 1). Deregulated JAK/STAT activation is now
accepted as playing a critical role in perpetuating pathology of RA through its capacity to up-regulate
gene expression of proinflammatory cytokines [8]. Importantly, JAK/STAT pathway activation can
also result in activation of the MAPK pathway (by “cross-talk”), which is partially responsible for
neoangiogenesis and up-regulation of matrix metalloproteinases (MMP), that together with other
enzymes is responsible for degradation of articular cartilage extracellular matrix proteins. Unregulated
development of osteoclastogenesis results in destruction of subchondral bone via proteinase-mediated
degradation [8]. Finally, hyperactivation of NF-κB and overstimulation of the Phosphoinositide
3-kinases (PI3K)/Akt/Protein Kinase B/mammalian target of rapamycin (PI3K/Akt/PKB/mTOR)
“cell survival” pathway are probably responsible for the apoptosis resistance, characteristic for



Cells 2020, 9, 1876 3 of 21

RA inflamed synovial tissue [8]. Therefore, molecules building these signaling pathways become
attractive targets for the development of new therapies based on tsDMARDs.
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Figure 1. The mechanism of target synthetic DMARDs (tsDMARDs) inhibition in rheumatoid
arthritis (RA). tsDMARDs, also known as small molecule inhibitors, are involved in blocking several
pro-inflammatory pathways including JAK/MAPK/SYK-BTK/NF-κB signaling. tsDMARDs which are
currently investigated in clinical trials or already approved for RA treatment are highlighted by the red
rectangles, tsDMARDs which are terminated are highlighted by the white rectangles with dashed line.

2.1.1. Signaling of JAKs

The JAK family, together with the transcription factors of STAT, compose signal transmission
pathway between extracellular receptors (receptors for cytokines) and cell nucleus. The JAK-STAT
pathway is activated by more than 50 different cytokine receptors and results in transcriptional regulation
of genes that coordinate cell proliferation, differentiation, activation and metabolic homeostasis. It is the
common pathway for intracellular signal transduction of pro-inflammatory mediators like cytokines
(IL-6, IL-11, IL-12, IL-23), type I and II IFNs, all γ-chain cytokines (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21),
hematopoietic growth factors as IL-3, IL-5 and GM-CSF, erythropoietin and thrombopoietin [9].
There are four different types of human JAKs (JAK1, JAK2, JAK3 and TYK2) and seven inactive
cytoplasmic proteins STAT (STAT1, STAT2, STAT3, STAT4, STAT5a and b and STAT6) that compose
JAK/STAT pathway [10]. Activation process of signaling cascade results in accumulation of JAKs and
STAT molecules into homo-, hetero-, or multimers and the final, transcriptional effects is dependent on
the type of JAK and STAT involved in building specific multimer. Finally, phosphorylated STAT dimers
translocate to the nucleus where they act as a transcription factors and regulate process of transcription
of targeted genes. Cytokines are directly implicated in each phase of RA pathogenesis—by promoting
autoimmunity, by maintaining chronic inflammatory synovitis and finally driving the destruction
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of the adjacent joint tissue [11]. Additionally, elevated expression of STAT3, STAT1, STAT4, STAT6
and JAK3 detected in RA, suggests that their activation stimulate pathogenesis of RA [12–15]. Thus,
molecules that regulate the JAK-STAT pathways are proposed to be real therapeutic drugs for the
treatment of RA.

2.1.2. Signaling of MAPKs

There are three subfamilies of MAPKs: extracellular signal-regulated kinases (ERK), c-Jun
amino-terminal kinases (JNK), and p38 kinase (p38) [16]. The MAPK pathway begins with MAPK
kinase kinases (MAP3K), which phosphorylate and activate the MAPK kinases (MKK). The MKK
then phosphorylate MAPK, which subsequently activate various transcription factors. This pathway
regulates fundamental cellular processes like cell cycle regulation, apoptosis, cell aging and the
production of cytokines such as IL-10. The p38 is a key protein in the regulation of the pro-inflammatory
response and thus was one of the first protein kinase investigated as a therapeutic target in autoimmunity
and inflammation [16]. Activated ERK, JNK and p38 are present in synovial tissue of RA patients,
suggesting that they play an important role in this autoimmune disease [17,18]. Additionally, TNF,
IL-1β and COX-2 are among the most important pro-inflammatory mediators regulated by p38,
which inhibition has been demonstrated to result in clinical benefit in RA patients [19]. The biological
processes regulated by p38 kinase suggest a wide variety of potential indications for inhibitors, but level
of complexity has proven challenging to the drug discovery effort [19].

2.1.3. Signaling of NF-κB

NF-κB represents a family of inducible transcription factors (p50, p52, p65, RelB and c-Rel)
regulating many genes involved in processes of immune and inflammatory responses. The NF-κB
proteins are normally sequestered in the cytoplasm by inhibitory proteins, including IκB. NF-κB target
inflammation not only directly by triggering the production of chemokines, adhesion molecules and
pro-inflammatory cytokines, but also by modulating cell proliferation, survival, morphogenesis and
differentiation [20]. There are two signaling pathways leading to activation of NF-κB: canonical and
alternative. The canonical pathway responds to diverse stimuli, including ligands of cytokine receptors,
pattern recognition receptors (PRRs), TNF receptor superfamily (TNFRSF), T-cell receptor (TCR) and
B-cell receptor (BCR). Alternative pathway selectively responds to a specific group of stimuli including
ligands for a subset of TNFRSF (RANK, CD40 and BAFFR) [20]. Activated NF-κB in synovial tissue of
RA patients have been described many years ago [21]. NF-κB contributes to RA pathogenesis by acting
in many different cell types. First, it mediates the induction of pro-inflammatory cytokines, such as
TNF, IL-1 and IL-6 in monocytes and macrophages. Many of these cytokines are able to activate NF-κB
in innate immune cells and fibroblasts leading to further dissemination of inflammation [20]. Second,
NF-κB promotes Th17 differentiation and support survival of self-reactive B cells both cell populations
being strongly involved in RA development [22,23].

2.1.4. Signaling of SYK and BTK

SYK and BTK are cytoplasmic non-receptor tyrosine kinases, transmitting signals from a different
cell surface receptors like BCR, Fc receptors, CD74 and integrins [24]. Receptor crosslinking followed
by cascade of enzymatic activation leads to cooperation of recruited SYK with BTK to activate
phospholipase C-gamma2 (PLC-γ2), which finally results in MAPK and Phosphoinositide 3-kinase
(PI3K) dependent downstream signaling cascades regulating diverse biological processes like cell
growth, proliferation, differentiation and cytoskeletal remodeling [24]. The SYK family comprises two
members: zeta-chain-associated protein kinase 70 (ZAP70) and SYK kinase. ZAP 70 expression is
limited to T lymphocytes and NK cells, while SYK is expressed in hematopoietic cells, mast cells and
synoviocytes [16]. SYK is activated in synoviocytes by pro-inflammatory cytokines like TNF and IL-1,
which induce JNK activation and IL-6 production and results in IL-12 and IL-13 synthesis, stimulation
of proliferation, differentiation, survival, degranulation and phagocytosis [25]. The BTK family has
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four members and is expressed in all hematopoietic cells and lymphocytes except for T cells and mature
plasma B cells and is basic for lymphopoiesis [24]. Phosphorylated SYK was detected in peripheral
blood B cells and synovial tissue of RA patients [26,27]. B cells and autoantibodies produced by most
RA patients, mainly anti-citrullinated protein/peptide antibody (ACPA) and rheumatoid factor (RF),
play a pivotal role in the pathogenesis of RA. As SYK functions as a key molecule in B cell receptor
signaling, while BTK is fundamental for regulation of B cell proliferation and activation process; thus,
both kinases were proposed as therapeutic target in RA treatment [28].

2.2. Clinical Studies of JAKs/MAPKs/NF-κB/SYK-BTK Inhibitors

2.2.1. JAKs Inhibitors

First-generation JAKi affected a broad spectrum of signaling pathways of cytokines (pan-inhibitors),
whereas second-generation JAK inhibitors aim to target selectively the chosen pathway, which limit
the activity of much smaller subset of cytokines and maintain the signaling via other not-inhibited
JAK-dependent pathways [29]. The main reason for selective JAKi development was the incidence
of AEs, observed during pan-inhibitors treatment [29,30]. There are currently a series of JAKi in
development for inflammatory indications and three pan-inhibitors had been approved for the
treatment of RA: tofacitinib, baricitinib and peficitinib [30].

Tofacitinib, targeting JAK1 and JAK3, and JAK2 to a lesser extent, was the first JAKi approved
by FDA and The European Medicines Agency (EMA) for treatment patients with moderate to severe
RA, failing initial treatment with methotrexate (MTX) or other csDMARDs. It received its first
regulatory approval for the treatment by FDA in 2012 under the trade name Xeljanz [30]. It improved
disease activity in patients with RA who were receiving MTX or other non-biologic DMARDs [31,32].
In monotherapy, tofacitinib was superior not only to placebo, but also to MTX, in reducing signs
and symptoms of RA [33,34]. Tofacitinib with MTX had a clinically meaningful improvements of RA
signs in patients refractory to TNFi [35]. In head-to-head trial (ORAL Strategy) tofacitinib and MTX
combination therapy was non-inferior to adalimumab (TNFi) and MTX in patients with an inadequate
response to MTX, but clinical and radiographic treatment effects were sustained in patients receiving
tofacitinib and MTX till 24 months [36,37].

Baricitinib is a potent, reversible and selective JAK1/JAK2 inhibitor with 100-fold higher selectivity
for JAK1/JAK2 over JAK3, approved by FDA and EMA under the trade name Olumiant in 2018 [30].
It demonstrated beneficial treatment, as compared with placebo and adalimumab in patients refractory
for MTX and different bDMARDs therapy [38,39]. In other studies, baricitinib appeared to be very
effective in monotherapy and not inferior to baricitinib and MTX combine therapy [40,41]. RA-BEAM
study showed that baricitinib provided enhanced improvement in pain and physical function in
patients with well-controlled RA, suggesting it may produce effects beyond immunomodulation [42].

Peficitinib is the latest JAKs pan-inhibitor developed for the inflammatory indications, which
received its regulatory approval for the RA treatment by the Pharmaceuticals and Medical Devices
Agency (PMDA) in 2019, under the trade name Smyraf [30]. Peficitinib is inhibitor of JAK3 enzymatic
activity and JAK1/3-mediated cell proliferation [43]. Its selectivity for JAK family kinases is similar to
that of tofacitinib, but slightly less potent for JAK2 [43]. This drug appeared to be effective and safe
in monotherapy or in combination with csDMARDs in patients with moderate to severe RA [44,45].
Peficitinib showed significantly improved efficacy compared with placebo and an acceptable safety
profile in Asian patients with RA who had an inadequate response to csDMARDs or bDMARDs
(RAJ3 study) or MTX (RAJ4 study) [46–48]. Recently, published results of long-term administration of
peficitinib suggested that it may be an effective and safe long-term treatment option for Asian patients
with RA [49]. Peficitinib was approved for the management of RA in Japan in 2019 [50].

Ruxolitinib (INCB018424) is a potent and selective JAK1/JAK2 inhibitor, with 130-fold selectivity
higher for JAK1/JAK2 over JAK3. The drug was approved by FDA for the treatment of patients with
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myelofibrosis under the trade mark Jakafi in 2011 [30]. The safety, tolerability and efficacy of ruxolitinib
was evaluated in RA patients in phase II clinical trial (NCT00550043).

Selective JAK inhibitors have been recently reported as a result of increasing knowledge of the
importance of kinase selectivity for safety, along with its role in disease course [30]. For example, JAK2
functions as a homodimer to play very important role in red blood cell formation. That is why side
effects including anemia, neutropenia and thrombopenia were observed during inhibition of JAK2
within treatment with pan-inhibitors of the JAKs enzyme family.

Upadacitinib (ABT-494) was developed as an efficient JAK1 inhibitor for the treatment of
moderate to severe RA [30]. It is a first selective JAKi approved by the FDA and EMA for RA
treatment (since mid-2019) [6]. Upadacitinib was reported to improve RA signs in patients with
an inadequate response to MTX (BALANCE 2) or TNFi (BALANCE 1) [51,52]. It led to significant
improvement of clinical signs and symptoms in patients with inadequate response to csDMARDs,
including MTX, sulfasalazine or leflunomide (SELECT-NEXT, SELECT-SUNRISE), as well as bDMARDs
(SELECT-BEYOND) [53–55]. Statistically significant improvements in clinical and functional outcomes
were also showed in upadacitinib monotherapy in RA patients with inadequate response to MTX
(SELECT-MONOTHERAPY), although existing recommendations for management of RA do not
include any novel DMARD monotherapy as a part of the strategy [56]. Further investigation,
SELECT-COMPARE trial, support the results of upadacitinib superior to placebo and adalimumab for
RA signs including radiographic progression in RA patients with inadequate response to MTX [57,58].
Overall, safety profile of upadacitinib was generally similar to adalimumab [59].

The selectivity of another JAK1 inhibitor, filgotinib (GLPG0634), is 30-fold higher for JAK1 over
JAK2 [60]. Filgotinib appeared to be effective and safe in patients with insufficient response to MTX,
as investigated in two double blind, placebo controlled phase IIa trials [61]. It was also effective in
monotherapy (DARWIN 2) and in combination with MTX (DARWIN 1), as well as in patients with
active RA who had an inadequate response or intolerance to one or more bDMARDs (FINCH2) [62–64].
Filgotinib treatment decreased multiple biomarkers, which have a key role in immune response
(IL-6, IFN-γ, TNF, IL-12, IL-17A, IL-1β), matrix degradation (MMP1, MMP3), angiogenesis (VEGF),
recruitment and adhesion of leukocytes (CXCL10, CXCL13) [65]. Administration of filgotinib did
not modulate the subsets of NK and T cells, but slightly increased B cell number, which is not fully
understood [65].

There have been many selective JAKi developed recently and a few have been investigated
in RA patients. Itacitinib was developed as selective inhibitor of JAK1, with more than 20-fold
selectivity for JAK1 over JAK2 [30]. The safety, tolerability and efficacy of itacitinib was evaluated
in phase II study (NCT01626573) in RA patients, but results have not been posted. Ritlecitinib
(PF-06651600) is an irreversible inhibitor of JAK3 and the tyrosine kinase expressed in hepatocellular
carcinoma (TEC) kinase family [66]. The efficacy and safety of ritlecitinib were evaluated in RA
patients, who are seropositive for ACPA and/or RF with inadequate response to MTX. Ritlecitinib was
generally well-tolerated and its treatment was associated with significant improvements in RA disease
activity [66]. Decernotinib (VX-509) is a potent inhibitor of JAK3 developed by Vertex Pharmaceuticals.
Four clinical studies evaluating efficacy of VX-509 in patients with RA had been completed, including
phase II/III open label extension study (NCT01830985), investigating long-term safety and efficacy in
subjects with RA, but no results were posted.

2.2.2. MAPKs Inhibitors

MAPK inhibitors, tested in clinical trials in RA patients, were mainly based on p38 kinase inhibition
and were believed to be the ideal target for oral therapy. The p38 MAPK inhibitors, including VX-702,
SCIO-469 and ARRY-371797, have mostly failed in clinical trials due to lack of efficacy and potential
AEs [67]. The phase II clinical trials of PH-797804, dilmapimod (SB-681323), BMS-582949 and p38
inhibitor developed by Hoffmann–La Roche has finished, but safety and efficacy data in RA treatment
have not been published. Pamapimod was another p38α inhibitor, which, despite promising preclinical
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data, yielded disappointing results in clinical studies [68,69]. MAPK inhibitors have not succeeded
in clinical trials due to the pleiotropic effects on the immune system stemming from p38α MAPK
inhibition, which was not predicted by preclinical murine inflammation studies [70].

2.2.3. NF-κB Inhibitors

Iguratimod (T-614) which inhibits activation of NF-κB or RelA (p65), is a novel tsDMARD,
approved for RA treatment only in Japan and China [71]. Although iguratimod is recommended by the
Asia Pacific League of Associations for Rheumatology (APLAR) in the treatment guidelines, the actual
targets of the drug are still unknown. Iguratimod significantly inhibited the initiation and progression
of RA by multiple mechanisms including regulation of T cell subsets differentiation, inhibition of
human antibody secreting cells and inhibition of bone resorption [72–75]. The results of clinical studies
have reported the safety and efficacy of iguratimod in monotherapy and in combination therapy with
MTX [76,77].

2.2.4. SYK-BTK Inhibitors

The first SYK inhibitor investigated in RA patients, fostamatinib, although promising in
murine models of RA, failed in phase III trials [70]. However, several BTK inhibitors approved
for cancer treatment have been repurposing for the treatment of RA and entered clinical studies
(Table 1). Evobrutinib is a novel and highly selective irreversible BTK inhibitor targeting BCR and Fc
receptor-mediated signaling and consequently inhibiting activation of human B cells, monocytes and
basophils [78,79]. In mouse model of RA evobrutinib administration resulted in reduction of disease
severity and histological damage, although did not reduce autoantibodies [78]. Safety and efficacy
of evobrutinib in subjects with RA with stable MTX therapy or with inadequate response to MTX
was evaluated in a phase IIa-b, randomized and double-blind studies (NCT02784106, NCT03233230).
Tirabrutinib (GS-4059/ONO-4059) is a selective oral BTK inhibitor with clinical activity against
many relapsed/refractory B-cell malignancies [80]. Safety and pharmacokinetics of GS-4059 in
healthy volunteers and RA patients were evaluated in phase I placebo-controlled randomized study
(NCT02626026), but no results have been posted. Spebrutinib (CC-292), although significantly reducing
markers of chemotaxis and osteoclast activity, did not reach the statistically significant ACR 20 criteria
(ACR20) response rate at week 4 in RA patients treatment [81]. HM71224 is a potent small molecule
inhibitor BTK. In the first-in-man (FIM) study of the compound (NCT01765478), safety and tolerability
of HM1224 were investigated, but no results were posted.

Table 1. Kinase and other small molecule inhibitors investigated in RA.

Target Compound Name Company Current Development
Phase in RA

Current Development
in COVID-19

JAK1/JAK3 Tofacitinib Pfizer Approved by FDA and
EMA

phase II
(NCT04469114,
NCT04415151)

JAK1/JAK2 Baricitinib Eli Lilly
and Company

Approved by FDA and
EMA

phase II/III/IV
(NCT04358614,
NCT04421027,
NCT04340232,
NCT04346147,
NCT04390464,
NCT04320277,
NCT04373044,
NCT04321993,
NCT04366206)

JAK 1,2,3
TYK2

Peficitinib
(ASP015K)

Astellas Pharma,
Inc. Approved in Japan
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Table 1. Cont.

Target Compound Name Company Current Development
Phase in RA

Current Development
in COVID-19

JAK 1/2 Ruxolitinib
(INCB018424) Incyte Corporation

phase II
(NCT00550043)

completed

phase II/III
(NCT04359290,
NCT04359290,
NCT04362137,
NCT04348071,
NCT04355793,
NCT04377620,
NCT04334044,
NCT04331665,
NCT04366232,
NCT04374149,
NCT04338958,
NCT04348695)

JAK1 Upadacitinib
(ABT 494) AbbVie Approved by FDA and

EMA preclinical studies

JAK1
Filgotinib

(GLPG0634,
GS6034)

Galapagos NV

phase III
(NCT03025308) active

phase II
(NCT02065700) active

phase II
(NCT03926195)

recruiting

JAK 1 Itacitinib
(INCB039110) Incyte Corporation

phase II
(NCT01626573)

completed

JAK3/TEC Ritlecitinib
(PF-06651600) Pfizer

phase II
(NCT02969044)

completed

JAK3 Decernotinib
(VX-509)

Vertex
Pharmaceuticals

phase II/III
(NCT01830985)

completed

NF-κB Iguratimod
Jiangsu Simcere
Pharmaceutical

Co., Ltd.

Approved in Japan
and China

BTK Evobrutinib
(M2951)

Merck/EMD
Serono Research &

Development
Institute

phase IIa
(NCT02784106)

completed; phase IIb
(NCT03233230)

completed

BTK Tirabrutinib
(GS-4059) Gilead Sciences phase I (NCT02626026)

completed

BTK Spebrutinib
(CC-292) Celgene

phase II
(NCT01975610)

completed

BTK HM71224
Hanmi

Pharmaceutical
Co., Ltd.

phase I (NCT01765478)
completed

Small molecule therapy is relatively new treatment so their position in therapeutic hierarchy is not
strongly placed. In RA treatment, the most recent EULAR recommendations from 2016 [82] placed JAKi
in the second line, after failure of a first line csDMARDs (particularly MTX) and presence of unfavorable
prognostic factors [83]. The ACR recommendations from 2015, which are more strict, assaulted the use
of JAKi as the third choice treatment, in case of failure of csDMARDs or TNFi plus MTX or non-TNFi
biologic (abatacept, rituximab, tocilizumab) plus MTX [5]. The reason why JAKi therapy is placed
behind MTX or bDMARDs is lack of enough long-term tolerance data. However, head-to-head trials



Cells 2020, 9, 1876 9 of 21

between JAKi and TNFi did not reveal clinically important differences in efficacy [84]. Because of
insufficient data on oral kinase inhibitors, recent EULAR recommendations are to avoid usage of those
drugs in pregnancy [85].

2.3. Side Effects of JAKs/MAPKs/NF-κB/SYK-BTK Inhibitors

Most AEs noted during JAKi treatment were expected and could be explained by the known
mechanisms of action of cytokines, inhibited during the intervention, but there are still some AEs that
are more difficult to be clarified [10]. Especially, treatment with first-generation JAKi, targeting a wide
spectrum of cytokines (potentially 57 cytokines), resulted with AEs.

JAKi are immunosuppressive treatment and thus the infectious side effects are the most expected.
Pivotal safety studies of tofacitinib and baricitinib showed that the most common infections observed
were those of upper airways, followed by herpes zoster infection [86–90]. Herpes zoster infection risk
was higher than observed with bDMARDs and infections appeared at twice the rate seen in patients on
biologics [10,91]. Increased zoster risk with JAKi may result from inhibition of type I IFN, which signal
through JAK1. Dose-dependent increases in zoster risk without an increased risk for serious infections
have been observed in patients with systemic lupus erythematosus with type I anti-IFN antibodies.
This suggests an on-target mechanism, rather than generalized immune suppression [89,92]. Knowing
antiviral role of IFNs, increased risk of herpes zoster is not surprising during JAKi treatment; however,
it is not clear why this particular viral infection is increased [10]. Thus, it is advisable to vaccinate
patients against herpes zoster before starting therapy with JAKi [10]. Rates of short-term serious AEs
(within 6 months) were generally comparable across all treatments, including JAKi, adalimumab,
and csDMARDs. Infections (e.g., upper respiratory tract infection, bronchitis, nasopharyngitis, urinary
tract infection) were the most common AEs during treatment. Based on long-term (1 year or more)
trial data, upadacitinib, tofacitinib, and baricitinib showed comparable overall safety profiles [6].

There is increased risk of deep venous thrombosis (DVT) and pulmonary embolism (PE) in
patients with RA. Importantly, cardiovascular (CV) events including DVT and PE are leading cause
of death in RA patients [10,93]. RA patients have a 69% higher risk of CV disease, including stroke
and myocardial infarction, and a 60–140% higher risk of venous thrombo-embolism (VTE), suggesting
that persistent inflammation in RA can significantly contribute to increased CV risk [94,95]. Thus,
management of inflammation by all DMARDs has led to significant improvement in the clinical CV
outcome of patients with RA [93]. JAK2 inhibition obviously perturbs thrombopoietin signaling and
platelet homeostasis, but its relationship to thrombosis now is unclear [10]. Initially the incidence of
Major Adverse Cardiovascular Events (MACE) observed in both baricitinib and tofacitinib pooled
safety population was low and stable [86,89]. Increased risk of thromboembolic events was observed;
however, this is only with the highest dosage of each drug: 4mg for baricitinib [96] and 10mg for
tofacitinib [86]. In 2018, the FDA Adverse Event Reporting System (FAERS) assessed postmarketing
reporting rates for related thromboembolic risk in tofacitinib and ruxolitinib [97]. FAERS data indicated
that pulmonary thrombosis, but neither DVT nor PE may potentially be a class-wide issue for JAK
inhibitors [97]. Additionally, portal vein thrombosis may be a potential risk for ruxolitinib [97].
Following recent postmarketing safety trials triggering concerns of blood clots in the lungs and
death in RA patients treated with high dose of tofacitinib, both FDA and EMA issued new boxed
warnings for tofacitinib 10 mg twice-daily doses [98–100]. Their recommendations are to avoid
such use in patients with a higher risk of thrombosis (older age, obesity, medical history of DVT/PE,
or immobilization after surgery). The very recently published study presents data on the suspected
adverse drug reactions (SADRs) resulted from the analysis of individual case safety reports (ICSRs)
for tofacitinib and baricitinib retrieved from the World Health Organisation (WHO) global database:
VigiBase [101]. For tofacitinib, the majority of reports came from the US (79.6%), followed by Canada
(11.9%) and Europe (3.3%), while 97.2% of ICSRs for baricitinib were from Europe and none from
US or Canada [97]. This real-world study identified that patients with reported DVT or pulmonary
thrombosis (PT) or PE generally had risk factors associated with thromboembolic events (older age,
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reporting of contraceptives, antidepressants, antithrombotic agents) [101]. Although those patients
may have developed DVT or PT/PE independently of tofacitinib, the drug treatment might be an
additive risk factor. While in Europe, tofacitinib treatment was associated with an elevated reporting of
DVT and PE, increased reporting of PT was observed in US. Similar elevated reporting for baricitinib
was observed in Europe. These results support the current recommendations for cautious use of
tofacitinib in patients with high thromboembolic risk and suggest the re-examination of the use of
baricitinib 4 mg in Europe [101]. The caution dealing with baricitinib used in 4mg is supported by
FDA decision to limit approval only to the 2 mg formulation and results from the resent meta-analysis,
which suggest higher occurrence of thromboembolic events with a 4 mg dose of baricitinib than a 2 mg
dose [102]. The real-life data from the US CORRONA registry published in 2019 demonstrated that the
risk of VTE in patients receiving tofacitinib versus those treated by TNFi was not statistically significant,
although numerically higher [103]. Thromboembolic safety of JAKi requires further ongoing real-world
assessment to determine if a class- and dose-relationship exist, especially in the context of increased
clinical usage of JAKi and recent FDA- and EMA-approved upadacitinib in August 2019 [101].

Most JAKi are likely to induce cytopenias, decreased neutrophil counts and anemia because of
their more or less specific inhibition of JAK2 and erythropoietin together with other hematopoietic
growth factors as IL-6 and IL-11 signaling [38,43,45,51,63,83,86,89]. However, ritlecitinib, a covalent
JAK3 inhibitor with high selectivity over the other JAK isoforms JAK1 and JAK2, does not inhibit
JAK2 [66]. The fact that ritlecitinib spares inhibition of JAK2 cytokine signaling, connected with some
hematologic AE, has made this selective inhibitor an attractive therapeutic intervention. Development
of highly selective JAKi, not inhibiting JAK2 indeed might be a key to avoid thromboembolism, one of
the most dangerous AE. Interestingly, thrombocytopenia observed during JAKi treatment does not
seem to result from JAK2 inhibition in platelets and megakaryocytes but rather in progenitor cells [104].
However, despite the fact that neutrophils dropped after tofacitinib or baricitinib treatment, this has
not been correlated with an increased infection risk [89]. Anemia observed after upadacitinib treatment
(selective JAK1 inhibitor) may suggest that this drug also inhibits JAK2, particularly when used in
high dosage (IC50 = 0.043 µM for JAK1 vs. IC50 = 0.2 µM for JAK2) [29,105].

RA patients generally have an increased incidence of cancers, including lymphoma [10].
Oncological and cardiovascular risk resulting from JAKi treatment need long term observation
but the current data are reassuring. At present, the malignancy risk appears to be similar to those
reported in other RA therapeutic treatment (etanercept, tocilizumab, adalimumab) and remained stable
over time [89]. However, as IFNs and IL-12 take part in controlling tumor development, long blockade
of JAK/STAT signaling might support malignancy development [106].

JAKs signaling participate in metabolism regulation [10]. Thus, the use of JAKi can be associated
with increased liver enzymes and gastrointestinal perforation observed during JAKi treatment of
RA patients, but this concept has not been yet firmly established [107]. JAKi treatment increase in
total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles [108].
There is observed changed lipid profile in RA patients resulting from the disease (increased and driven
probably by IL-6 catabolism of LDL), but JAKi seem to restore it [109]. Despite the increased level of
LDL, HDL and total cholesterol in RA patients, LDL/HDL ratio stayed stable or decreased in all JAKi
studies, suggesting small impact on long term cardiovascular risk. It seems possible that JAKi can limit
vascular damage by decreasing inflammation despite increasing cholesterol levels [110]. Additionally,
JAKi targeting JAK2 (mainly baricitinib, but to some extend also tofacitinib) were shown to increase
weight. It can be explained by the fact that JAK2 is an element of intracellular IGF-1/GH axis signaling
weight gain [83,86,89].

AEs observed in RA patients taking pamapimod (MAPKs inhibitor), including infections,
skin disorders, elevated levels of liver enzymes and gastrointestinal disorders, resulted in drug
withdrawal [69]. Although the C-reactive protein (CRP) level was initially decreased during the
treatment with MAPKs inhibitors, the effect was transient and return to baseline level [67,69,111].
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This suggests a strong biologic adaptation, that allows the escape from this pathway and made p38
MAPK inhibition not useful for the treatment of RA [111].

The most commonly reported AEs during iguratimod (NF-κB inhibitor) therapy were blood iron
decrease, upper respiratory tract inflammation, nasopharyngitis, stomatitis, lymphocyte decrease,
AST increase and ALT increase. Although most of these AEs were predominantly mild or moderate in
severity; however, the severe liver injury was noted [76,77,112]. Additionally, it seems that efficacy
and toxicity of iguratimod is dependent on genetic polymorphism [113].

AEs resulting from BTK inhibition can be followed in clinical trial of spebrutinib in RA patients [81].
It was well tolerated and most AEs like nausea, back pain, diarrhea, cough, and migraine were mild in
severity. However, as preclinical toxicology studies in mice showed maturing spermatid degeneration,
spebrutinib was taken so far only by female patients, which limits the potential drug usage [81].

3. The Role of tsDMARDs in Fighting COVID-19

Since 11 March 2020, WHO declared disease COVID-19, due to SARS-CoV-2 infection, as a
pandemic [114]. In more severe cases, the disease is characterized by interstitial pneumonia with
alveolar damage, which can lead to cytokine release syndrome (CRS) associated with massive production
of pro-inflammatory cytokines and chemokines (IFN-α, IFN-β, IL-1β, IL-6, IL7, IL-8, IL-2, TNF, CXCL10,
CCL2) within approximately 7 days or later of symptom onset [114,115]. The control of this cytokine
storm is the major unmet need in COVID-19 treatment. SARS-CoV-2 enters targeted cells through
receptor, angiotensin-converting enzyme 2 (ACE2)-mediated endocytosis [116]. Some regulators of this
endocytosis belong to numb-associated kinase (NAK) family, such as AP2-associated protein kinase 1
(AAK1) and cyclin G-associated kinase (GAK) [117]. Inhibition of AAK1 would block the access of
the virus into lung cells. However, to treat severe cases of COVID-19, when the host inflammatory
response becomes a major cause of lung damage and subsequent mortality, there is a need to identify
drugs combining anti-viral and anti-inflammatory properties [118].

The increasing knowledge about the SARS-CoV-2 infection is leading to consider some
anti-rheumatic tsDMARDs as potential treatment options for the management of COVID-19. Indeed,
the group of five JAKi, which are already approved for medical treatment, including tofacitinib,
baricitinib, ruxolitinib, upadacitinib and fedratinib may be a good candidate. In particular, baricitinib
has high affinity for AAK1 and ability to ameliorate chronic inflammation in interferonopathies [118].
Indeed, baricitinib inhibits NAK family, suggesting that baricitinib could not only repress the cytokine
storm, but also block the virus entry into the host cells. In addition, it has been demonstrated
that patients treated with baricitinib had reduced fever, breathlessness, cough, CRP levels and
improvements in pulmonary function tests [119]. Importantly, JAK-STAT pathway blocking by
baricitinib, results in impairment of IFN signal, which is one of the strongest innate immune responses
preventing viral replication [120]. Therefore, introducing baricitinib at the late stage of disease,
in order to control dangerous cytokine storm, but not to stop virus clearing by IFN, might be
a reasonable proposal [115]. The risk of serious infections strongly depends on disease activity,
supporting the importance of maintaining a good disease control in order to reduce infectious
complications [121]. It has been demonstrated that Eli Lilly has started phase II/III/IV trial of baricitinib
in COVID-19 as a mono therapy treatment and in combination with other drugs (clinical trials no.
in Table 1). Many clinical trials have been also started with using ruxolitinib to combat COVID-19
(clinical trials no. in Table 1). The other JAKi, tofacitinib, is currently in a phase IIb randomized
double blinded placebo controlled study for the treatment of moderate COVID-19 (clinical trials
no. NCT04469114, NCT04415151). Importantly, p38 MAPK pathway also plays a crucial role in the
release of pro-inflammatory cytokines and is activated by Angiotensin II. Angiotensin II is converted
by ACE2, suggesting that blocking of p38 may impact multiple components of COVID-19. In vitro
study has showed protective effects of p38 inhibition in a SARS-CoV [122]. Previous clinical study
already demonstrated that losmapimod (p38 inhibitor) is involved in the reduction of pro-inflammatory
biomarkers such as CRP and IL-6; therefore, the FDA approved phase III clinical study of losmapimod
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as a potential treatment for COVID-19 (LOSVID clinical trial). Losmapimod is already approved
for facioscapulohumeral muscular dystrophy treatment [123]. Furthermore, recent data suggested
a potential role of SYK-BTK inhibition in preventing thrombosis during COVID-19 [124]. Indeed,
the authors speculated that SYK-BTK inhibition may block platelet-activating receptor (CLEC-2) and
may reduce microvascular and venous thrombosis in COVID-19 patients. In addition, a mouse model
study has demonstrated that fostamatinib (SYK inhibitor) can promote Mucin-1 removal from the
surface of mucosal epithelial cells [125]. Increased expression of Mucin-1 is a biochemical marker
predicting the development of acute lung injury. Furthermore, off-label clinical study demonstrated
that treatment with the acalabrutinib (BTK inhibitor) resulted in decreased inflammation and improve
outcomes in COVID-19 patients [126]. An alternate strategy for treating CRS in COVID-19 are also
biologic agents including anti-IL-6Rα (tocilizumab and sarilumab), anti-IL-1 (anakinra), anti-CD20
(rituximab) and anti-GM-CSF (mavrilimumab, lenzilumab, gimsilumab); however, to evaluate the
efficacy of these therapeutic modalities are still ongoing.

Although there is increased infectious risk in RA due to the disease itself and immunosuppressive
agents administration, recent observations showed that patients with chronic arthritis treated with
bDMARDs or tsDMARDs do not seem to be more prone to life-threatening complications from
SARS-CoV-2 than general population [127,128]. Guiding principles from EULAR and ACR suggested
that RA patients should continue treatment during COVID-19 and to allocate adequate supplies of IL-1
and IL-6 and JAK antagonists for especially those RA patients, in whom even brief drug holidays would
be expected to cause a flare of their disease [129–132]. Interestingly, recent clinical study revealed that
the corticosteroid dexamethasone can reduce mortality in severe COVID-19 patients receiving oxygen
therapy [133]. This suggests that dexamethasone, commonly used immunosuppressive agent for RA
treatment, may improve the clinical outcome of hospitalized patients with severe COVID-19.

4. Conclusions

Despite extensive research and clinical efforts have been made in the past years, when the first
tsDMARDs have been approved by FDA in 2012, the importance of development of more specific
molecules is still needed in order to improve the quality of life for patients with active RA.

This review critically analyze the benefits and disadvantages of latest clinical trials
using newly discovered small molecule inhibitors with particular focuses on inhibition of
JAKs/MAPKs/NF-κB/SYK-BTK signaling pathways. One advantage of tsDMARDs treatment is that
these small molecules are orally administered and can offer wide protection against pro-inflammatory
cytokines, in opposition to bDMARDs, which block specific extracellular molecules.

However, further studies are needed in order to monitor their risk-benefit ratio including increased
risk of infection and thromboembolism. Indeed, recently, the EMA and FDA released warnings about
the risk of blood clots in patients taking high dose of tofacitinib [99,100]. Therefore, the performance of
blood tests or viral infection screening should be mandatory before the tsDMARDs administration.

Recent events of SARS-CoV-2 outbreak have demonstrated the potential use of small molecules
inhibitors not only in treatment of RA but also in fighting COVID-19 via blocking the viral entry,
preventing of hyperimmune activation and reducing cytokine storm. However, the administration of
tsDMARDs should be carefully monitored by clinicians during each stage of COVID-19 progression.
In particular, during early stage of COVID-19, small molecules treatment might be considered as
beneficial in blocking viral entry, while during late stage of disease (>7 days), administration of
tsDMARDs should be helpful in inhibition of live threatening cytokine storm production. Importantly,
EULAR and ACR guidelines and recommendations demonstrate that there is no higher risk of
COVID-19 susceptibility upon immunosuppressant treatment in RA patients.

Overall, this review provides an update regarding small molecule inhibitors as a novel
anti-rheumatic drug and as a potential strategy for fighting COVID-19; however, it will require
more study to validate the current results and to determine the right protocols.



Cells 2020, 9, 1876 13 of 21

Author Contributions: Wrote the manuscript, M.M. and M.C.; revised the manuscript critically for important
intellectual content, W.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by core grant to the National Institute of Geriatrics, Rheumatology,
and Rehabilitation from the Polish Ministry of Science and Higher Education.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Crowson, C.S.; Matteson, E.L.; Myasoedova, E.; Michet, C.J.; Ernste, F.C.; Warrington, K.J.; Davis, J.M.;
Hunder, G.G.; Therneau, T.M.; Gabriel, S.E. The lifetime risk of adult-onset rheumatoid arthritis and other
inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 2011, 63, 633–639. [CrossRef] [PubMed]

2. Kvien, T.K. Epidemiology and burden of illness of rheumatoid arthritis. Pharmacoeconomics 2004, 22, 1–12.
[CrossRef] [PubMed]

3. Putrik, P.; Smolen, J.S.; Guillemin, F.; Péntek, M.; Sivera, F.; Sokka, T.; De Wit, M.; Woolf, A.D.; Zink, A.;
Andersone, D.; et al. Patients with rheumatoid arthritis facing sick leave or work disability meet varying
regulations: A study among rheumatologists and patients from 44 European countries. Ann. Rheum. Dis.
2019, 78, 1472–1479. [CrossRef] [PubMed]

4. Manova, M.; Savova, A.; Vasileva, M.; Terezova, S.; Kamusheva, M.; Grekova, D.; Petkova, V.; Petrova, G.
Comparative Price Analysis of Biological Products for Treatment of Rheumatoid Arthritis. Front. Pharmacol.
2018, 9. [CrossRef]

5. Singh, J.A.; Saag, K.G.; Bridges, S.L., Jr.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.;
Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology Guideline for the Treatment of
Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 1–26. [CrossRef]

6. Janus Kinase Inhibitors for Rheumatoid Arthritis: Effectiveness and Value. Draft Evidence Report prepared
for Institute for Clinical and Economic Review (ICER). Available online: https://icer-review.org/wp-content/
uploads/2019/03/ICER_RA_Draft_Evidence_Report_101119.pdf (accessed on 11 October 2019).

7. Mavers, M.; Ruderman, E.; Perlman, H. Intracellular signal pathways: Potential for therapies.
Curr. Rheumatol. Rep. 2009, 11, 378–385. [CrossRef]

8. Malemud, C.J. Suppression of Autoimmune Arthritis by Small Molecule Inhibitors of the JAK/STAT Pathway.
Pharmaceuticals 2010, 3, 1446–1455. [CrossRef]

9. Favalli, E.G.; Matucci-Cerinic, M.; Szekanecz, Z. The Giants (biologicals) against the Pigmies (small molecules),
pros and cons of two different approaches to the disease modifying treatment in rheumatoid arthritis.
Autoimmun. Rev. 2019, 19, 102421. [CrossRef]

10. Gadina, M.; Le, M.T.; Schwartz, D.M.; Silvennoinen, O.; Nakayamada, S.; Yamaoka, K.; O’Shea, J.J. Janus
kinases to jakinibs: From basic insights to clinical practice. Rheumatology 2019, 58, i4–i16. [CrossRef]

11. McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007, 7,
429–442. [CrossRef]

12. Isomäki, P.; Junttila, I.S.; Vidqvist, K.-L.; Korpela, M.; Silvennoinen, O. The activity of JAK-STAT pathways in
rheumatoid arthritis: Constitutive activation of STAT3 correlates with interleukin 6 levels. Rheumatology
2014, 54, 1103–1113. [CrossRef] [PubMed]

13. Walker, J.G.; Ahern, M.J.; Coleman, M.; Weedon, H.; Papangelis, V.; Beroukas, D.; Roberts-Thomson, P.J.;
Smith, M.D. Expression of Jak3, STAT1, STAT4, and STAT6 in inflammatory arthritis: Unique Jak3 and
STAT4 expression in dendritic cells in seropositive rheumatoid arthritis. Ann. Rheum. Dis. 2005, 65, 149–156.
[CrossRef] [PubMed]

14. Kasperkovitz, P.V.; Verbeet, N.L.; Smeets, T.J.; I Van Rietschoten, J.G.; Kraan, M.C.; Van Der Pouw, K.T.C.T.M.;
Tak, P.P.; Verweij, C.L. Activation of the STAT1 pathway in rheumatoid arthritis. Ann. Rheum. Dis. 2004, 63,
233–239. [CrossRef] [PubMed]

15. Karonitsch, T.; von Dalwigk, K.; Steiner, C.W.; Bluml, S.; Steiner, G.; Kiener, H.P.; Smolen, J.S.; Aringer, M.
Interferon signals and monocytic sensitization of the interferon-gamma signaling pathway in the peripheral
blood of patients with rheumatoid arthritis. Arthritis Rheum. 2012, 64, 400–408. [CrossRef] [PubMed]

16. Hernández-Flórez, D.; Valor, L. Protein-kinase Inhibitors: A New Treatment Pathway for Autoimmune and
Inflammatory Diseases? Reumatol. Clínica (Engl. Ed.) 2016, 12, 91–99. [CrossRef]

http://dx.doi.org/10.1002/art.30155
http://www.ncbi.nlm.nih.gov/pubmed/21360492
http://dx.doi.org/10.2165/00019053-200422001-00002
http://www.ncbi.nlm.nih.gov/pubmed/15157000
http://dx.doi.org/10.1136/annrheumdis-2019-215294
http://www.ncbi.nlm.nih.gov/pubmed/31427438
http://dx.doi.org/10.3389/fphar.2018.01070
http://dx.doi.org/10.1002/art.39480
https://icer-review.org/wp-content/uploads/2019/03/ICER_RA_Draft_Evidence_Report_101119.pdf
https://icer-review.org/wp-content/uploads/2019/03/ICER_RA_Draft_Evidence_Report_101119.pdf
http://dx.doi.org/10.1007/s11926-009-0054-9
http://dx.doi.org/10.3390/ph3051446
http://dx.doi.org/10.1016/j.autrev.2019.102421
http://dx.doi.org/10.1093/rheumatology/key432
http://dx.doi.org/10.1038/nri2094
http://dx.doi.org/10.1093/rheumatology/keu430
http://www.ncbi.nlm.nih.gov/pubmed/25406356
http://dx.doi.org/10.1136/ard.2005.037929
http://www.ncbi.nlm.nih.gov/pubmed/16096332
http://dx.doi.org/10.1136/ard.2003.013276
http://www.ncbi.nlm.nih.gov/pubmed/14962955
http://dx.doi.org/10.1002/art.33347
http://www.ncbi.nlm.nih.gov/pubmed/21953607
http://dx.doi.org/10.1016/j.reumae.2015.06.003


Cells 2020, 9, 1876 14 of 21

17. Schett, G.; Tohidast-Akrad, M.; Smolen, J.S.; Schmid, B.J.; Steiner, C.-W.; Bitzan, P.; Zenz, P.; Redlich, K.;
Xu, Q.; Steiner, G. Activation, differential localization, and regulation of the stress-activated protein kinases,
extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase,
in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum. 2000, 43, 2501–2512. [CrossRef]

18. López-Santalla, M.; Salvador-Bernáldez, M.; González-Álvaro, I.; Castañeda, S.; Ortiz, A.M.;
García-García, M.I.; Kremer, L.; Roncal, F.; Mulero, J.; Martínez, A.C.; et al. Tyr323-dependent p38
activation is associated with rheumatoid arthritis and correlates with disease activity. Arthritis Rheum. 2011,
63, 1833–1842. [CrossRef]

19. Schieven, G. The p38α Kinase Plays a Central Role in Inflammation. Curr. Top. Med. Chem. 2009, 9, 1038–1048.
[CrossRef]

20. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther.
2017, 2. [CrossRef]

21. Marok, R.; Winyard, P.; Coumbe, A.; Kus, M.L.; Gaffney, K.; Blades, S.; Mapp, P.I.; Morris, C.J.; Blake, D.R.;
Kaltschmidt, C.; et al. Activation of the transcription factor nuclear factor-kappaB in human inflamed
synovial tissue. Arthritis Rheum. 1996, 39. [CrossRef]

22. Teng, M.W.; Bowman, E.P.; McElwee, J.J.; Smyth, M.J.; Casanova, J.-L.; Cooper, A.M.; Cua, D.J. IL-12 and IL-23
cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med.
2015, 21, 719–729. [CrossRef] [PubMed]

23. Wei, F.; Chang, Y.; Wei, W. The role of BAFF in the progression of rheumatoid arthritis. Cytokine 2015, 76,
537–544. [CrossRef] [PubMed]

24. Tan, S.-L.; Liao, C.; Lucas, M.C.; Stevenson, C.; DeMartino, J.A. Targeting the SYK–BTK axis for the treatment
of immunological and hematological disorders. Pharmacol. Ther. 2013, 138, 294–309. [CrossRef] [PubMed]

25. Siraganian, R.P.; Zhang, J.; Suzuki, K.; Sada, K. Protein tyrosine kinase Syk in mast cell signaling. Mol. Immunol.
2002, 38, 1229–1233. [CrossRef]

26. Iwata, S.; Nakayamada, S.; Fukuyo, S.; Kubo, S.; Yunoue, N.; Wang, S.-P.; Yoshikawa, M.; Saito, K.; Tanaka, Y.
Activation of Syk in Peripheral Blood B Cells in Patients with Rheumatoid Arthritis: A Potential Target for
Abatacept Therapy. Arthritis Rheumatol. 2014, 67, 63–73. [CrossRef]

27. Cha, H.-S.; Boyle, D.L.; Inoue, T.; Schoot, R.; Tak, P.P.; Pine, P.; Firestein, G.S. A Novel Spleen Tyrosine Kinase
Inhibitor Blocks c-Jun N-Terminal Kinase-Mediated Gene Expression in Synoviocytes. J. Pharmacol. Exp.
Ther. 2006, 317, 571–578. [CrossRef]

28. Lv, J.; Wu, J.; He, F.; Qu, Y.; Zhang, Q.; Yu, C.; Jiahui, L.; Jingde, W.; Feng, H.; Ying, Q.; et al. Development
of Bruton’s Tyrosine Kinase Inhibitors for Rheumatoid Arthritis. Curr. Med. Chem. 2019, 25, 5847–5859.
[CrossRef]

29. O’Shea, J.J.; Gadina, M. Selective Janus kinase inhibitors come of age. Nat. Rev. Rheumatol. 2019, 15, 74–75.
[CrossRef]

30. Xu, P.; Shen, P.; Yu, B.; Xu, X.; Ge, R.; Cheng, X.; Chen, Q.; Bian, J.; Li, Z.; Wang, J. Janus kinases (JAKs):
The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur. J. Med.
Chem. 2020, 192, 112155. [CrossRef]

31. Van Der Heijde, D.; Tanaka, Y.; Fleischmann, R.; Keystone, E.C.; Kremer, J.M.; Zerbini, C.; Cardiel, M.H.;
Cohen, S.; Nash, P.; Song, Y.-W.; et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving
methotrexate: Twelve-month data from a twenty-four-month phase III randomized radiographic study.
Arthritis Rheum. 2013, 65, 559–570. [CrossRef]

32. Kremer, J.; Li, Z.-G.; Hall, S.; Fleischmann, R.; Genovese, M.; Martín-Mola, E.; Isaacs, J.D.; Gruben, D.;
Wallenstein, G.; Krishnaswami, S.; et al. Tofacitinib in Combination with Nonbiologic Disease-Modifying
Antirheumatic Drugs in Patients With Active Rheumatoid Arthritis. Ann. Intern. Med. 2013, 159, 253–261.
[CrossRef] [PubMed]

33. Fleischmann, R.; Kremer, J.M.; Cush, J.; Schulze-Koops, H.; Connell, C.A.; Bradley, J.D.; Gruben, D.;
Wallenstein, G.V.; Zwillich, S.H.; Kanik, K.S. Placebo-Controlled Trial of Tofacitinib Monotherapy in
Rheumatoid Arthritis. N. Engl. J. Med. 2012, 367, 495–507. [CrossRef] [PubMed]

34. Lee, E.B.; Fleischmann, R.; Hall, S.; Wilkinson, B.; Bradley, J.D.; Gruben, D.; Koncz, T.; Krishnaswami, S.;
Wallenstein, G.V.; Zang, C.; et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med.
2014, 370, 2377–2386. [CrossRef]

http://dx.doi.org/10.1002/1529-0131(200011)43:11&lt;2501::AID-ANR18&gt;3.0.CO;2-K
http://dx.doi.org/10.1002/art.30375
http://dx.doi.org/10.2174/156802609789630974
http://dx.doi.org/10.1038/sigtrans.2017.23
http://dx.doi.org/10.1002/art.1780390407
http://dx.doi.org/10.1038/nm.3895
http://www.ncbi.nlm.nih.gov/pubmed/26121196
http://dx.doi.org/10.1016/j.cyto.2015.07.014
http://www.ncbi.nlm.nih.gov/pubmed/26198030
http://dx.doi.org/10.1016/j.pharmthera.2013.02.001
http://www.ncbi.nlm.nih.gov/pubmed/23396081
http://dx.doi.org/10.1016/S0161-5890(02)00068-8
http://dx.doi.org/10.1002/art.38895
http://dx.doi.org/10.1124/jpet.105.097436
http://dx.doi.org/10.2174/0929867325666180316121951
http://dx.doi.org/10.1038/s41584-018-0155-9
http://dx.doi.org/10.1016/j.ejmech.2020.112155
http://dx.doi.org/10.1002/art.37816
http://dx.doi.org/10.7326/0003-4819-159-4-201308200-00006
http://www.ncbi.nlm.nih.gov/pubmed/24026258
http://dx.doi.org/10.1056/NEJMoa1109071
http://www.ncbi.nlm.nih.gov/pubmed/22873530
http://dx.doi.org/10.1056/NEJMoa1310476


Cells 2020, 9, 1876 15 of 21

35. Burmester, G.R.; Blanco, R.; Charles-Schoeman, C.; Wollenhaupt, J.; Zerbini, C.; Benda, B.; Gruben, D.;
Wallenstein, G.; Krishnaswami, S.; Zwillich, S.H.; et al. Tofacitinib (CP-690,550) in combination with
methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis
factor inhibitors: A randomised phase 3 trial. Lancet 2013, 381, 451–460. [CrossRef]

36. Fleischmann, R.; Mysler, E.; Hall, S.; Kivitz, A.J.; Moots, R.J.; Luo, Z.; Demasi, R.; Soma, K.; Zhang, R.;
Takiya, L.; et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab
with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): A phase 3b/4, double-blind,
head-to-head, randomised controlled trial. Lancet 2017, 390, 457–468. [CrossRef]

37. Heijde, D.; Strand, V.; Tanaka, Y.; Keystone, E.; Kremer, J.; Zerbini, C.A.F.; Cardiel, M.H.; Cohen, S.S.; Nash, P.;
Song, Y.-W.; et al. Tofacitinib in Combination with Methotrexate in Patients with Rheumatoid Arthritis:
Clinical Efficacy, Radiographic, and Safety Outcomes from a Twenty-Four–Month, Phase III Study. Arthritis
Rheumatol. 2019, 71, 878–891. [CrossRef] [PubMed]

38. Taylor, P.C.; Keystone, E.; Van Der Heijde, D.; Weinblatt, M.E.; Morales, L.D.C.; Gonzaga, J.R.; Yakushin, S.;
Ishii, T.; Emoto, K.; Beattie, S.; et al. Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis.
N. Engl. J. Med. 2017, 376, 652–662. [CrossRef] [PubMed]

39. Genovese, M.C.; Kremer, J.M.; Kartman, C.E.; Schlichting, D.E.; Xie, L.; Carmack, T.; Pantojas, C.; Burson, J.S.;
Tony, H.-P.; Macias, W.L.; et al. Response to baricitinib based on prior biologic use in patients with refractory
rheumatoid arthritis. Rheumatology 2018, 57, 900–908. [CrossRef]

40. Fleischmann, R.; Takeuchi, T.; Schiff, M.; Schlichting, D.; Xie, L.; Issa, M.; Stoykov, I.; Lisse, J.;
Martinez-Osuna, P.; Rooney, T.; et al. Efficacy and safety of long-term baricitinib with and without
methotrexate for the treatment of rheumatoid arthritis: Experience with baricitinib monotherapy continuation
or after switching from methotrexate monotherapy or baricitinib plus methotrexate. Arthritis Rheum. 2019.
[CrossRef]

41. Fleischmann, R.; Schiff, M.; Van Der Heijde, D.; Ramos-Remus, C.; Spindler, A.; Stanislav, M.; Zerbini, C.A.F.;
Gurbuz, S.; Dickson, C.; De Bono, S.; et al. Baricitinib, Methotrexate, or Combination in Patients with
Rheumatoid Arthritis and No or Limited Prior Disease-Modifying Antirheumatic Drug Treatment. Arthritis
Rheumatol. 2017, 69, 506–517. [CrossRef]

42. Fautrel, B.; Kirkham, B.; Pope, J.; Takeuchi, T.; Gaich, C.; Quebe, A.; Zhu, B.; De La Torre, I.; De Leonardis, F.;
Taylor, P.C. Effect of Baricitinib and Adalimumab in Reducing Pain and Improving Function in Patients with
Rheumatoid Arthritis in Low Disease Activity: Exploratory Analyses from RA-BEAM. J. Clin. Med. 2019,
8, 1394. [CrossRef] [PubMed]

43. Qiu, Q.; Feng, Q.; Tan, X.; Guo, M. JAK3-selective inhibitor peficitinib for the treatment of rheumatoid
arthritis. Expert Rev. Clin. Pharmacol. 2019, 12, 547–554. [CrossRef] [PubMed]

44. Takeuchi, T.; Tanaka, Y.; Iwasaki, M.; Ishikura, H.; Saeki, S.; Kaneko, Y. Efficacy and safety of the oral Janus
kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis
in Japan: A 12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann. Rheum. Dis. 2015,
75, 1057–1064. [CrossRef]

45. Genovese, M.C.; Greenwald, M.; Codding, C.; Zubrzycka-Sienkiewicz, A.; Kivitz, A.J.; Wang, A.; Shay, K.;
Wang, X.; Garg, J.P.; Cardiel, M.A. Peficitinib, a JAK Inhibitor, in Combination with Limited Conventional
Synthetic Disease-Modifying Antirheumatic Drugs in the Treatment of Moderate-to-Severe Rheumatoid
Arthritis. Arthritis Rheumatol. 2017, 69, 932–942. [CrossRef] [PubMed]

46. Tanaka, Y.; Takeuchi, T.; Tanaka, S.; Kawakami, A.; Iwasaki, M.; Song, Y.W.; Chen, Y.-H.; Wei, J.C.-C.;
Lee, S.-H.; Rokuda, M.; et al. Efficacy and safety of peficitinib (ASP015K) in patients with rheumatoid arthritis
and an inadequate response to conventional DMARDs: A randomised, double-blind, placebo-controlled
phase III trial (RAJ3). Ann. Rheum. Dis. 2019, 78, 1320–1332. [CrossRef]

47. Takeuchi, T.; Tanaka, Y.; Tanaka, S.; Kawakami, A.; Iwasaki, M.; Katayama, K.; Rokuda, M.; Izutsu, H.;
Ushijima, S.; Kaneko, Y.; et al. Efficacy and safety of peficitinib (ASP015K) in patients with rheumatoid
arthritis and an inadequate response to methotrexate: Results of a phase III randomised, double-blind,
placebo-controlled trial (RAJ4) in Japan. Ann. Rheum. Dis. 2019, 78, 1305–1319. [CrossRef]

48. Kivitz, A.J.; Gutierrez-Ureña, S.R.; Poiley, J.; Genovese, M.C.; Kristy, R.; Shay, K.; Wang, X.; Garg, J.P.;
Zubrzycka-Sienkiewicz, A. Peficitinib, a JAK Inhibitor, in the Treatment of Moderate-to-Severe Rheumatoid
Arthritis in Patients with an Inadequate Response to Methotrexate. Arthritis Rheumatol. 2017, 69, 709–719.
[CrossRef]

http://dx.doi.org/10.1016/S0140-6736(12)61424-X
http://dx.doi.org/10.1016/S0140-6736(17)31618-5
http://dx.doi.org/10.1002/art.40803
http://www.ncbi.nlm.nih.gov/pubmed/30666826
http://dx.doi.org/10.1056/NEJMoa1608345
http://www.ncbi.nlm.nih.gov/pubmed/28199814
http://dx.doi.org/10.1093/rheumatology/kex489
http://dx.doi.org/10.1002/acr.24007
http://dx.doi.org/10.1002/art.39953
http://dx.doi.org/10.3390/jcm8091394
http://www.ncbi.nlm.nih.gov/pubmed/31492040
http://dx.doi.org/10.1080/17512433.2019.1615443
http://www.ncbi.nlm.nih.gov/pubmed/31059310
http://dx.doi.org/10.1136/annrheumdis-2015-208279
http://dx.doi.org/10.1002/art.40054
http://www.ncbi.nlm.nih.gov/pubmed/28118538
http://dx.doi.org/10.1136/annrheumdis-2019-215163
http://dx.doi.org/10.1136/annrheumdis-2019-215164
http://dx.doi.org/10.1002/art.39955


Cells 2020, 9, 1876 16 of 21

49. Takeuchi, T.; Tanaka, Y.; Tanaka, S.; Kawakami, A.; Song, Y.W.; Chen, Y.H.; Rokuda, M.; Izutsu, H.; Ushijima, S.;
Kaneko, Y.; et al. Safety and effectiveness of peficitinib (ASP015K) in patients with rheumatoid arthritis:
Interim data (22.7 months mean peficitinib treatment) from a long-term, open-label extension study in Japan,
Korea, and Taiwan. Arthritis Res. Ther. 2020, 22, 47. [CrossRef]

50. Silvagni, E.; Giollo, A.; Sakellariou, G.; Ughi, N.; D’Amico, M.E.; Scirè, C.A.; Huizinga, T.W.J. One year in
review 2020: Novelties in the treatment of rheumatoid arthritis. Clin. Exp. Rheumatol. 2020, 38, 181–194.

51. Genovese, M.C.; Smolen, J.S.; Weinblatt, M.E.; Burmester, G.R.; Meerwein, S.; Camp, H.S.; Wang, L.;
Othman, A.A.; Khan, N.; Pangan, A.L.; et al. Efficacy and Safety of ABT-494, a Selective JAK-1 Inhibitor,
in a Phase IIb Study in Patients with Rheumatoid Arthritis and an Inadequate Response to Methotrexate.
Arthritis Rheumatol. 2016, 68, 2857–2866. [CrossRef]

52. Kremer, J.M.; Emery, P.; Camp, H.S.; Friedman, A.; Wang, L.; Othman, A.A.; Khan, N.; Pangan, A.L.;
Jungerwirth, S.; Keystone, E.C. A Phase IIb Study of ABT-494, a Selective JAK-1 Inhibitor, in Patients
with Rheumatoid Arthritis and an Inadequate Response to Anti-Tumor Necrosis Factor Therapy. Arthritis
Rheumatol. 2016, 68, 2867–2877. [CrossRef]

53. Burmester, G.R.; Kremer, J.M.; Bosch, F.V.D.; Kivitz, A.; Bessette, L.; Li, Y.; Zhou, Y.; Othman, A.A.;
Pangan, A.L.; Camp, H.S. Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and
inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT):
A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2018, 391, 2503–2512. [CrossRef]

54. Kameda, H.; Takeuchi, T.; Yamaoka, K.; Oribe, M.; Kawano, M.; Zhou, Y.; Othman, A.A.; Pangan, A.L.;
Kitamura, S.; Meerwein, S.; et al. Efficacy and safety of upadacitinib in Japanese patients with rheumatoid
arthritis (SELECT-SUNRISE): A placebo-controlled phase IIb/III study. Rheumatology 2020. [CrossRef]
[PubMed]

55. Genovese, M.C.; Fleischmann, R.; Combe, B.; Hall, S.; Rubbert-Roth, A.; Zhang, Y.; Zhou, Y.; Mohamed, M.-E.F.;
Meerwein, S.; Pangan, A.L. Safety and efficacy of upadacitinib in patients with active rheumatoid
arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): A double-blind,
randomised controlled phase 3 trial. Lancet 2018, 391, 2513–2524. [CrossRef]

56. Smolen, J.S.; Pangan, A.L.; Emery, P.; Rigby, W.; Tanaka, Y.; Vargas, J.I.; Zhang, Y.; Damjanov, N.; Friedman, A.;
Othman, A.A.; et al. Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate
response to methotrexate (SELECT-MONOTHERAPY): A randomised, placebo-controlled, double-blind
phase 3 study. Lancet 2019, 393, 2303–2311. [CrossRef]

57. Fleischmann, R.; Pangan, A.L.; Song, I.; Mysler, E.; Bessette, L.; Peterfy, C.; Durez, P.; Ostor, A.J.; Li, Y.;
Zhou, Y.; et al. Upadacitinib Versus Placebo or Adalimumab in Patients with Rheumatoid Arthritis and an
Inadequate Response to Methotrexate: Results of a Phase III, Double-Blind, Randomized Controlled Trial.
Arthritis Rheumatol. 2019, 71, 1788–1800. [CrossRef]

58. Fleischmann, R.M.; Genovese, M.C.; Enejosa, J.V.; Mysler, E.; Bessette, L.; Peterfy, C.; Durez, P.; Ostor, A.;
Li, Y.; Song, I.-H. Safety and effectiveness of upadacitinib or adalimumab plus methotrexate in patients with
rheumatoid arthritis over 48 weeks with switch to alternate therapy in patients with insufficient response.
Ann. Rheum. Dis. 2019, 78, 1454–1462. [CrossRef]

59. Mohamed, M.F.; Klünder, B.; Camp, H.S.; Othman, A.A. Exposure–Response Analyses of Upadacitinib
Efficacy in Phase II Trials in Rheumatoid Arthritis and Basis for Phase III Dose Selection. Clin. Pharmacol.
Ther. 2019, 106, 1319–1327. [CrossRef]

60. Westhovens, R. Clinical efficacy of new JAK inhibitors under development. Just more of the same?
Rheumatology 2019, 58, i27–i33. [CrossRef]

61. Vanhoutte, F.; Mazur, M.; Voloshyn, O.; Stanislavchuk, M.; Van der Aa, A.; Namour, F.; Galien, R.;
Meuleners, L.; van ’t Klooster, G. Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of Filgotinib, a
Selective JAK-1 Inhibitor, After Short-Term Treatment of Rheumatoid Arthritis: Results of Two Randomized
Phase IIa Trials. Arthritis Rheumatol. 2017, 69, 1949–1959. [CrossRef]

62. Kavanaugh, A.; Kremer, J.; Ponce, L.; Cseuz, R.; Reshetko, O.V.; Stanislavchuk, M.; Greenwald, M.; Van Der
Aa, A.; Vanhoutte, F.; Tasset, C.; et al. Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor,
is effective as monotherapy in patients with active rheumatoid arthritis: Results from a randomised,
dose-finding study (DARWIN 2). Ann. Rheum. Dis. 2016, 76, 1009–1019. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/s13075-020-2125-2
http://dx.doi.org/10.1002/art.39808
http://dx.doi.org/10.1002/art.39801
http://dx.doi.org/10.1016/S0140-6736(18)31115-2
http://dx.doi.org/10.1093/rheumatology/keaa084
http://www.ncbi.nlm.nih.gov/pubmed/32277824
http://dx.doi.org/10.1016/S0140-6736(18)31116-4
http://dx.doi.org/10.1016/S0140-6736(19)30419-2
http://dx.doi.org/10.1002/art.41032
http://dx.doi.org/10.1136/annrheumdis-2019-215764
http://dx.doi.org/10.1002/cpt.1543
http://dx.doi.org/10.1093/rheumatology/key256
http://dx.doi.org/10.1002/art.40186
http://dx.doi.org/10.1136/annrheumdis-2016-210105
http://www.ncbi.nlm.nih.gov/pubmed/27993828


Cells 2020, 9, 1876 17 of 21

63. Westhovens, R.; Taylor, P.C.; Alten, R.; Pavlova, D.; Enríquez-Sosa, F.; Mazur, M.; Greenwald, M.;
Van Der Aa, A.; Vanhoutte, F.; Tasset, C.; et al. Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective
inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis
and insufficient response to MTX: Results from a randomised, dose-finding study (DARWIN 1). Ann. Rheum.
Dis. 2016, 76, 998–1008. [CrossRef] [PubMed]

64. Genovese, M.C.; Kalunian, K.; Gottenberg, J.-E.; Mozaffarian, N.; Bartok, B.; Matzkies, F.; Gao, J.; Guo, Y.;
Tasset, C.; Sundy, J.S.; et al. Effect of Filgotinib vs. Placebo on Clinical Response in Patients with Moderate to
Severe Rheumatoid Arthritis Refractory to Disease-Modifying Antirheumatic Drug Therapy. JAMA 2019,
322, 315–325. [CrossRef] [PubMed]

65. Tarrant, J.M.; Galien, R.; Li, W.; Goyal, L.; Pan, Y.; Hawtin, R.; Zhang, W.; Van Der Aa, A.; Taylor, P.C.
Filgotinib, a JAK1 Inhibitor, Modulates Disease-Related Biomarkers in Rheumatoid Arthritis: Results from
Two Randomized, Controlled Phase 2b Trials. Rheumatol. Ther. 2020, 7, 173–190. [CrossRef] [PubMed]

66. Robinson, M.F.; Damjanov, N.; Stamenkovic, B.; Radunovic, G.; Kivitz, A.; Cox, L.; Manukyan, Z.; Banfield, C.;
Saunders, M.; Chandra, D.; et al. Efficacy and Safety of PF-06651600 (Ritlecitinib), a Novel JAK3/TEC Inhibitor
in Patients with Moderate to Severe Rheumatoid Arthritis and an Inadequate Response to Methotrexate.
Arthritis Rheumatol. 2020. [CrossRef] [PubMed]

67. Damjanov, N.; Kauffman, R.S.; Spencer-Green, G.T. Efficacy, pharmacodynamics, and safety of VX-702, a novel
p38 MAPK inhibitor, in rheumatoid arthritis: Results of two randomized, double-blind, placebo-controlled
clinical studies. Arthritis Rheum. 2009, 60, 1232–1241. [CrossRef]

68. Hill, R.J.; Dabbagh, K.; Phippard, D.; Li, C.; Suttmann, R.T.; Welch, M.; Papp, E.; Song, K.W.; Chang, K.-C.;
Leaffer, D.; et al. Pamapimod, a Novel p38 Mitogen-Activated Protein Kinase Inhibitor: Preclinical Analysis
of Efficacy and Selectivity. J. Pharmacol. Exp. Ther. 2008, 327, 610–619. [CrossRef]

69. Cohen, S.; Cheng, T.-T.; Chindalore, V.; Damjanov, N.; Burgos-Vargas, R.; DeLora, P.; Zimany, K.; Travers, H.;
Caulfield, J.P. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a
double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum.
2009, 60, 335–344. [CrossRef]

70. Ferguson, F.M.; Gray, N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov. 2018, 17, 353–377.
[CrossRef]

71. Xie, S.; Li, S.; Tian, J.; Li, F. Iguratimod as a New Drug for Rheumatoid Arthritis: Current Landscape.
Front. Pharmacol. 2020, 11, 73. [CrossRef]

72. Xu, Y.; Zhu, Q.; Song, J.; Liu, H.; Miao, Y.; Yang, F.; Wang, F.; Cheng, W.; Xi, Y.; Niu, X.; et al. Regulatory
Effect of Iguratimod on the Balance of Th Subsets and Inhibition of Inflammatory Cytokines in Patients with
Rheumatoid Arthritis. Mediat. Inflamm. 2015, 2015, 1–13. [CrossRef] [PubMed]

73. Ye, Y.; Liu, M.; Tang, L.; Du, F.; Liu, Y.; Hao, P.; Fu, Q.; Guo, Q.; Yan, Q.; Zhang, X.; et al. Iguratimod
represses B cell terminal differentiation linked with the inhibition of PKC/EGR1 axis. Arthritis Res. 2019,
21, 92. [CrossRef] [PubMed]

74. Song, J.; Liu, H.; Zhu, Q.; Miao, Y.; Wang, F.; Yang, F.; Cheng, W.; Xi, Y.; Niu, X.; He, D.; et al. T-614 Promotes
Osteoblastic Cell Differentiation by Increasing Dlx5 Expression and Regulating the Activation of p38 and
NF-kappaB. BioMed Res. Int. 2018, 2018, 4901591. [CrossRef] [PubMed]

75. Wang, X.; Ma, C.; Li, P.; Zhao, F.; Bi, L. Effects of iguratimod on the levels of circulating regulators of bone
remodeling and bone remodeling markers in patients with rheumatoid arthritis. Clin. Rheumatol. 2017, 2014,
1369–1377. [CrossRef]

76. Hara, M.; Ishiguro, N.; Katayama, K.; Kondo, M.; Sumida, T.; Mimori, T.; Soen, S.; Nagai, K.; Yamaguchi, T.;
Yamamoto, K.; et al. Safety and efficacy of combination therapy of iguratimod with methotrexate for patients
with active rheumatoid arthritis with an inadequate response to methotrexate: An open-label extension of a
randomized, double-blind, placebo-controlled trial. Mod. Rheumatol. 2013, 24, 410–418. [CrossRef]

77. Ishiguro, N.; Yamamoto, K.; Katayama, K.; Kondo, M.; Sumida, T.; Mimori, T.; Soen, S.; Nagai, K.;
Yamaguchi, T.; Hara, M.; et al. Concomitant iguratimod therapy in patients with active rheumatoid arthritis
despite stable doses of methotrexate: A randomized, double-blind, placebo-controlled trial. Mod. Rheumatol.
2013, 23, 430–439. [CrossRef]

78. Haselmayer, P.; Camps, M.; Liu-Bujalski, L.; Nguyen, N.; Morandi, F.; Head, J.; O’Mahony, A.; Zimmerli, S.C.;
Bruns, L.; Bender, A.T.; et al. Efficacy and Pharmacodynamic Modeling of the BTK Inhibitor Evobrutinib in
Autoimmune Disease Models. J. Immunol. 2019, 202, 2888–2906. [CrossRef]

http://dx.doi.org/10.1136/annrheumdis-2016-210104
http://www.ncbi.nlm.nih.gov/pubmed/27993829
http://dx.doi.org/10.1001/jama.2019.9055
http://www.ncbi.nlm.nih.gov/pubmed/31334793
http://dx.doi.org/10.1007/s40744-019-00192-5
http://www.ncbi.nlm.nih.gov/pubmed/31912462
http://dx.doi.org/10.1002/art.41316
http://www.ncbi.nlm.nih.gov/pubmed/32419304
http://dx.doi.org/10.1002/art.24485
http://dx.doi.org/10.1124/jpet.108.139006
http://dx.doi.org/10.1002/art.24266
http://dx.doi.org/10.1038/nrd.2018.21
http://dx.doi.org/10.3389/fphar.2020.00073
http://dx.doi.org/10.1155/2015/356040
http://www.ncbi.nlm.nih.gov/pubmed/26713003
http://dx.doi.org/10.1186/s13075-019-1874-2
http://www.ncbi.nlm.nih.gov/pubmed/30971291
http://dx.doi.org/10.1155/2018/4901591
http://www.ncbi.nlm.nih.gov/pubmed/29670900
http://dx.doi.org/10.1007/s10067-017-3668-8
http://dx.doi.org/10.3109/14397595.2013.843756
http://dx.doi.org/10.3109/s10165-012-0724-8
http://dx.doi.org/10.4049/jimmunol.1800583


Cells 2020, 9, 1876 18 of 21

79. Caldwell, R.D.; Qiu, H.; Askew, B.C.; Bender, A.T.; Brugger, N.; Camps, M.; Dhanabal, M.; Dutt, V.;
Eichhorn, T.; Gardberg, A.S.; et al. Discovery of Evobrutinib: An Oral, Potent, and Highly Selective, Covalent
Bruton’s Tyrosine Kinase (BTK) Inhibitor for the Treatment of Immunological Diseases. J. Med. Chem. 2019,
62, 7643–7655. [CrossRef]

80. Liclican, A.; Serafini, L.; Xing, W.; Czerwieniec, G.; Steiner, B.; Wang, T.; Brendza, K.M.; Lutz, J.D.; Keegan, K.S.;
Ray, A.S.; et al. Biochemical characterization of tirabrutinib and other irreversible inhibitors of Bruton’s
tyrosine kinase reveals differences in on—and off—target inhibition. Biochim. Biophys. Acta (BBA) Gen. Subj.
2020, 1864, 129531. [CrossRef]

81. Schafer, P.H.; Kivitz, A.J.; Ma, J.; Korish, S.; Sutherland, D.; Li, L.; Azaryan, A.; Kosek, J.; Adams, M.;
Capone, L.; et al. Spebrutinib (CC-292) Affects Markers of B Cell Activation, Chemotaxis, and Osteoclasts in
Patients with Rheumatoid Arthritis: Results from a Mechanistic Study. Rheumatol. Ther. 2019, 7, 101–119.
[CrossRef]

82. Smolen, J.S.; Landewé, R.; Bijlsma, J.; Burmester, G.; Chatzidionysiou, K.; Dougados, M.; Nam, J.; Ramiro, S.;
Voshaar, M.; Van Vollenhoven, R.; et al. EULAR recommendations for the management of rheumatoid
arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann. Rheum.
Dis. 2017, 76, 960–977. [CrossRef] [PubMed]

83. Muller, R. JAK inhibitors in 2019, synthetic review in 10 points. Eur. J. Intern. Med. 2019, 66, 9–17. [CrossRef]
[PubMed]

84. Kerschbaumer, A.; Sepriano, A.; Smolen, J.S.; Van Der Heijde, D.; Dougados, M.; Van Vollenhoven, R.;
McInnes, I.B.; Bijlsma, J.W.J.; Burmester, G.R.; De Wit, M.; et al. Efficacy of pharmacological treatment
in rheumatoid arthritis: A systematic literature research informing the 2019 update of the EULAR
recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 2020. [CrossRef] [PubMed]

85. Skorpen, C.G.; Hoeltzenbein, M.; Tincani, A.; Fischer-Betz, R.; Elefant, E.; Chambers, C.; Silva, J.A.P.D.;
Nelson-Piercy, C.; Cetin, I.; Ea, H.-K.; et al. The EULAR points to consider for use of antirheumatic drugs
before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 2016, 75, 795–810. [CrossRef]
[PubMed]

86. Cohen, S.B.; Tanaka, Y.; Mariette, X.; Curtis, J.R.; Lee, E.B.; Nash, P.; Winthrop, K.L.; Charles-Schoeman, C.;
Thirunavukkarasu, K.; Demasi, R.; et al. Long-term safety of tofacitinib for the treatment of rheumatoid
arthritis up to 8.5 years: Integrated analysis of data from the global clinical trials. Ann. Rheum. Dis. 2017, 76,
1253–1262. [CrossRef]

87. Kivitz, A.J.; Cohen, S.B.; Keystone, E.; Van Vollenhoven, R.F.; Haraoui, B.; Kaine, J.; Fan, H.; Connell, C.A.;
Bananis, E.; Takiya, L.; et al. A pooled analysis of the safety of tofacitinib as monotherapy or in combination
with background conventional synthetic disease-modifying antirheumatic drugs in a Phase 3 rheumatoid
arthritis population. Semin. Arthritis Rheum. 2018, 48, 406–415. [CrossRef]

88. Charles-Schoeman, C.; Burmester, G.; Nash, P.; Zerbini, C.A.F.; Soma, K.; Kwok, K.; Hendrikx, T.; Bananis, E.;
Fleischmann, R. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or
biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 2015, 75, 1293–1301. [CrossRef]

89. Smolen, J.S.; Genovese, M.C.; Takeuchi, T.; Hyslop, D.L.; Macias, W.L.; Rooney, T.; Chen, L.; Dickson, C.L.;
Camp, J.R.; Cardillo, T.E.; et al. Safety Profile of Baricitinib in Patients with Active Rheumatoid Arthritis
with over 2 Years Median Time in Treatment. J. Rheumatol. 2018, 46, 7–18. [CrossRef]

90. Harigai, M.; Takeuchi, T.; Smolen, J.S.; Winthrop, K.L.; Nishikawa, A.; Rooney, T.P.; Saifan, C.G.; Issa, M.;
Isaka, Y.; Akashi, N.; et al. Safety profile of baricitinib in Japanese patients with active rheumatoid arthritis
with over 1.6 years median time in treatment: An integrated analysis of Phases 2 and 3 trials. Mod. Rheumatol.
2019, 30, 36–43. [CrossRef]

91. Winthrop, K.L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol.
2017, 13, 234–243. [CrossRef]

92. Furie, R.; Khamashta, M.; Merrill, J.T.; Werth, V.P.; Kalunian, K.; Brohawn, P.; Illei, G.G.; Drappa, J.; Wang, L.;
Yoo, S.; et al. Anifrolumab, an Anti-Interferon-α Receptor Monoclonal Antibody, in Moderate-to-Severe
Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017, 69, 376–386. [CrossRef] [PubMed]

93. Blum, A.; Adawi, M. Rheumatoid arthritis (RA) and cardiovascular disease. Autoimmun. Rev. 2019, 18,
679–690. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/acs.jmedchem.9b00794
http://dx.doi.org/10.1016/j.bbagen.2020.129531
http://dx.doi.org/10.1007/s40744-019-00182-7
http://dx.doi.org/10.1136/annrheumdis-2016-210715
http://www.ncbi.nlm.nih.gov/pubmed/28264816
http://dx.doi.org/10.1016/j.ejim.2019.05.022
http://www.ncbi.nlm.nih.gov/pubmed/31178258
http://dx.doi.org/10.1136/annrheumdis-2019-216656
http://www.ncbi.nlm.nih.gov/pubmed/32033937
http://dx.doi.org/10.1136/annrheumdis-2015-208840
http://www.ncbi.nlm.nih.gov/pubmed/26888948
http://dx.doi.org/10.1136/annrheumdis-2016-210457
http://dx.doi.org/10.1016/j.semarthrit.2018.07.006
http://dx.doi.org/10.1136/annrheumdis-2014-207178
http://dx.doi.org/10.3899/jrheum.171361
http://dx.doi.org/10.1080/14397595.2019.1583711
http://dx.doi.org/10.1038/nrrheum.2017.23
http://dx.doi.org/10.1002/art.39962
http://www.ncbi.nlm.nih.gov/pubmed/28130918
http://dx.doi.org/10.1016/j.autrev.2019.05.005
http://www.ncbi.nlm.nih.gov/pubmed/31059840


Cells 2020, 9, 1876 19 of 21

94. Schieir, O.; Tosevski, C.; Glazier, R.H.; Hogg-Johnson, S.; Badley, E.M. Incident myocardial infarction
associated with major types of arthritis in the general population: A systematic review and meta-analysis.
Ann. Rheum. Dis. 2017, 76, 1396–1404. [CrossRef] [PubMed]

95. Holmqvist, M.; Neovius, M.; Eriksson, J.; Mantel, Ä.; Wållberg-Jonsson, S.; Jacobsson, L.T.H.; Askling, J. Risk
of Venous Thromboembolism in Patients with Rheumatoid Arthritis and Association with Disease Duration
and Hospitalization. JAMA 2012, 308, 1350–1356. [CrossRef]

96. Taylor, P.C.; Weinblatt, M.E.; Burmester, G.R.; Rooney, T.P.; Witt, S.; Walls, C.D.; Issa, M.; Salinas, C.A.;
Saifan, C.; Zhang, X.; et al. Cardiovascular Safety During Treatment with Baricitinib in Rheumatoid Arthritis.
Arthritis Rheumatol. 2019, 71, 1042–1055. [CrossRef]

97. Verden, A.; Dimbil, M.; Kyle, R.; Overstreet, B.; Hoffman, K.B. Analysis of Spontaneous Postmarket Case
Reports Submitted to the FDA Regarding Thromboembolic Adverse Events and JAK Inhibitors. Drug Saf.
2017, 41, 357–361. [CrossRef]

98. Safety Trial Finds Risk of Blood Clots in the Lungs and Death with Higher Dose of
Tofacitinib (Xeljanz, Xeljanz XR) in Rheumatoid Arthritis Patients; FDA to Investigate. Available
online: https://www.fda.gov/drugs/drug-safety-and-availability/safety-trial-finds-risk-blood-clots-lungs-
and-death-higher-dose-tofacitinib-xeljanz-xeljanz-xr (accessed on 26 July 2019).

99. EMA Confirms Xeljanz to Be Used with Caution in Patients at High Risk of Blood Clots. Available
online: https://www.ema.europa.eu/en/documents/referral/xeljanz-article-20-procedure-ema-confirms-
xeljanz-be-used-caution-patients-high-risk-blood-clots_en.pdf (accessed on 31 January 2020).

100. FDA Approves Boxed Warning about Increased Risk of Blood Clots and Death with
Higher Dose of Arthritis and Ulcerative Colitis Medicine Tofacitinib (Xeljanz, Xeljanz XR).
Available online: https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-approves-boxed-warning-about-
increased-risk-blood-clots-and-death-higher-dose-arthritis-and (accessed on 5 August 2019).

101. Vallejo-Yagüe, E.; Weiler, S.; Micheroli, R.; Burden, A.M. Thromboembolic Safety Reporting of Tofacitinib
and Baricitinib: An Analysis of the WHO VigiBase. Drug Saf. 2020. [CrossRef]

102. Xie, W.; Huang, Y.; Xiao, S.; Sun, X.; Fan, Y.; Zhang, Z. Impact of Janus kinase inhibitors on risk of
cardiovascular events in patients with rheumatoid arthritis: Systematic review and meta-analysis of
randomised controlled trials. Ann. Rheum. Dis. 2019, 78, 1048–1054. [CrossRef]

103. Desai, R.J.; Pawar, A.M.; Weinblatt, M.E.; Kim, S.C. Comparative Risk of Venous Thromboembolism in
Rheumatoid Arthritis Patients Receiving Tofacitinib Versus Those Receiving Tumor Necrosis Factor Inhibitors:
An Observational Cohort Study. Arthritis Rheumatol. 2019, 71, 892–900. [CrossRef]

104. Meyer, S.C.; Keller, M.D.; Woods, B.A.; LaFave, L.M.; Bastian, L.; Kleppe, M.; Bhagwat, N.; Marubayashi, S.;
Levine, R.L. Genetic studies reveal an unexpected negative regulatory role for Jak2 in thrombopoiesis. Blood
2014, 124, 2280–2284. [CrossRef]

105. Nakayamada, S.; Kubo, S.; Iwata, S.; Tanaka, Y. Recent Progress in JAK Inhibitors for the Treatment of
Rheumatoid Arthritis. BioDrugs 2016, 30, 407–419. [CrossRef] [PubMed]

106. Schwartz, D.; Bonelli, M.; Gadina, M.; O’Shea, J.J. Type I/II cytokines, JAKs, and new strategies for treating
autoimmune diseases. Nat. Rev. Rheumatol. 2015, 12, 25–36. [CrossRef] [PubMed]

107. Genovese, M.C.; Rubbert-Roth, A.; Smolen, J.S.; Kremer, J.M.; Khraishi, M.; Gómez-Reino, J.; Sebba, A.;
Pilson, R.; Williams, S.; Van Vollenhoven, R. Longterm Safety and Efficacy of Tocilizumab in Patients with
Rheumatoid Arthritis: A Cumulative Analysis of Up to 4.6 Years of Exposure. J. Rheumatol. 2013, 40, 768–780.
[CrossRef] [PubMed]

108. Charles-Schoeman, C.; Fleischmann, R.; Davignon, J.; Schwartz, H.; Turner, S.M.; Beysen, C.; Milad, M.;
Hellerstein, M.K.; Luo, Z.; Kaplan, I.V.; et al. Potential Mechanisms Leading to the Abnormal Lipid Profile
in Patients With Rheumatoid Arthritis Versus Healthy Volunteers and Reversal by Tofacitinib. Arthritis
Rheumatol. 2015, 67, 616–625. [CrossRef]

109. Bechman, K.; Yates, M.; Galloway, J.B. The new entries in the therapeutic armamentarium: The small
molecule JAK inhibitors. Pharmacol. Res. 2019, 147, 104392. [CrossRef]

110. Kume, K.; Amano, K.; Yamada, S.; Kanazawa, T.; Ohta, H.; Hatta, K.; Amano, K.; Kuwaba, N. Tofacitinib
improves atherosclerosis despite up-regulating serum cholesterol in patients with active rheumatoid arthritis:
A cohort study. Rheumatol. Int. 2017, 37, 2079–2085. [CrossRef]

111. Genovese, M.C. Inhibition of p38: Has the fat lady sung? Arthritis Rheum. 2009, 60, 317–320. [CrossRef]

http://dx.doi.org/10.1136/annrheumdis-2016-210275
http://www.ncbi.nlm.nih.gov/pubmed/28219882
http://dx.doi.org/10.1001/2012.jama.11741
http://dx.doi.org/10.1002/art.40841
http://dx.doi.org/10.1007/s40264-017-0622-2
https://www.fda.gov/drugs/drug-safety-and-availability/safety-trial-finds-risk-blood-clots-lungs-and-death-higher-dose-tofacitinib-xeljanz-xeljanz-xr
https://www.fda.gov/drugs/drug-safety-and-availability/safety-trial-finds-risk-blood-clots-lungs-and-death-higher-dose-tofacitinib-xeljanz-xeljanz-xr
https://www.ema.europa.eu/en/documents/referral/xeljanz-article-20-procedure-ema-confirms-xeljanz-be-used-caution-patients-high-risk-blood-clots_en.pdf
https://www.ema.europa.eu/en/documents/referral/xeljanz-article-20-procedure-ema-confirms-xeljanz-be-used-caution-patients-high-risk-blood-clots_en.pdf
https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-approves-boxed-warning-about-increased-risk-blood-clots-and-death-higher-dose-arthritis-and
https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-approves-boxed-warning-about-increased-risk-blood-clots-and-death-higher-dose-arthritis-and
http://dx.doi.org/10.1007/s40264-020-00958-9
http://dx.doi.org/10.1136/annrheumdis-2018-214846
http://dx.doi.org/10.1002/art.40798
http://dx.doi.org/10.1182/blood-2014-03-560441
http://dx.doi.org/10.1007/s40259-016-0190-5
http://www.ncbi.nlm.nih.gov/pubmed/27577235
http://dx.doi.org/10.1038/nrrheum.2015.167
http://www.ncbi.nlm.nih.gov/pubmed/26633291
http://dx.doi.org/10.3899/jrheum.120687
http://www.ncbi.nlm.nih.gov/pubmed/23457383
http://dx.doi.org/10.1002/art.38974
http://dx.doi.org/10.1016/j.phrs.2019.104392
http://dx.doi.org/10.1007/s00296-017-3844-9
http://dx.doi.org/10.1002/art.24264


Cells 2020, 9, 1876 20 of 21

112. Li, X.-L.; Liu, X.-C.; Song, Y.-L.; Hong, R.-T.; Shi, H. Suspected drug-induced liver injury associated with
iguratimod: A case report and review of the literature. BMC Gastroenterol. 2018, 18, 130. [CrossRef]

113. Xiao, W.; Guo, J.; Li, C.; Ye, H.; Wei, W.; Zou, Y.; Dai, L.; Li, Z.; Zhang, M.; Li, X.; et al. Genetic predictors of
efficacy and toxicity of iguratimod in patients with rheumatoid arthritis. Pharmacogenomics 2018, 19, 383–392.
[CrossRef]

114. Favalli, E.G.; Ingegnoli, F.; De Lucia, O.; Cincinelli, G.; Cimaz, R.; Caporali, R. COVID-19 infection and
rheumatoid arthritis: Faraway, so close! Autoimmun. Rev. 2020, 19, 102523. [CrossRef]

115. Richardson, P.J.; Corbellino, M.; Stebbing, J. Baricitinib for COVID-19: A suitable treatment?—Authors’ reply.
Lancet Infect. Dis. 2020. [CrossRef]

116. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.;
Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a
Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [CrossRef] [PubMed]

117. Bekerman, E.; Neveu, G.; Shulla, A.; Brannan, J.M.; Pu, S.-Y.; Wang, S.; Xiao, F.; Barouch-Bentov, R.;
Bakken, R.R.; Mateo, R.; et al. Anticancer kinase inhibitors impair intracellular viral trafficking and exert
broad-spectrum antiviral effects. J. Clin. Investig. 2017, 127, 1338–1352. [CrossRef] [PubMed]

118. Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: Combining
antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020, 20, 400–402. [CrossRef]

119. Spinelli, F.R.; Conti, F.; Gadina, M. HiJAKing SARS-CoV-2? The potential role of JAK inhibitors in the
management of COVID-19. Sci. Immunol. 2020, 5, eabc5367. [CrossRef]

120. Favalli, E.; Biggioggero, M.; Maioli, G.; Caporali, R. Baricitinib for COVID-19: A suitable treatment? Lancet
Infect. Dis. 2020. [CrossRef]

121. Accortt, N.A.; Lesperance, T.; Liu, M.; Rebello, S.; Trivedi, M.; Li, Y.; Curtis, J.R. Impact of Sustained Remission
on the Risk of Serious Infection in Patients with Rheumatoid Arthritis. Arthritis Rheum. 2018, 70, 679–684.
[CrossRef]

122. Li, S.W.; Wang, C.Y.; Jou, Y.J.; Yang, T.C.; Huang, S.H.; Wan, L.; Lin, Y.J.; Lin, C.W. SARS coronavirus
papain-like protease induces Egr-1-dependent up-regulation of TGF-beta1 via ROS/p38 MAPK/STAT3
pathway. Sci. Rep. 2016, 6, 25754. [CrossRef]

123. Fulcrum Therapeutics Announces Initiation of Multi-Center Phase 3 (LOSVID) Trial with Losmapimod for
Hospitalized COVID-19 Patients. Available online: https://www.globenewswire.com/news-release/2020/

06/24/2052603/0/en/Fulcrum-Therapeutics-Announces-Initiation-of-Multi-Center-Phase-3-LOSVID-Trial-
with-Losmapimod-for-Hospitalized-COVID-19-Patients.html (accessed on 24 June 2020).

124. Nicolson, P.L.; Welsh, J.D.; Chauhan, A.; Thomas, M.R.; Kahn, M.L.; Watson, S.P. A rationale for blocking
thromboinflammation in COVID-19 with Btk inhibitors. Platelets 2020, 31, 685–690. [CrossRef]

125. Alimova, M.; Sidhom, E.-H.; Satyam, A.; Dvela-Levitt, M.; Melanson, M.; Chamberlain, B.T.; Alper, S.L.;
Santos, J.; Gutierrez, J.; Subramanian, A.; et al. A High Content Screen for Mucin-1-Reducing Compounds
Identifies Fostamatinib as a Candidate for Rapid Repurposing for Acute Lung Injury during the COVID-19
pandemic. bioRxiv 2020, 2020. [CrossRef]

126. Roschewski, M.; Lionakis, M.S.; Sharman, J.P.; Roswarski, J.; Goy, A.; Monticelli, M.A.; Roshon, M.;
Wrzesinski, S.H.; Desai, J.V.; Zarakas, M.A.; et al. Inhibition of Bruton tyrosine kinase in patients with severe
COVID-19. Sci. Immunol. 2020, 5, eabd0110. [CrossRef] [PubMed]

127. Monti, S.; Balduzzi, S.; Delvino, P.; Bellis, E.; Quadrelli, V.S.; Montecucco, C. Clinical course of COVID-19 in a
series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann. Rheum.
Dis. 2020, 79, 667–668. [CrossRef] [PubMed]

128. Gianfrancesco, M.; Hyrich, K.L.; Al-Adely, S.; Carmona, L.; Danila, M.I.; Gossec, L.; Izadi, Z.; Jacobsohn, L.;
Katz, P.; Lawson-Tovey, S.; et al. Characteristics associated with hospitalisation for COVID-19 in people with
rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry.
Ann. Rheum. Dis. 2020, 79, 859–866. [CrossRef] [PubMed]

129. EULAR Guidance for Patients COVID-19 Outbreak. Available online: https://www.eular.org/eular_guidance_
for_patients_covid19_outbreak.cfm (accessed on 17 March 2020).

130. Guiding Principles from the American College of Rheumatology for Scarce Resource Allocation
During the COVID-19 Pandemic: The Case of IL-1 and IL-6 and JAK Antagonists. Available
online: https://www.rheumatology.org/Portals/0/Files/Guiding-Principles-Scarce-Resource-Allocation-IL-
6-IL-1-JAK.pdf (accessed on 14 July 2020).

http://dx.doi.org/10.1186/s12876-018-0858-z
http://dx.doi.org/10.2217/pgs-2017-0162
http://dx.doi.org/10.1016/j.autrev.2020.102523
http://dx.doi.org/10.1016/S1473-3099(20)30270-X
http://dx.doi.org/10.1016/j.cell.2020.02.052
http://www.ncbi.nlm.nih.gov/pubmed/32142651
http://dx.doi.org/10.1172/JCI89857
http://www.ncbi.nlm.nih.gov/pubmed/28240606
http://dx.doi.org/10.1016/S1473-3099(20)30132-8
http://dx.doi.org/10.1126/sciimmunol.abc5367
http://dx.doi.org/10.1016/S1473-3099(20)30262-0
http://dx.doi.org/10.1002/acr.23426
http://dx.doi.org/10.1038/srep25754
https://www.globenewswire.com/news-release/2020/06/24/2052603/0/en/Fulcrum-Therapeutics-Announces-Initiation-of-Multi-Center-Phase-3-LOSVID-Trial-with-Losmapimod-for-Hospitalized-COVID-19-Patients.html
https://www.globenewswire.com/news-release/2020/06/24/2052603/0/en/Fulcrum-Therapeutics-Announces-Initiation-of-Multi-Center-Phase-3-LOSVID-Trial-with-Losmapimod-for-Hospitalized-COVID-19-Patients.html
https://www.globenewswire.com/news-release/2020/06/24/2052603/0/en/Fulcrum-Therapeutics-Announces-Initiation-of-Multi-Center-Phase-3-LOSVID-Trial-with-Losmapimod-for-Hospitalized-COVID-19-Patients.html
http://dx.doi.org/10.1080/09537104.2020.1775189
http://dx.doi.org/10.2139/ssrn.3650600
http://dx.doi.org/10.1126/sciimmunol.abd0110
http://www.ncbi.nlm.nih.gov/pubmed/32503877
http://dx.doi.org/10.1136/annrheumdis-2020-217424
http://www.ncbi.nlm.nih.gov/pubmed/32241793
http://dx.doi.org/10.1136/annrheumdis-2020-217871
http://www.ncbi.nlm.nih.gov/pubmed/32471903
https://www.eular.org/eular_guidance_for_patients_covid19_outbreak.cfm
https://www.eular.org/eular_guidance_for_patients_covid19_outbreak.cfm
https://www.rheumatology.org/Portals/0/Files/Guiding-Principles-Scarce-Resource-Allocation-IL-6-IL-1-JAK.pdf
https://www.rheumatology.org/Portals/0/Files/Guiding-Principles-Scarce-Resource-Allocation-IL-6-IL-1-JAK.pdf


Cells 2020, 9, 1876 21 of 21

131. Ceribelli, A.; Motta, F.; De Santis, M.; Ansari, A.A.; Ridgway, W.M.; Gershwin, M.E.; Selmi, C.
Recommendations for coronavirus infection in rheumatic diseases treated with biologic therapy. J. Autoimmun.
2020, 109, 102442. [CrossRef]

132. COVID-19 Clinical Guidance for Adult Patients with Rheumatic Diseases. Available
online: https://www.rheumatology.org/Portals/0/Files/ACR-COVID-19-Clinical-Guidance-Summary-
Patients-with-Rheumatic-Diseases.pdf (accessed on 5 June 2020).

133. Horby, P.; Lim, W.S.; Emberson, J.; Mafham, M.; Bell, J.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.;
Elmahi, E.; et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report.
medRxiv 2020. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jaut.2020.102442
https://www.rheumatology.org/Portals/0/Files/ACR-COVID-19-Clinical-Guidance-Summary-Patients-with-Rheumatic-Diseases.pdf
https://www.rheumatology.org/Portals/0/Files/ACR-COVID-19-Clinical-Guidance-Summary-Patients-with-Rheumatic-Diseases.pdf
http://dx.doi.org/10.1101/2020.06.22.20137273
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	tsDMARDs Based on JAKs/MAPKs/NF-B/SYK-BTK-Targeted Therapy 
	Signaling of JAKs/MAPKs/NF-B/SYK-BTK 
	Signaling of JAKs 
	Signaling of MAPKs 
	Signaling of NF-B 
	Signaling of SYK and BTK 

	Clinical Studies of JAKs/MAPKs/NF-B/SYK-BTK Inhibitors 
	JAKs Inhibitors 
	MAPKs Inhibitors 
	NF-B Inhibitors 
	SYK-BTK Inhibitors 

	Side Effects of JAKs/MAPKs/NF-B/SYK-BTK Inhibitors 

	The Role of tsDMARDs in Fighting COVID-19 
	Conclusions 
	References

